Coll054.1-Endmatter.Pdf

Coll054.1-Endmatter.Pdf

Orthogona l Polynomial s on the Uni t Circl e Par t 1: Classica l Theor y This page intentionally left blank http://dx.doi.org/10.1090/coll054.1 America n Mathematica l Societ y Colloquiu m Publication s Volum e 54 , Par t 1 Orthogona l Polynomial s on the Uni t Circl e Par t 1: Classica l Theor y Barr y Simo n America n Mathematica l Societ y Providence , Rhod e Islan d Editorial Boar d Susan J . Priedlander , Chai r Yuri Mani n Peter Sarna k 2000 Mathematics Subject Classification. Primar y 42C05 , 05E35 , 34L99 ; Secondary 47B35 , 30C85 , 30D55 , 42A10 . For additiona l informatio n an d update s o n thi s book , visi t www.ams.org/bookpages/coll-54 Library o f Congres s Cataloging-in-Publicatio n Dat a Simon, Barry , 1946 - Orthogonal polynomial s o n the uni t circl e / Barr y Simon . p. cm. — (American Mathematical Societ y colloquium publications, ISS N 0065-925 8 ; v. 54 ) Contents: pt . 1 . Classica l theor y Includes bibliographica l reference s an d index . ISBN 0-8218-3446- 0 (par t 1 : alk . paper)—ISB N 0-8218-3675- 7 (par t 2 : alk . paper ) 1. Orthogona l polynomials . I . Title . II . Colloquiu m publication s (America n Mathematica l Society) ; v. 54 . QA404.5.S45 200 4 515'.55—dc22 200404621 9 AMS softcover ISB N 978-0-8218-4863- 0 (par t 1) ; 978-0-8218-4864-7 (par t 2) . Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitted t o mak e fai r us e o f the material , suc h a s to cop y a chapter fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provided th e customar y acknowledgmen t o f the sourc e i s given . Republication, systemati c copying , or multiple reproduction o f any material i n this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d be addressed to the Acquisitions Department, America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Request s ca n als o b e mad e b y e-mail to reprint-permissionQams.org . © 200 5 by the America n Mathematica l Society . Al l rights reserved . Reprinted b y the America n Mathematica l Society , 2009 . The America n Mathematica l Societ y retain s al l right s except thos e grante d t o the Unite d State s Government . Printed i n the Unite d State s o f America . @ Th e pape r use d i n this boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . Visit th e AM S hom e pag e a t http://www.ams.org / 10 9 8 7 6 5 4 3 2 1 1 4 1 3 1 2 1 1 1 0 0 9 To my grandchildren an d thei r parent s This page intentionally left blank Contents Preface t o Part 1 x i Notation xvi i Chapter 1 Th e Basic s 1 1.1 Introductio n 1 1.2 Orthogona l Polynomial s o n the Rea l Lin e 1 1 1.3 Caratheodor y an d Schu r Function s 2 5 1.4 A n Introduction t o Operato r an d Spectra l Theor y 4 0 1.5 Verbhmsk y Coefficient s an d the Szeg o Recurrence 5 5 1.6 Example s o f OPUC 7 1 1.7 Zero s and the First Proo f o f Verblunsky's Theore m 9 0 Chapter 2 Szego' s Theorem 10 9 2.1 Toeplit z Determinant s an d Verbhmsk y Coefficient s 10 9 2.2 Extrema l Properties , the Christofie l Functions , an d th e Christoffel-Darboux Formul a 11 7 2.3 Entrop y Semicontinuit y an d the Firs t Proo f o f Szego' s Theorem 13 6 2.4 Th e Szeg o Function 14 3 2.5 Szego' s Theorem Usin g the Poisso n Kernel 15 1 2.6 Khrushchev' s Proo f o f Szego's Theorem 15 6 2.7 Consequence s o f Szego' s Theorem 15 9 2.8 A Higher-Order Szeg o Theorem 17 2 2.9 Th e Relativ e Szeg o Function 17 8 2.10 Totik' s Workshop 18 4 2.11 Ries z Products an d Khrushchev' s Worksho p 18 9 2.12 Th e Workshop o f Denisov an d Kupi n 19 7 2.13 Matrix-Value d Measure s 20 6 Chapter 3 Tool s fo r Geronimus ' Theore m 21 7 3.1 Verblunsky' s Viewpoint : Proof s o f Verblunsky's an d Geronimus' Theorem s 21 7 3.2 Secon d Kin d Polynomial s 22 2 3.3 K W Pair s 23 9 3.4 Coefficien t Strippin g an d Associate d Polynomial s 24 5 Chapter 4 Matri x Representation s 25 1 4.1 Th e GG T Representatio n 25 1 4.2 Th e CM V Representatio n 26 2 4.3 Spectra l Consequence s o f the CM V Representation 27 4 4.4 Th e Resolven t o f the CM V Matrix 28 7 viii CONTENT S 4.5 Ran k Tw o Perturbations an d Decouplin g o f CM V Matrices 29 3 Chapter 5 Baxter' s Theore m 30 1 5.1 Wiener-Hop f Factorizatio n an d th e Inverse s o f Finite Toeplit z Matrice s 30 1 5.2 Baxter' s Proo f 31 3 Chapter 6 Th e Stron g Szeg o Theorem 31 9 6.1 Th e Ibragimo v an d