Coll054.1-Endmatter.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Coll054.1-Endmatter.Pdf Orthogona l Polynomial s on the Uni t Circl e Par t 1: Classica l Theor y This page intentionally left blank http://dx.doi.org/10.1090/coll054.1 America n Mathematica l Societ y Colloquiu m Publication s Volum e 54 , Par t 1 Orthogona l Polynomial s on the Uni t Circl e Par t 1: Classica l Theor y Barr y Simo n America n Mathematica l Societ y Providence , Rhod e Islan d Editorial Boar d Susan J . Priedlander , Chai r Yuri Mani n Peter Sarna k 2000 Mathematics Subject Classification. Primar y 42C05 , 05E35 , 34L99 ; Secondary 47B35 , 30C85 , 30D55 , 42A10 . For additiona l informatio n an d update s o n thi s book , visi t www.ams.org/bookpages/coll-54 Library o f Congres s Cataloging-in-Publicatio n Dat a Simon, Barry , 1946 - Orthogonal polynomial s o n the uni t circl e / Barr y Simon . p. cm. — (American Mathematical Societ y colloquium publications, ISS N 0065-925 8 ; v. 54 ) Contents: pt . 1 . Classica l theor y Includes bibliographica l reference s an d index . ISBN 0-8218-3446- 0 (par t 1 : alk . paper)—ISB N 0-8218-3675- 7 (par t 2 : alk . paper ) 1. Orthogona l polynomials . I . Title . II . Colloquiu m publication s (America n Mathematica l Society) ; v. 54 . QA404.5.S45 200 4 515'.55—dc22 200404621 9 AMS softcover ISB N 978-0-8218-4863- 0 (par t 1) ; 978-0-8218-4864-7 (par t 2) . Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitted t o mak e fai r us e o f the material , suc h a s to cop y a chapter fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provided th e customar y acknowledgmen t o f the sourc e i s given . Republication, systemati c copying , or multiple reproduction o f any material i n this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d be addressed to the Acquisitions Department, America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Request s ca n als o b e mad e b y e-mail to reprint-permissionQams.org . © 200 5 by the America n Mathematica l Society . Al l rights reserved . Reprinted b y the America n Mathematica l Society , 2009 . The America n Mathematica l Societ y retain s al l right s except thos e grante d t o the Unite d State s Government . Printed i n the Unite d State s o f America . @ Th e pape r use d i n this boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . Visit th e AM S hom e pag e a t http://www.ams.org / 10 9 8 7 6 5 4 3 2 1 1 4 1 3 1 2 1 1 1 0 0 9 To my grandchildren an d thei r parent s This page intentionally left blank Contents Preface t o Part 1 x i Notation xvi i Chapter 1 Th e Basic s 1 1.1 Introductio n 1 1.2 Orthogona l Polynomial s o n the Rea l Lin e 1 1 1.3 Caratheodor y an d Schu r Function s 2 5 1.4 A n Introduction t o Operato r an d Spectra l Theor y 4 0 1.5 Verbhmsk y Coefficient s an d the Szeg o Recurrence 5 5 1.6 Example s o f OPUC 7 1 1.7 Zero