Alaska Wild Berries Infographic

Total Page:16

File Type:pdf, Size:1020Kb

Alaska Wild Berries Infographic Alaska Wild Berries SCRUMPTIOUSLY EXTRAORDINARY It’s a wild berry lover’s dream. Whether gathering them for fun or harvesting for subsistence, berry Late-Aug picking can easily become an annual tradition that delights your palate and puts a twist on your ’Pick’n Late-Sept culinary adventures. From mid- to late-summer Time through the frst frosts, berries decorate the Alaska landscape from the alpine slopes to the forest foors. Berry Berry Good Enjoy this overview of berry picking in Alaska. While Huckleberry (Red) it is not exhaustive — there are over 50 types of Vaccinium parvifolium edible berries in Alaska — it should start you on the Found in somewhat moist habitats along the southcentral and southeast coasts of right foot and keep you from stumbling into trouble. Alaska. Bearberry Lingonberry (lowbush cranberries) Arctostaphylos sp. Vaccinium vitis-idaea Found in subalpine and boreal woodlands and Found in rocky or peaty forest soils, alpine forests and in tundra and alpine shrublands. muskegs and tundra. Blueberry Nagoonberry Vaccinium alaskaense, V. ovalifolium, and Rubus arcticus V. uliginosum Found in open, dry, and moist habitats Found in tundra, open woods, above including tundra, bogs, meadows, and timberline and in low-lying bogs. stream and lake shores. Bunchberry Raspberry Cornus canadensis Rubus idaeus Found in spruce and birch forests. Found in previously-disturbed areas, thickets and forest edges. Cloudberry Rubus chamaemorus Salmonberry Found in damp felds, marshes, wet meadows, Rubus spectabilis and tundra. Found in moist coastal forests, stream sides, and shorelines, and disturbed areas such Cranberry (highbush) as roadsides and woodland edges in Viburnum edule southeast and southcentral Alaska. Found in open woods and meadows. Serviceberry Crowberry Amelanchier sp. Empetrum nigrum Found in thickets or borders of woods in Found in alpine muskegs and tundra. southeast, southcentral, and interior Alaska. Currants (red, black, white) Strawberry Ribes sp. Fragaria sp. Found in forested areas. Found in moist, sandy soil growing in meadows, rock crevices, and coasts. Elderberry (Red) Scattered throughout the southeast , Sambucus racemosa interior, Gulf of Alaska and Aleutians. Found along the coast in forested areas. Watermelon Berry Gooseberry Streptopus amplexifolius Ribes oxyacanthoides Found near shaded stream banks and in Found in alpine thickets, rocky woods, and as moist thickets on mountain slopes in ornamental cultivars. subarctic Alaska. Berry Berry Tasty CURRANTS STRAWBERRY ELDERBERRY RASPBERRY SALMONBERRY BLUEBERRY S W CLOUDBERRY T CRANBERRY E R Alaska E A T T LINGONBERRY Berry NAGOONBERRY Tastes RED HUCKLEBERRY SERVICEBERRY BLAND GOOSEBERRY BUNCHBERRY WATERMELON CROWBERRY BEARBERRY BERRY Berry Berry Healthy Naturally low in fat, Cholesterol free. Source of many essential nutrients, sodium, and calories. including dietary fber, vitamin C and folic acid. Antioxidants Scores for Alaska vs. Rest of U.S. Berries Lingonberry 206 High bush Cranberry 174 Blue Huckleberry 111 Pomegranate (Lower 48) 106 Alaska’s Crowberry 94 lingonberry Dwarf blueberry 88 Red bearberry 79 ranked the Bog blueberry 77 highest! Alaska Blueberry 76 Wild blueberry (Lower 48) 61 Northern black currant 56 Alaska’s berries are better! Nagoonberry 51 Researchers discovered extraordinarily high levels of Kinnikinnik 48 antioxidants in Alaska’s blueberries, cranberries, Red Raspberry 47 raspberries, lingonberries, and a basket of other wild Bog cranberry 46 fruits Alaskans commonly gather as late summer cools. Cloudberry 29 Cultivated blueberry (Lower 48) 24 Many of Alaska’s berries have higher oxygen radical Red Currant 23 absorption capacity (ORAC) than commercial fruits Watermelon berry 19 studied. Anything over 40 is considered very high. Berry Berry Bad Avoid white opaque berries in Alaska The most infamous poisonous – they’re all poisonous. Teach children berry in Alaska is the baneberry to stay