Golinskii-Ibragimo v Theorem s 31 9 6.2 Th e Borodin-Okounko v Formul a 33 3 6.3 Representation s o f U(n) an d th e Bump-Diaconi s Proo f 34 6 6.4 Toeplit z Determinant s a s the Statistica l Mechanic s o f Coulomb Gase s and Johansson' s Proo f 35 2 6.5 Th e Combinatoria l Approac h an d Kac' s Proo f 36 8 6.6 A Second Loo k at Ibragimov' s Theore m 37 6 Chapter 7 Verblunsk y Coefficient s Wit h Rapi d Deca y 38 1 7.1 Th e Rate o f Exponential Deca y an d a Theorem o f Nevai-Totik 38 1 7.2 Detaile d Asymptotic s o f the Verblunsky Coefficient s 38 7 Chapter 8 Th e Densit y o f Zeros 39 1 8.1 Th e Densit y o f Zero s Measure vi a Potential Theor y 39 1 8.2 Th e Densit y o f Zero s Measure via the CM V Matrix 40 3 8.3 Rotatio n Number s 41 0 8.4 A Gallery o f Zero s 41 2 Bibliography 42 5 Author Inde x 45 7 Subject Inde x 46 3 Preface t o Part 2 x i Notation xii i Chapter 9 Rakhmanov' s Theore m an d Relate d Issue s 46 7 9.1 Rakhmanov' s Theore m vi a Polynomial Ratio s 46 7 9.2 Khrushchev' s Proo f o f Rakhmanov's Theore m 47 5 9.3 Furthe r Aspect s o f Khrushchev's Theor y 48 5 9.4 Introductio n t o MNT Theor y 49 3 9.5 Rati o Asymptotic s 50 3 9.6 Poincare' s Theore m an d Ratio Asymptotics 51 2 9.7 Wea k Asymptotic Measure s 52 1 9.8 Rati o Asymptotic s fo r Varyin g Measure s 53 0 9.9 Rakhmanov' s Theore m o n an Ar c 53 5 9.10 Wea k Limit s an d Relativ e Szeg o Asymptotics 53 8 Chapter 1 0 Technique s o f Spectral Analysi s 54 5 10.1 Aronszajn-Donoghu e Theor y 54 5 10.2 Spectra l Averagin g an d the Simon-Wolf f Criterio n 55 1 10.3 Th e Gordon-de l Rio-Makarov-Simo n Theore m 55 8 10.4 Th e Grou p U(l,l) 56 4 CONTENTS i x 10.5 Lyapuno v Exponent s an d th e Growt h o f Norms i n U(l, 1) 58 1 10.5A Appendix: Subshift s 60 0 10.6 Furstenberg' s Theore m an d Rando m Matri x Product s Prom U(l, 1 ) 60 6 10.7 Th e Transfe r Matri x Approac h to L 1 Verblunsk y Coefficient s 61 7 10.8 Th e Jitomirskaya-Las t Inequalitie s 63 1 10.9 Criteri a fo r A.C . Spectrum 63 9 10.10 Dependenc e o n the Tai l 64 8 10.11 Kotan i Theor y 65 2 10.12 Priife r Variable s 66 4 10.13 Modifyin g th e Measure : Insertin g Eigenvalue s an d Rational Functio n Multiplicatio n 67 3 10.14 Deca y o f CMV Resolvents an d Eigenfunction s 68 5 10.15 Countin g Eigenvalue s i n Gaps: Th e Birman-Schwinge r Principl e 69 0 10.16 Stochasti c Verblunsk y Coefficient s 70 1 Chapter 1 1 Periodi c Verblunsk y Coefficient s 70 9 11.1 Th e Discriminan t 71 0 11.2 Floque t Theor y 71 9 11.3 Calculatio n o f the Weigh t 72 4 11.4 A n Overvie w o f the Invers e Spectra l Problem 73 0 11.5 Th e Orthogona l Polynomial s Associate d t o Dirichle t Dat a 74 2 11.6 Wal l Polynomials an d the Determinatio n o f Discriminants 74 8 11.7 Abel' s Theore m an d the Invers e Spectra l Proble m 75 3 11.8 Almos t Periodi c Isospectral Tor i 78 3 11.9 Quadrati c Irrationalitie s 78 8 11.10 Independenc e o f Spectral Invariant s an d Isospectra l Tor i 79 9 11.11 Isospectra l Flow s 80 1 11.12 Bound s o n the Green' s Functio n 80 8 11.13 Genericit y Result s 81 1 11.14 Consequence s o f Many Close d Gap s 81 2 Chapter 1 2 Spectra l Analysi s o f Specifi c Classe s of Verblunsky Coefficient s 81 7 12.1 Perturbation s o f Bounded Variatio n 81 7 12.2 Perturbation s o f Periodic Verblunsk y Coefficient s 82 6 12.3 Naboko' s Workshop : Dens e Point Spectru m i n the Szeg o Clas s 82 9 12.4 Generi c Singula r Continuou s Spectru m 83 4 12.5 Spars e Verblunsk y Coefficient s 83 8 12.6 Rando m Verblunsk y Coefficient s 84 5 12.7 Decayin g Random Verblunsk y Coefficient s 84 7 12.8 Subshift s 85 5 12.9 Hig h Barrier s 86 3 Chapter 1 3 Th e Connectio n to Jacob i Matrices 87 1 13.1 Th e Szeg o Mapping an d Geronimu s Relation s 87 1 13.2 CM V Matrices an d th e Geronimu s Relation s 88 1 13.3 Szego' s Theorem fo r OPRL : A First Loo k 88 9 13.4 Th e Denisov-Rakhmano v Theore m 89 2 13.5 Th e Damanik-Killi p Theore m 89 6 x CONTENT S 13.6 Th e Geronimo-Cas e Equation s 90 3 13.7 Jacob i Matrice s With Exponentiall y Decayin g Coefficient s 91 2 13.8 Th e P 2 Su m Rul e and Application s 92 0 13.9 Szego' s Theorem fo r OPRL : A Third Loo k 93 7 Appendix A Reader' s Guide : Topic s and Formula e 94 5 A.l What' s Don e Where 94 5 A.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    73 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us