s and the First Proo f o f Verblunsky's Theore m 9 0 Chapter 2 Szego' s Theorem 10 9 2.1 Toeplit z Determinant s an d Verbhmsk y Coefficient s 10 9 2.2 Extrema l Properties , the Christofie l Functions , an d th e Christoffel-Darboux Formul a 11 7 2.3 Entrop y Semicontinuit y an d the Firs t Proo f o f Szego' s Theorem 13 6 2.4 Th e Szeg o Function 14 3 2.5 Szego' s Theorem Usin g the Poisso n Kernel 15 1 2.6 Khrushchev' s Proo f o f Szego's Theorem 15 6 2.7 Consequence s o f Szego' s Theorem 15 9 2.8 A Higher-Order Szeg o Theorem 17 2 2.9 Th e Relativ e Szeg o Function 17 8 2.10 Totik' s Workshop 18 4 2.11 Ries z Products an d Khrushchev' s Worksho p 18 9 2.12 Th e Workshop o f Denisov an d Kupi n 19 7 2.13 Matrix-Value d Measure s 20 6 Chapter 3 Tool s fo r Geronimus ' Theore m 21 7 3.1 Verblunsky' s Viewpoint : Proof s o f Verblunsky's an d Geronimus' Theorem s 21 7 3.2 Secon d Kin d Polynomial s 22 2 3.3 K W Pair s 23 9 3.4 Coefficien t Strippin g an d Associate d Polynomial s 24 5 Chapter 4 Matri x Representation s 25 1 4.1 Th e GG T Representatio n 25 1 4.2 Th e CM V Representatio n 26 2 4.3 Spectra l Consequence s o f the CM V Representation 27 4 4.4 Th e Resolven t o f the CM V Matrix 28 7 viii CONTENT S 4.5 Ran k Tw o Perturbations an d Decouplin g o f CM V Matrices 29 3 Chapter 5 Baxter' s Theore m 30 1 5.1 Wiener-Hop f Factorizatio n an d th e Inverse s o f Finite Toeplit z Matrice s 30 1 5.2 Baxter' s Proo f 31 3 Chapter 6 Th e Stron g Szeg o Theorem 31 9 6.1 Th e Ibragimo v an d Golinskii-Ibragimo v Theorem s 31 9 6.2 Th e Borodin-Okounko v Formul a 33 3 6.3 Representation s o f U(n) an d th e Bump-Diaconi s Proo f 34 6 6.4 Toeplit z Determinant s a s the Statistica l Mechanic s o f Coulomb Gase s and Johansson' s Proo f 35 2 6.5 Th e Combinatoria l Approac h an d Kac' s Proo f 36 8 6.6 A Second Loo k at Ibragimov' s Theore m 37 6 Chapter 7 Verblunsk y Coefficient s Wit h Rapi d Deca y 38 1 7.1 Th e Rate o f Exponential Deca y an d a Theorem o f Nevai-Totik 38 1 7.2 Detaile d Asymptotic s o f the Verblunsky Coefficient s 38 7 Chapter 8 Th e Densit y o f Zeros 39 1 8.1 Th e Densit y o f Zero s Measure vi a Potential Theor y 39 1 8.2 Th e Densit y o f Zero s Measure via the CM V Matrix 40 3 8.3 Rotatio n Number s 41 0 8.4 A Gallery o f Zero s 41 2 Bibliography 42 5 Author Inde x 45 7 Subject Inde x 46 3 Preface t o Part 2 x i Notation xii i Chapter 9 Rakhmanov' s Theore m an d Relate d Issue s 46 7 9.1 Rakhmanov' s Theore m vi a Polynomial Ratio s 46 7 9.2 Khrushchev' s Proo f o f Rakhmanov's Theore m 47 5 9.3 Furthe r Aspect s o f Khrushchev's Theor y 48 5 9.4 Introductio n t o MNT Theor y 49 3 9.5 Rati o Asymptotic s 50 3 9.6 Poincare' s Theore m an d Ratio Asymptotics 51 2 9.7 Wea k Asymptotic Measure s 52 1 9.8 Rati o Asymptotic s fo r Varyin g Measure s 53 0 9.9 Rakhmanov' s Theore m o n an Ar c 53 5 9.10 Wea k