away from all berries unless (Actaea rubra). Baneberries look with an adult. a lot like highbush cranberries so look closely. The berries are often red, but can be white, with a black Check your berries! dot on the end. The seeds also differ with banberry’s Berries sometimes contain the having a crescent-shape, while highbush cranberry seeds immature or resting life stage of are a flattened oval shape. insects. Often, affected berries are wrinkled or deformed. Bears love berries too! How to evict bugs from your berry batch: Always be aware that bears love berries, and stay alert for them. 1. Pick through and discard these infested berries. Make a lot of noise to alert bears of your presence, and know how 2. Or make a brine solution of ½ tsp salt to 1 to handle an encounter. gallon lukewarm water. Add berries and let stand for one hour. The worms will escape from Know Bear Aware tips and stay safe: the berries into the water. Then drain and rinse berries. Carry bear spray and know how to use it. Stay in groups of 3 or more. Avoid Carcasses. Manage your food scent. References: https://www.doi.gov https://www.fs.fed.us/ https://plants.sc.egov.usda.gov/home Learn more at www.blm.gov/alaska http://www.adfg.alaska.gov https://uaf.edu/ces/foodhealth/berries/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751288/ .
Recommended publications
  • Rubus Idaeus (Raspberry ) Size/Shape
    Rubus idaeus (raspberry ) Raspberry is an upright deciduous shrub.The shrub has thorns be careful. It ha pinatelly compound leaves with a toothed edge. The plant has two different types of shoots ( canes) One which produces fruits in the given year and one which grows leaves only but will be the next year productive shoot. The fruits are small but very juicy. It grows best in full fun and moderately fertile soil. The best to grow raspberry in a raised bed or in area where any frame or trellis can be put around the plants , otherwise it will fall on the ground. Landscape Information French Name: Framboisier, ﻋﻠﻴﻖ ﺃﺣﻤﺮ :Arabic Name Plant Type: Shrub Origin: North America, Europe, Asia Heat Zones: 4, 5, 6, 7, 8 Hardiness Zones: 4, 5, 6, 7, 8 Uses: Screen, Border Plant, Mass Planting, Edible, Wildlife Size/Shape Growth Rate: Fast Tree Shape: Upright Canopy Symmetry: Symmetrical Plant Image Canopy Density: Medium Canopy Texture: Medium Height at Maturity: 1 to 1.5 m Spread at Maturity: 1 to 1.5 meters Time to Ultimate Height: 2 to 5 Years Rubus idaeus (raspberry ) Botanical Description Foliage Leaf Arrangement: Alternate Leaf Venation: Pinnate Leaf Persistance: Deciduous Leaf Type: Odd Pinnately compund Leaf Blade: 5 - 10 cm Leaf Shape: Ovate Leaf Margins: Double Serrate Leaf Textures: Rough Leaf Scent: No Fragance Color(growing season): Green Flower Image Color(changing season): Brown Flower Flower Showiness: True Flower Size Range: 1.5 - 3 Flower Type: Raceme Flower Sexuality: Monoecious (Bisexual) Flower Scent: No Fragance Flower Color:
    [Show full text]
  • 'Sanna' Lingonberry Derived by Micropropagation Vs. Stem Cuttings
    PROPAGATION & TISSUE CULTURE HORTSCIENCE 35(4):742–744. 2000. (WPM) (Lloyd and McCown, 1980) contain- ing 30 g·L–1 sucrose and 5 mg·L–1 2-isopentenyl adenine (2iP) before being rooted (in the same Field Performance of ‘Sanna’ medium as SC plants) in the greenhouse with high humidity and artificial light (long day) in Lingonberry Derived by Winter 1993–94. No rooting compound was applied to either the TC or the SC plants. Well- Micropropagation vs. Stem Cuttings rooted and approximately similar-sized pot plants from both propagation sources were Björn A. Gustavsson transplanted in Fall 1994 from the nursery to an experimental field at Balsgård (56°7´N, Balsgård–Department of Horticultural Plant Breeding, S–291 94 Kristianstad, 14°10´E). The soil in this field is a low-fertil- Sweden ity, sandy moraine, pH 5.6. Plants were grown in one row with three blocks of 10 plants each Vidmantas Stanys for a total of 30 plants per propagation method, Lithuanian Institute of Horticulture, 4335 Babtai, Kaunas