Limit s an d Relativ e Szeg o Asymptotics 53 8 Chapter 1 0 Technique s o f Spectral Analysi s 54 5 10.1 Aronszajn-Donoghu e Theor y 54 5 10.2 Spectra l Averagin g an d the Simon-Wolf f Criterio n 55 1 10.3 Th e Gordon-de l Rio-Makarov-Simo n Theore m 55 8 10.4 Th e Grou p U(l,l) 56 4 CONTENTS i x 10.5 Lyapuno v Exponent s an d th e Growt h o f Norms i n U(l, 1) 58 1 10.5A Appendix: Subshift s 60 0 10.6 Furstenberg' s Theore m an d Rando m Matri x Product s Prom U(l, 1 ) 60 6 10.7 Th e Transfe r Matri x Approac h to L 1 Verblunsk y Coefficient s 61 7 10.8 Th e Jitomirskaya-Las t Inequalitie s 63 1 10.9 Criteri a fo r A.C . Spectrum 63 9 10.10 Dependenc e o n the Tai l 64 8 10.11 Kotan i Theor y 65 2 10.12 Priife r Variable s 66 4 10.13 Modifyin g th e Measure : Insertin g Eigenvalue s an d Rational Functio n Multiplicatio n 67 3 10.14 Deca y o f CMV Resolvents an d Eigenfunction s 68 5 10.15 Countin g Eigenvalue s i n Gaps: Th e Birman-Schwinge r Principl e 69 0 10.16 Stochasti c Verblunsk y Coefficient s 70 1 Chapter 1 1 Periodi c Verblunsk y Coefficient s 70 9 11.1 Th e Discriminan t 71 0 11.2 Floque t Theor y 71 9 11.3 Calculatio n o f the Weigh t 72 4 11.4 A n Overvie w o f the Invers e Spectra l Problem 73 0 11.5 Th e Orthogona l Polynomial s Associate d t o Dirichle t Dat a 74 2 11.6 Wal l Polynomials an d the Determinatio n o f Discriminants 74 8 11.7 Abel' s Theore m an d the Invers e Spectra l Proble m 75 3 11.8 Almos t Periodi c Isospectral Tor i 78 3 11.9 Quadrati c Irrationalitie s 78 8 11.10 Independenc e o f Spectral Invariant s an d Isospectra l Tor i 79 9 11.11 Isospectra l Flow s 80 1 11.12 Bound s o n the Green' s Functio n 80 8 11.13 Genericit y Result s 81 1 11.14 Consequence s o f Many Close d Gap s 81 2 Chapter 1 2 Spectra l Analysi s o f Specifi c Classe s of Verblunsky Coefficient s 81 7 12.1 Perturbation s o f Bounded Variatio n 81 7 12.2 Perturbation s o f Periodic Verblunsk y Coefficient s 82 6 12.3 Naboko' s Workshop : Dens e Point Spectru m i n the Szeg o Clas s 82 9 12.4 Generi c Singula r Continuou s Spectru m 83 4 12.5 Spars e Verblunsk y Coefficient s 83 8 12.6 Rando m Verblunsk y Coefficient s 84 5 12.7 Decayin g Random Verblunsk y Coefficient s 84 7 12.8 Subshift s 85 5 12.9 Hig h Barrier s 86 3 Chapter 1 3 Th e Connectio n to Jacob i Matrices 87 1 13.1 Th e Szeg o Mapping an d Geronimu s Relation s 87 1 13.2 CM V Matrices an d th e Geronimu s Relation s 88 1 13.3 Szego' s Theorem fo r OPRL : A First Loo k 88 9 13.4 Th e Denisov-Rakhmano v Theore m 89 2 13.5 Th e Damanik-Killi p Theore m 89 6 x CONTENT S 13.6 Th e Geronimo-Cas e Equation s 90 3 13.7 Jacob i Matrice s With Exponentiall y Decayin g Coefficient s 91 2 13.8 Th e P 2 Su m Rul e and Application s 92 0 13.9 Szego' s Theorem fo r OPRL : A Third Loo k 93 7 Appendix A Reader' s Guide : Topic s and Formula e 94 5 A.l What' s Don e Where 94 5 A.