District, Lithuania at a spacing of 40 cm. The field was mulched with 3–4 cm milled Additional index words. Vaccinium, cowberry, mountain cranberry, tissue culture, fruiting, peat 1 year after planting, and broadcast fertil- rhizomes ized each spring with 200 kg·ha–1 Complesal Abstract. Field performance in lingonberry (Vaccinium vitis-idaea L. cv. Sanna) was (Hoechst, Lomma, Sweden) 12N–5P–14K. compared in 1995–97 for plants produced by tissue culture (TC) vs. stem cuttings (SC). Pot Irrigation was provided only in periods with plants of about the same size were transplanted from the nursery to an infertile, sandy prolonged lack of precipitation.
    [Show full text]
  • Rubus Fruticosus L.: Constituents, Biological Activities and Health Related Uses
    Molecules 2014, 19, 10998-11029; doi:10.3390/molecules190810998 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Rubus Fruticosus L.: Constituents, Biological Activities and Health Related Uses Muhammad Zia-Ul-Haq 1,*, Muhammad Riaz 2, Vincenzo De Feo 3, Hawa Z. E. Jaafar 4,* and Marius Moga 5 1 The Patent Office, Kandawala Building, M.A. Jinnah Road, Karachi-74400, Pakistan 2 Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir Upper-2500, Pakistan; E-Mail: [email protected] 3 Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno 84100, Italy; E-Mail: [email protected] 4 Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Selangor, 43400, Malaysia; E-Mail: [email protected] 5 Department of Medicine, Transilvania University of Brasov, Brasov 500036 Romania; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (M.Z.-U.-H.); [email protected] (H.Z.E.J.); Tel.: +92-322-250-6612 (M.Z.-U.-H.); +6-03-8947-4821 (H.Z.E.J.); Fax: +6-03-8947-4918 (H.Z.E.J.). Received: 21 April 2014; in revised form: 14 July 2014 / Accepted: 16 July 2014 / Published: 28 July 2014 Abstract: Rubus fruticosus L. is a shrub famous for its fruit called blackberry fruit or more commonly blackberry. The fruit has medicinal, cosmetic and nutritive value. It is a concentrated source of valuable nutrients, as well as bioactive constituents of therapeutic interest highlighting its importance as a functional food. Besides use as a fresh fruit, it is also used as ingredient in cooked dishes, salads and bakery products like jams, snacks, desserts, and fruit preserves.
    [Show full text]
  • Yield Variations of Some Common Wild Berries in Finland in 1956–1996
    Ann. Bot. Fennici 36: 299–314 ISSN 0003-3847 Helsinki 14 December 1999 © Finnish Zoological and Botanical Publishing Board 1999 Yield variations of some common wild berries in Finland in 1956–1996 Tuomo H. Wallenius Wallenius, T. H., Department of Ecology and Systematics, P.O. Box 47, FIN-00014 University of Helsinki, Finland Received 22 January 1999, accepted 6 September 1999 Wallenius, T. H. 1999: Yield variations of some common wild berries in Finland in 1956–1996. — Ann. Bot. Fennici 36: 299–314. Estimates of some of the most common wild berry abundances and changes in their yields compared with the previous year were made in 1956–1996 as a part of the annual autumn game inquiries. The berries included in the inquiry were bilberry (Vaccinium myrtillus L.), cowberry (Vaccinium vitis-idaea L.), cloudberry (Rubus chamaemorus L.), both cranberry species (Vaccinium oxycoccos L. and V. microcarpum (Rupr.) Schmalh.), crowberry (Empetrum nigrum L.), rowan (Sorbus aucuparius L.), and wild strawberry (Fragaria vesca L.). On average, 500 observers throughout the country participated annually in the inquiry. Despite the subjective nature of the berry yield estimates, the results are valid for assessing annual changes in the yields of the most common wild berries as well as in long-term trends. The results are coincident with berry researchers’ observations that the yields of cloudberry and wild strawberry have declined during the last decades. The significant (p < 0.01) positive correlations be- tween the yields of the different berry species indicate that meteorological factors influ- ence yields of most berry species in a similar way.
    [Show full text]
  • Didymella Applanata) Control
    Pestic. Phytomed. (Belgrade), 32(1), 2017, 25–32 UDC 632.952:632.4:634.711 DOI: https://doi.org/10.2298/PIF1701025S Original scientific paper Efficacy of fungicides with different modes of action in raspberry spur blight (Didymella applanata) control 1 2 3 Milan Stević* , Biljana Pavlović and Brankica Tanović 1 University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Serbia 2 Scholar of Ministry of Education, Science and Technological Development, Republic of Serbia 3Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade Serbia *Corresponding author: [email protected] Received: 16 January 2017 Accepted: 1 March 2017 SUMMARY Efficacy trials of four multi-site fungicides (copper hydroxide, mancozeb, chlorothalonil and dithianon), as well as six fungicides with specific modes of action (fluopyram, boscalid, fluazinam, tebuconazole, azoxystrobin and pyraclostrobin) in raspberry spur blight (Didymella applanata) control were carried out in the seasons 2014 and 2016. The experiments were conducted as a randomized block design with four replicates in a commercial raspberry orchard in the locality Trešnjevica (Arilje) in western Serbia. All fungicides were applied preventively, four times until the beginning of harvest and once after harvest. The effects of the products tested were assessed three weeks after the last fungicide application according to the intensity of cane infection. Disease severity in control (untreated) plots were 53.7 (2014) and 76.3% (2016). In both years, the highest efficacy was achieved by tebuconazole (96.3 and 99.6%), followed by fluopyram (95.7 and 99.3%) and boscalid (94.7 and 95.9%). The broad-spectrum multi-site fungicides mancozeb, chlorothalonil, copper hydroxide and dithianon were effective against D.
    [Show full text]
  • Week Five: Indigenous Food Focus Salmonberry/Cloudberry Day!!
    Farm to School Month – Week Five: Indigenous Food Focus Salmonberry/Cloudberry Day!! Many thanks go out to Melissa Chlupach, Regional Healthcare Dietitian with NANA Management Services, for all her help with all the information she has provided me for each Wednesday this month celebrating Indigenous Foods We Eat! All information I have listed below is based on the materials she has passed along. Thank you, Melissa!! SALMONBERRY/CLOUDBERRY Let’s learn about salmonberries and cloudberries today!! Why take a whole day to look at these two berries? Well, whether you are in Southcentral, the Kenai, or the Southeast Alaska and pick high bush salmonberries or live in Northern or Western Alaska and pick low bush salmonberries (cloudberries), you know how healthy and delicious these little berries can be!! The Roots of Salmonberry/Cloudberry History • Both of these berries are members of the rose (Rosaceae) family and one or the other is found all around Alaska. • Even though the some of the colors and shape of these berries are similar and they are in the same family, these two berries grow and taste very different. • All Alaska wild berries, have high levels of antioxidants. Antioxidants are a group of physiologically active compounds that work to neutralize free radicals (molecules with unpaired electrons). • Historical references document early use of cloudberries to prevent and treat scurvy as well as the medicinal use of the roots and leaves of the plant. • Both berries are considered an important food of the Alaska Native people as sources rich in vitamins A and C. Let’s Move into the Science of Salmonberries and Cloudberries Pronunciation: ˈsæmənˌbɛri and klaʊd ˌbɛri Yup’ik name: atsalugpiaq Iñupiaq name: aqpik Sugt’stun name: alagnaq aqagwik Unangam Tunuu name: alagnan algnan Tlingit name: was’x’aan tléigu néx’w Family: Rosaceae (both) Genus: Rubus (both) Species: R.