Recommended publications
  • The Many Faces of Alternating-Sign Matrices
    The many faces of alternating-sign matrices James Propp Department of Mathematics University of Wisconsin – Madison, Wisconsin, USA [email protected] August 15, 2002 Abstract I give a survey of different combinatorial forms of alternating-sign ma- trices, starting with the original form introduced by Mills, Robbins and Rumsey as well as corner-sum matrices, height-function matrices, three- colorings, monotone triangles, tetrahedral order ideals, square ice, gasket- and-basket tilings and full packings of loops. (This article has been pub- lished in a conference edition of the journal Discrete Mathematics and Theo- retical Computer Science, entitled “Discrete Models: Combinatorics, Com- putation, and Geometry,” edited by R. Cori, J. Mazoyer, M. Morvan, and R. Mosseri, and published in July 2001 in cooperation with le Maison de l’Informatique et des Mathematiques´ Discretes,` Paris, France: ISSN 1365- 8050, http://dmtcs.lori.fr.) 1 Introduction An alternating-sign matrix of order n is an n-by-n array of 0’s, 1’s and 1’s with the property that in each row and each column, the non-zero entries alter- nate in sign, beginning and ending with a 1. For example, Figure 1 shows an Supported by grants from the National Science Foundation and the National Security Agency. 1 alternating-sign matrix (ASM for short) of order 4. 0 100 1 1 10 0001 0 100 Figure 1: An alternating-sign matrix of order 4. Figure 2 exhibits all seven of the ASMs of order 3. 001 001 0 10 0 10 0 10 100 001 1 1 1 100 0 10 100 0 10 0 10 100 100 100 001 0 10 001 0 10 001 Figure 2: The seven alternating-sign matrices of order 3.
    [Show full text]
  • Graph Equivalence Classes for Spectral Projector-Based Graph Fourier Transforms Joya A
    1 Graph Equivalence Classes for Spectral Projector-Based Graph Fourier Transforms Joya A. Deri, Member, IEEE, and José M. F. Moura, Fellow, IEEE Abstract—We define and discuss the utility of two equiv- Consider a graph G = G(A) with adjacency matrix alence graph classes over which a spectral projector-based A 2 CN×N with k ≤ N distinct eigenvalues and Jordan graph Fourier transform is equivalent: isomorphic equiv- decomposition A = VJV −1. The associated Jordan alence classes and Jordan equivalence classes. Isomorphic equivalence classes show that the transform is equivalent subspaces of A are Jij, i = 1; : : : k, j = 1; : : : ; gi, up to a permutation on the node labels. Jordan equivalence where gi is the geometric multiplicity of eigenvalue 휆i, classes permit identical transforms over graphs of noniden- or the dimension of the kernel of A − 휆iI. The signal tical topologies and allow a basis-invariant characterization space S can be uniquely decomposed by the Jordan of total variation orderings of the spectral components. subspaces (see [13], [14] and Section II). For a graph Methods to exploit these classes to reduce computation time of the transform as well as limitations are discussed. signal s 2 S, the graph Fourier transform (GFT) of [12] is defined as Index Terms—Jordan decomposition, generalized k gi eigenspaces, directed graphs, graph equivalence classes, M M graph isomorphism, signal processing on graphs, networks F : S! Jij i=1 j=1 s ! (s ;:::; s ;:::; s ;:::; s ) ; (1) b11 b1g1 bk1 bkgk I. INTRODUCTION where sij is the (oblique) projection of s onto the Jordan subspace Jij parallel to SnJij.
    [Show full text]
  • The Many Faces of Alternating-Sign Matrices
    The many faces of alternating-sign matrices James Propp∗ Department of Mathematics University of Wisconsin – Madison, Wisconsin, USA [email protected] June 1, 2018 Abstract I give a survey of different combinatorial forms of alternating-sign ma- trices, starting with the original form introduced by Mills, Robbins and Rumsey as well as corner-sum matrices, height-function matrices, three- colorings, monotone triangles, tetrahedral order ideals, square ice, gasket- and-basket tilings and full packings of loops. (This article has been pub- lished in a conference edition of the journal Discrete Mathematics and Theo- retical Computer Science, entitled “Discrete Models: Combinatorics, Com- putation, and Geometry,” edited by R. Cori, J. Mazoyer, M. Morvan, and R. Mosseri, and published in July 2001 in cooperation with le Maison de l’Informatique et des Math´ematiques Discr`etes, Paris, France: ISSN 1365- 8050, http://dmtcs.lori.fr.) 1 Introduction arXiv:math/0208125v1 [math.CO] 15 Aug 2002 An alternating-sign matrix of order n is an n-by-n array of 0’s, +1’s and −1’s with the property that in each row and each column, the non-zero entries alter- nate in sign, beginning and ending with a +1. For example, Figure 1 shows an ∗Supported by grants from the National Science Foundation and the National Security Agency. 1 alternating-sign matrix (ASM for short) of order 4. 0 +1 0 0 +1 −1 +1 0 0 0 0 +1 0 +1 0 0 Figure 1: An alternating-sign matrix of order 4. Figure 2 exhibits all seven of the ASMs of order 3.