    [Show full text]
  • Field Trip Plant List
    Location: Castlewood Canyon State Park Date: May 1, 2021 *Questions? Suggestions? Contact us at [email protected] Leader: Audrey Spencer & Suzanne Dingwell Major Group Family Scientific name (Ackerfield) Common name Nativity Notes Ferns and Allies Dryopteridaceae Cystopteris fragilis brittle bladder fern Native Gymnosperms Cupressaceae Juniperus scopulorum Rocky Mountain juniper Native Gymnosperms Pinaceae Pinus ponderosa ponderosa pine Native Gymnosperms Pinaceae Pseudotsuga menziesii Douglas-fir Native Angiosperms Agavaceae Leucocrinum montanum common sand lily Native Angiosperms Agavaceae Yucca glauca Great Plains yucca Native Angiosperms Alliaceae Allium sp. onion Native in fruit Angiosperms Apiaceae Lomatium orientale salt-and-pepper Native Angiosperms Asteraceae Achillea millefolium yarrow Native Angiosperms Asteraceae Arctium minus common burdock Introduced List C Angiosperms Asteraceae Artemisia frigida fringed sagebrush Native Angiosperms Asteraceae Grindelia squarrosa curlycup gumweed Native Angiosperms Asteraceae Heterotheca villosa hairy false goldenaster Native Angiosperms Asteraceae Nothocalais cuspidata sharppoint prairie-dandelion Native Microseris cuspidata (Pursh) Sch. Bip. GBIF 2/28/21 J. Ackerfield Angiosperms Asteraceae Packera fendleri Fendler's ragwort Native Angiosperms Asteraceae Taraxacum officinale dandelion Introduced Angiosperms Boraginaceae Mertensia lanceolata prairie bluebells Native Angiosperms Brassicaceae Alyssum simplex alyssum Introduced Angiosperms Brassicaceae Noccaea fendleri ssp. glauca
    [Show full text]
  • Raspberry Breeding and Protection Against Disease and Pests I
    391 Bulgarian Journal of Agricultural Science, 20 (No 2) 2014, 391-404 Agricultural Academy RASPBERRY BREEDING AND PROTECTION AGAINST DISEASE AND PESTS I. TOTIC State University of Novi Pazar, Novi Pazar, Republic of Serbia Abstract TOTIC, I., 2014. Raspberry breeding and protection against disease and pests. Bulg. J. Agric. Sci., 20: 391-404 The raspberry (Rubus idaeus) is a very important type of small perennial berry. Based on the extent of its production, it comes second only to the strawberry and currant, and based on its economic importance, it is second only to the strawberry. Considering that the first raspberry cultivars in the true sense of the word originated from the beginning of the 17th century, polmology has managed to this day to register and systematize over one thousand raspberry cultivars. The raspberry belongs to the group of products, which have the greatest degree of marketability, and in some countries (the Republic of Serbia) over 99 % of the overall production is meant to be sold on the market. In suitable agro-ecological and technical conditions (a profes- sional staff, processing and freezing capacities, organized purchase locations, high quality roads and means of transportation, a sufficient workforce needed to harvest the crop), it is possible to achieve a yield of up to 35 tons per acre. Raspberry canes meant for planting need to be formed in suitable soil and must be healthy. Raspberries are traditionally cultivated in open ar- eas, and lately also in high tunnels. The canes are susceptible to disease caused by different types of pests and weeds. In order to protect them, it is necessary to regularly resort to pomotechnic and agrotechnic measures in order to prevent cane decay and a poor harvest.