    [Show full text]
  • Alternating Sign Matrices and Polynomiography
    Alternating Sign Matrices and Polynomiography Bahman Kalantari Department of Computer Science Rutgers University, USA [email protected] Submitted: Apr 10, 2011; Accepted: Oct 15, 2011; Published: Oct 31, 2011 Mathematics Subject Classifications: 00A66, 15B35, 15B51, 30C15 Dedicated to Doron Zeilberger on the occasion of his sixtieth birthday Abstract To each permutation matrix we associate a complex permutation polynomial with roots at lattice points corresponding to the position of the ones. More generally, to an alternating sign matrix (ASM) we associate a complex alternating sign polynomial. On the one hand visualization of these polynomials through polynomiography, in a combinatorial fashion, provides for a rich source of algo- rithmic art-making, interdisciplinary teaching, and even leads to games. On the other hand, this combines a variety of concepts such as symmetry, counting and combinatorics, iteration functions and dynamical systems, giving rise to a source of research topics. More generally, we assign classes of polynomials to matrices in the Birkhoff and ASM polytopes. From the characterization of vertices of these polytopes, and by proving a symmetry-preserving property, we argue that polynomiography of ASMs form building blocks for approximate polynomiography for polynomials corresponding to any given member of these polytopes. To this end we offer an algorithm to express any member of the ASM polytope as a convex of combination of ASMs. In particular, we can give exact or approximate polynomiography for any Latin Square or Sudoku solution. We exhibit some images. Keywords: Alternating Sign Matrices, Polynomial Roots, Newton’s Method, Voronoi Diagram, Doubly Stochastic Matrices, Latin Squares, Linear Programming, Polynomiography 1 Introduction Polynomials are undoubtedly one of the most significant objects in all of mathematics and the sciences, particularly in combinatorics.
    [Show full text]
  • Polynomial Sequences Generated by Linear Recurrences
    Innocent Ndikubwayo Polynomial Sequences Generated by Linear Recurrences: Location and Reality of Zeros Polynomial Sequences Generated by Linear Recurrences: Location and Reality of Zeros Linear Recurrences: Location by Sequences Generated Polynomial Innocent Ndikubwayo ISBN 978-91-7911-462-6 Department of Mathematics Doctoral Thesis in Mathematics at Stockholm University, Sweden 2021 Polynomial Sequences Generated by Linear Recurrences: Location and Reality of Zeros Innocent Ndikubwayo Academic dissertation for the Degree of Doctor of Philosophy in Mathematics at Stockholm University to be publicly defended on Friday 14 May 2021 at 15.00 in sal 14 (Gradängsalen), hus 5, Kräftriket, Roslagsvägen 101 and online via Zoom, public link is available at the department website. Abstract In this thesis, we study the problem of location of the zeros of individual polynomials in sequences of polynomials generated by linear recurrence relations. In paper I, we establish the necessary and sufficient conditions that guarantee hyperbolicity of all the polynomials generated by a three-term recurrence of length 2, whose coefficients are arbitrary real polynomials. These zeros are dense on the real intervals of an explicitly defined real semialgebraic curve. Paper II extends Paper I to three-term recurrences of length greater than 2. We prove that there always exist non- hyperbolic polynomial(s) in the generated sequence. We further show that with at most finitely many known exceptions, all the zeros of all the polynomials generated by the recurrence lie and are dense on an explicitly defined real semialgebraic curve which consists of real intervals and non-real segments. The boundary points of this curve form a subset of zero locus of the discriminant of the characteristic polynomial of the recurrence.
    [Show full text]
  • Explicit Inverse of a Tridiagonal (P, R)–Toeplitz Matrix
    Explicit inverse of a tridiagonal (p; r){Toeplitz matrix A.M. Encinas, M.J. Jim´enez Departament de Matemtiques Universitat Politcnica de Catalunya Abstract Tridiagonal matrices appears in many contexts in pure and applied mathematics, so the study of the inverse of these matrices becomes of specific interest. In recent years the invertibility of nonsingular tridiagonal matrices has been quite investigated in different fields, not only from the theoretical point of view (either in the framework of linear algebra or in the ambit of numerical analysis), but also due to applications, for instance in the study of sound propagation problems or certain quantum oscillators. However, explicit inverses are known only in a few cases, in particular when the tridiagonal matrix has constant diagonals or the coefficients of these diagonals are subjected to some restrictions like the tridiagonal p{Toeplitz matrices [7], such that their three diagonals are formed by p{periodic sequences. The recent formulae for the inversion of tridiagonal p{Toeplitz matrices are based, more o less directly, on the solution of second order linear difference equations, although most of them use a cumbersome formulation, that in fact don not take into account the periodicity of the coefficients. This contribution presents the explicit inverse of a tridiagonal matrix (p; r){Toeplitz, which diagonal coefficients are in a more general class of sequences than periodic ones, that we have called quasi{periodic sequences. A tridiagonal matrix A = (aij) of order n + 2 is called (p; r){Toeplitz if there exists m 2 N0 such that n + 2 = mp and ai+p;j+p = raij; i; j = 0;:::; (m − 1)p: Equivalently, A is a (p; r){Toeplitz matrix iff k ai+kp;j+kp = r aij; i; j = 0; : : : ; p; k = 0; : : : ; m − 1: We have developed a technique that reduces any linear second order difference equation with periodic or quasi-periodic coefficients to a difference equation of the same kind but with constant coefficients [3].
    [Show full text]
  • Toeplitz and Toeplitz-Block-Toeplitz Matrices and Their Correlation with Syzygies of Polynomials
    TOEPLITZ AND TOEPLITZ-BLOCK-TOEPLITZ MATRICES AND THEIR CORRELATION WITH SYZYGIES OF POLYNOMIALS HOUSSAM KHALIL∗, BERNARD MOURRAIN† , AND MICHELLE SCHATZMAN‡ Abstract. In this paper, we re-investigate the resolution of Toeplitz systems T u = g, from a new point of view, by correlating the solution of such problems with syzygies of polynomials or moving lines. We show an explicit connection between the generators of a Toeplitz matrix and the generators of the corresponding module of syzygies. We show that this module is generated by two elements of degree n and the solution of T u = g can be reinterpreted as the remainder of an explicit vector depending on g, by these two generators. This approach extends naturally to multivariate problems and we describe for Toeplitz-block-Toeplitz matrices, the structure of the corresponding generators. Key words. Toeplitz matrix, rational interpolation, syzygie 1. Introduction. Structured matrices appear in various domains, such as scientific computing, signal processing, . They usually express, in a linearize way, a problem which depends on less pa- rameters than the number of entries of the corresponding matrix. An important area of research is devoted to the development of methods for the treatment of such matrices, which depend on the actual parameters involved in these matrices. Among well-known structured matrices, Toeplitz and Hankel structures have been intensively studied [5, 6]. Nearly optimal algorithms are known for the multiplication or the resolution of linear systems, for such structure. Namely, if A is a Toeplitz matrix of size n, multiplying it by a vector or solving a linear system with A requires O˜(n) arithmetic operations (where O˜(n) = O(n logc(n)) for some c > 0) [2, 12].