    [Show full text]
  • Foraging in Boreal Forest: Wild Food Plants of the Republic of Karelia, NW Russia
    foods Article Foraging in Boreal Forest: Wild Food Plants of the Republic of Karelia, NW Russia Valeria Kolosova 1,2, Olga Belichenko 1,* , Alexandra Rodionova 3 , Denis Melnikov 4 and Renata Sõukand 1,* 1 Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; [email protected] 2 Institute for Linguistic Studies, Russian Academy of Sciences, Tuchkov pereulok 9, 199004 St Petersburg, Russia 3 Institute of Linguistics, Literature and History of the Karelian Research Centre, Russian Academy of Sciences, Pushkinskaya St. 11, 185910 Petrozavodsk, Russia; [email protected] 4 Komarov Botanical Institute, Russian Academy of Sciences, Professor Popov St. 2, 197376 St Petersburg, Russia; [email protected] * Correspondence: [email protected] (O.B.); [email protected] (R.S.) Received: 4 July 2020; Accepted: 27 July 2020; Published: 29 July 2020 Abstract: While the current consumption of wild food plants in the taiga of the American continent is a relatively well-researched phenomenon, the European taiga area is heavily underrepresented in the scientific literature. The region is important due to its distinctive ecological conditions with restricted seasonal availability of wild plants. During an ethnobotanical field study conducted in 2018–2019, 73 people from ten settlements in the Republic of Karelia were interviewed. In addition, we conducted historical data analysis and ethnographical source analysis. The most widely consumed wild food plants are forest berries (three Vaccinium species, and Rubus chamaemorus), sap-yielding Betula and acidic Rumex. While throughout the lifetime of the interviewees the list of used plants did not change considerably, the ways in which they are processed and stored underwent several stages in function of centrally available goods, people’s welfare, technical progress, and ideas about the harm and benefit of various products and technological processes.
    [Show full text]
  • Downloaded From
    Rubus strigosus Michx. Common Names: American red raspberry (1), wild red raspberry (6), grayleaf red raspberry (2). Etymology: “Rubus” is the latin word for blackberry/raspberry and “strigosus” is the latin word for thin (5). Botanical synonyms: Rubus idaeus L. ssp. strigosus (Michx.) Focke, Rubus melanolasius Dieck, Rubus neglectus Peck, Rubus carolinianus Rydb (2). FAMILY: Rosaceae, the Rose family (1) Quick Notable Features: ¬ Glandular-bristly stems ¬ Pinnately compound leaves with 3- 5 serrated leaflets, abaxially glaucous ¬ Perfect, white flowers with the sepals longer than the petals ¬ Red aggregate of drupelets that separates from the receptacle Plant Height: Rubus strigosus can reach up to 2m (7). Subspecies/varieties recognized (source 1,13): R. strigosus var. aberratus, R. strigosus var. acalyphaceus, R. strigosus var. albus, R. strigosus var. arizonicus, R. strigosus var. caudatus, R. strigosus var. eucyclus, R. strigosus var. heterolasius, R. strigosus var. strigosus, R. strigosus var. tonsus. Most Likely Confused with: Other members of the genus Rubus, such as Rubus occidentalis, Rubus idaeus, and Rubus neglectus. Rosa englanteria and Rosa setigera may also be similar in appearance (8,9). Habitat PreFerence: Rubus strigosus grows in open or disturbed areas with well drained soil (7,8). Geographic Distribution in Michigan: Rubus strigosus is found in most counties of the Upper and Lower Peninsulas (2). Known Elevational Distribution: R. strigosus was found at Mount Mitchell State Park (NC), at an elevation of 2,037m (12). Complete Geographic Distribution: R. strigosus is native to North America and widely distributed on the United States (AK, AZ, CA, CO, CT, DE, IA, ID, IL, IN, MA, MD, ME, MI, MN, MO, MT, NC, ND, NE, NH, NJ, NM, NV, NY, OH, OK, OR, PA, RI, SD, TN, UT, VA, VT, WA, WI, WV, WY), Canada (AB, BC, LB, MB, NB, NF, NS, NT, NU, ON, PE, QC, SK, YT), and France (St.