    [Show full text]
  • A Note on Multilevel Toeplitz Matrices
    Spec. Matrices 2019; 7:114–126 Research Article Open Access Lei Cao and Selcuk Koyuncu* A note on multilevel Toeplitz matrices https://doi.org/110.1515/spma-2019-0011 Received August 7, 2019; accepted September 12, 2019 Abstract: Chien, Liu, Nakazato and Tam proved that all n × n classical Toeplitz matrices (one-level Toeplitz matrices) are unitarily similar to complex symmetric matrices via two types of unitary matrices and the type of the unitary matrices only depends on the parity of n. In this paper we extend their result to multilevel Toeplitz matrices that any multilevel Toeplitz matrix is unitarily similar to a complex symmetric matrix. We provide a method to construct the unitary matrices that uniformly turn any multilevel Toeplitz matrix to a complex symmetric matrix by taking tensor products of these two types of unitary matrices for one-level Toeplitz matrices according to the parity of each level of the multilevel Toeplitz matrices. In addition, we introduce a class of complex symmetric matrices that are unitarily similar to some p-level Toeplitz matrices. Keywords: Multilevel Toeplitz matrix; Unitary similarity; Complex symmetric matrices 1 Introduction Although every complex square matrix is similar to a complex symmetric matrix (see Theorem 4.4.24, [5]), it is known that not every n × n matrix is unitarily similar to a complex symmetric matrix when n ≥ 3 (See [4]). Some characterizations of matrices unitarily equivalent to a complex symmetric matrix (UECSM) were given by [1] and [3]. Very recently, a constructive proof that every Toeplitz matrix is unitarily similar to a complex symmetric matrix was given in [2] in which the unitary matrices turning all n × n Toeplitz matrices to complex symmetric matrices was given explicitly.
    [Show full text]
  • Totally Positive Toeplitz Matrices and Quantum Cohomology of Partial Flag Varieties
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 16, Number 2, Pages 363{392 S 0894-0347(02)00412-5 Article electronically published on November 29, 2002 TOTALLY POSITIVE TOEPLITZ MATRICES AND QUANTUM COHOMOLOGY OF PARTIAL FLAG VARIETIES KONSTANZE RIETSCH 1. Introduction A matrix is called totally nonnegative if all of its minors are nonnegative. Totally nonnegative infinite Toeplitz matrices were studied first in the 1950's. They are characterized in the following theorem conjectured by Schoenberg and proved by Edrei. Theorem 1.1 ([10]). The Toeplitz matrix ∞×1 1 a1 1 0 1 a2 a1 1 B . .. C B . a2 a1 . C B C A = B .. .. .. C B ad . C B C B .. .. C Bad+1 . a1 1 C B C B . C B . .. .. a a .. C B 2 1 C B . C B .. .. .. .. ..C B C is totally nonnegative@ precisely if its generating function is of theA form, 2 (1 + βit) 1+a1t + a2t + =exp(tα) ; ··· (1 γit) i Y2N − where α R 0 and β1 β2 0,γ1 γ2 0 with βi + γi < . 2 ≥ ≥ ≥···≥ ≥ ≥···≥ 1 This beautiful result has been reproved many times; see [32]P for anP overview. It may be thought of as giving a parameterization of the totally nonnegative Toeplitz matrices by ~ N N ~ (α;(βi)i; (~γi)i) R 0 R 0 R 0 i(βi +~γi) < ; f 2 ≥ × ≥ × ≥ j 1g i X2N where β~i = βi βi+1 andγ ~i = γi γi+1. − − Received by the editors December 10, 2001 and, in revised form, September 14, 2002. 2000 Mathematics Subject Classification. Primary 20G20, 15A48, 14N35, 14N15.