    [Show full text]
  • Sensitive Species That Are Not Listed Or Proposed Under the ESA Sorted By: Major Group, Subgroup, NS Sci
    Forest Service Sensitive Species that are not listed or proposed under the ESA Sorted by: Major Group, Subgroup, NS Sci. Name; Legend: Page 94 REGION 10 REGION 1 REGION 2 REGION 3 REGION 4 REGION 5 REGION 6 REGION 8 REGION 9 ALTERNATE NATURESERVE PRIMARY MAJOR SUB- U.S. N U.S. 2005 NATURESERVE SCIENTIFIC NAME SCIENTIFIC NAME(S) COMMON NAME GROUP GROUP G RANK RANK ESA C 9 Anahita punctulata Southeastern Wandering Spider Invertebrate Arachnid G4 NNR 9 Apochthonius indianensis A Pseudoscorpion Invertebrate Arachnid G1G2 N1N2 9 Apochthonius paucispinosus Dry Fork Valley Cave Invertebrate Arachnid G1 N1 Pseudoscorpion 9 Erebomaster flavescens A Cave Obligate Harvestman Invertebrate Arachnid G3G4 N3N4 9 Hesperochernes mirabilis Cave Psuedoscorpion Invertebrate Arachnid G5 N5 8 Hypochilus coylei A Cave Spider Invertebrate Arachnid G3? NNR 8 Hypochilus sheari A Lampshade Spider Invertebrate Arachnid G2G3 NNR 9 Kleptochthonius griseomanus An Indiana Cave Pseudoscorpion Invertebrate Arachnid G1 N1 8 Kleptochthonius orpheus Orpheus Cave Pseudoscorpion Invertebrate Arachnid G1 N1 9 Kleptochthonius packardi A Cave Obligate Pseudoscorpion Invertebrate Arachnid G2G3 N2N3 9 Nesticus carteri A Cave Spider Invertebrate Arachnid GNR NNR 8 Nesticus cooperi Lost Nantahala Cave Spider Invertebrate Arachnid G1 N1 8 Nesticus crosbyi A Cave Spider Invertebrate Arachnid G1? NNR 8 Nesticus mimus A Cave Spider Invertebrate Arachnid G2 NNR 8 Nesticus sheari A Cave Spider Invertebrate Arachnid G2? NNR 8 Nesticus silvanus A Cave Spider Invertebrate Arachnid G2? NNR
    [Show full text]
  • The Ethnoecology and Reproductive Ecology of Bakeapple (Rubus Chamaemorus L., Rosaceae) in Southern Labrador
    The ethnoecology and reproductive ecology of bakeapple (Rubus chamaemorus L., Rosaceae) in southern Labrador Amanda Karst B.Sc., University of Regina, 2002 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Biology O Amanda Karst, 2005 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy of other means, without the permission of the author Co-supervisors Dr. Nancy J. Turner and Dr. Gerry Allen ABSTRACT Bakeapple (Rubus chamaemovus L.; Rosaceae) is a circumpolar herbaceous perennial typically found in peat bogs. Bakeapple fruits have served as a vital food - resource for many northern peoples including those of the Subarctic and Arctic areas of North America. Although the reproductive ecology and habitat requirements of this plant have been studied extensively in Scandinavia, there has been scant research on bakeapple populations in Canada. Furthermore, there has been little documentation of its use or ethnoecology in many parts of Canada, especially in Newfoundland and Labrador. For this research I worked in the predominantly Metis community of Charlottetown, Labrador, where there has been a long tradition of bakeapple use. My objectives were to: 1. Document traditional use and major changes in use of bakeapple by this community; 2. Determine the most important factors influencing fruit production in local bakeapple populations; and 3. Link community observations on the ecology of this species with previous research and ecological data from my study in the area. To examine traditional use and knowledge of bakeapple in the community of Charlottetown, I conducted semi-directed in-depth interviews with knowledgeable bakeapple pickers in the community.
    [Show full text]