    [Show full text]
  • Alternating Sign Matrices, Extensions and Related Cones
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/311671190 Alternating sign matrices, extensions and related cones Article in Advances in Applied Mathematics · May 2017 DOI: 10.1016/j.aam.2016.12.001 CITATIONS READS 0 29 2 authors: Richard A. Brualdi Geir Dahl University of Wisconsin–Madison University of Oslo 252 PUBLICATIONS 3,815 CITATIONS 102 PUBLICATIONS 1,032 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Combinatorial matrix theory; alternating sign matrices View project All content following this page was uploaded by Geir Dahl on 16 December 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Alternating sign matrices, extensions and related cones Richard A. Brualdi∗ Geir Dahly December 1, 2016 Abstract An alternating sign matrix, or ASM, is a (0; ±1)-matrix where the nonzero entries in each row and column alternate in sign, and where each row and column sum is 1. We study the convex cone generated by ASMs of order n, called the ASM cone, as well as several related cones and polytopes. Some decomposition results are shown, and we find a minimal Hilbert basis of the ASM cone. The notion of (±1)-doubly stochastic matrices and a generalization of ASMs are introduced and various properties are shown. For instance, we give a new short proof of the linear characterization of the ASM polytope, in fact for a more general polytope.
    [Show full text]
  • A Conjecture About Dodgson Condensation
    Advances in Applied Mathematics 34 (2005) 654–658 www.elsevier.com/locate/yaama A conjecture about Dodgson condensation David P. Robbins ∗ Received 19 January 2004; accepted 2 July 2004 Available online 18 January 2005 Abstract We give a description of a non-archimedean approximate form of Dodgson’s condensation method for computing determinants and provide evidence for a conjecture which predicts a surprisingly high degree of accuracy for the results. 2005 Elsevier Inc. All rights reserved. In 1866 Charles Dodgson, usually known as Lewis Carroll, proposed a method, that he called condensation [2] for calculating determinants. Dodgson’s method is based on a determinantal identity. Suppose that n 2 is an integer and M is an n by n square matrix with entries in a ring and that R, S, T , and U are the upper left, upper right, lower left, and lower right n − 1byn − 1 square submatrices of M and that C is the central n − 2by n − 2 submatrix. Then it is known that det(C) det(M) = det(R) det(U) − det(S) det(T ). (1) Here the determinant of a 0 by 0 matrix is conventionally 1, so that when n = 2, Eq. (1) is the usual formula for a 2 by 2 determinant. David Bressoud gives an interesting discussion of the genesis of this identity in [1, p. 111]. Dodgson proposes to use this identity repeatedly to find the determinant of M by computing all of the connected minors (determinants of square submatrices formed from * Correspondence to David Bressoud. E-mail address: [email protected] (D.
    [Show full text]
  • A Note on Inversion of Toeplitz Matrices$
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Applied Mathematics Letters 20 (2007) 1189–1193 www.elsevier.com/locate/aml A note on inversion of Toeplitz matrices$ Xiao-Guang Lv, Ting-Zhu Huang∗ School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, PR China Received 18 October 2006; accepted 30 October 2006 Abstract It is shown that the invertibility of a Toeplitz matrix can be determined through the solvability of two standard equations. The inverse matrix can be denoted as a sum of products of circulant matrices and upper triangular Toeplitz matrices. The stability of the inversion formula for a Toeplitz matrix is also considered. c 2007 Elsevier Ltd. All rights reserved. Keywords: Toeplitz matrix; Circulant matrix; Inversion; Algorithm 1. Introduction Let T be an n-by-n Toeplitz matrix: a0 a−1 a−2 ··· a1−n ··· a1 a0 a−1 a2−n ··· T = a2 a1 a0 a3−n , . . .. an−1 an−2 an−3 ··· a0 where a−(n−1),..., an−1 are complex numbers. We use the shorthand n T = (ap−q )p,q=1 for a Toeplitz matrix. The inversion of a Toeplitz matrix is usually not a Toeplitz matrix. A very important step is to answer the question of how to reconstruct the inversion of a Toeplitz matrix by a low number of its columns and the entries of the original Toeplitz matrix. It was first observed by Trench [1] and rediscovered by Gohberg and Semencul [2] that T −1 can be reconstructed from its first and last columns provided that the first component of the first column does not vanish.
    [Show full text]