Graph Equivalence Classes for Spectral Projector-Based Graph Fourier Transforms Joya A

Total Page:16

File Type:pdf, Size:1020Kb

Graph Equivalence Classes for Spectral Projector-Based Graph Fourier Transforms Joya A 1 Graph Equivalence Classes for Spectral Projector-Based Graph Fourier Transforms Joya A. Deri, Member, IEEE, and José M. F. Moura, Fellow, IEEE Abstract—We define and discuss the utility of two equiv- Consider a graph G = G(A) with adjacency matrix alence graph classes over which a spectral projector-based A 2 CN×N with k ≤ N distinct eigenvalues and Jordan graph Fourier transform is equivalent: isomorphic equiv- decomposition A = VJV −1. The associated Jordan alence classes and Jordan equivalence classes. Isomorphic equivalence classes show that the transform is equivalent subspaces of A are Jij, i = 1; : : : k, j = 1; : : : ; gi, up to a permutation on the node labels. Jordan equivalence where gi is the geometric multiplicity of eigenvalue 휆i, classes permit identical transforms over graphs of noniden- or the dimension of the kernel of A − 휆iI. The signal tical topologies and allow a basis-invariant characterization space S can be uniquely decomposed by the Jordan of total variation orderings of the spectral components. subspaces (see [13], [14] and Section II). For a graph Methods to exploit these classes to reduce computation time of the transform as well as limitations are discussed. signal s 2 S, the graph Fourier transform (GFT) of [12] is defined as Index Terms—Jordan decomposition, generalized k gi eigenspaces, directed graphs, graph equivalence classes, M M graph isomorphism, signal processing on graphs, networks F : S! Jij i=1 j=1 s ! (s ;:::; s ;:::; s ;:::; s ) ; (1) b11 b1g1 bk1 bkgk I. INTRODUCTION where sij is the (oblique) projection of s onto the Jordan subspace Jij parallel to SnJij. That is, the Fourier Graph signal processing [1], [2] permits applications transform of s, is the unique decomposition of digital signal processing concepts to increasingly k gi larger networks. It is based on defining a shift filter, X X for example, the adjacency matrix in [1], [3], [4] to s = sbij; sbij 2 Jij: (2) analyze undirected and directed graphs, or the graph i=1 j=1 Laplacian [2] that applies to undirected graph struc- The spectral components are the Jordan subspaces of the tures. The graph Fourier transform is defined through adjacency matrix with this formulation. the eigendecomposition of this shift operator, see these This paper presents graph equivalence classes where references. Further developments have been considered equal GFT projections by (1) are the equivalence re- in [5], [6], [7]. In particular, filter design [1], [5], [8] lation. First, the transform (1) is invariant to node and sampling [9], [10], [11] can be applied to reduce the permutations, which we formalize with the concept of computational complexity of graph Fourier transforms. isomorphic equivalence classes. Furthermore, the GFT With the objective of simplifying graph Fourier trans- permits degrees of freedom in graph topologies, which forms for large network applications, this paper explores arXiv:1701.02864v1 [cs.SI] 11 Jan 2017 we formalize by defining Jordan equivalence classes, a methods based on graph equivalence classes to reduce concept that allows graph Fourier transform computa- the computation time of the subspace projector-based tions over graphs of simpler topologies. A frequency- graph Fourier transform proposed in [12]. This transform like ordering based on total variation of the spectral extends the graph signal processing framework proposed components is also presented to motivate low-pass, high- by [1], [3], [4] to consider spectral analysis over directed pass, and pass-band graph signals. graphs with potentially non-diagonalizable (defective) adjacency matrices. The graph signal processing frame- Section II provides the graph signal processing and work of [12] allows for a unique, unambiguous signal linear algebra background for the graph Fourier trans- representation over defective adjacency matrices. form (1). Isomorphic equivalence classes are defined in Section III, and Jordan equivalence classes are defined in This work was partially supported by NSF grants CCF-1011903 and Section IV. The Jordan equivalence classes influence the CCF-1513936 and an SYS-CMU grant. definition of total variation-based orderings of the Jordan The authors are with the Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA subspaces, which is discussed in detail in Section V. (email: jderi,[email protected]) Section VI illustrates Jordan equivalence classes and total variation orderings. Limitations of the method are Jordan decomposition. Let Vij denote the N × rij discussed in Section VII. matrix whose columns form a Jordan chain of eigen- value 휆i that spans Jordan subspace Jij. Then the II. BACKGROUND eigenvector matrix V of A is This section reviews the concepts of graph signal [︀ ]︀ V = V11 ··· V1g ··· Vk1 ··· Vkg ; (9) processing and the GFT (1). Background on graphs 1 k signal processing, including definitions of graph signals where k is the number of distinct eigenvalues. The and the graph shift, is described in greater detail in [1], columns of V are a Jordan basis of CN . Then A [3], [4], [12]. For background on eigendecompositions, has block-diagonal Jordan normal form J consisting of the reader is directed to in [13], [15], [16]. Jordan blocks 2휆 1 3 A. Eigendecomposition 6 .. 7 6 휆 . 7 N×N J(휆) = : (10) Consider matrix A 2 C with k distinct eigen- 6 . 7 6 .. 17 values 휆1; : : : ; 휆k, k ≤ N. The algebraic multiplic- 4 5 휆 ity ai of 휆i represents the corresponding exponent of the characteristic polynomial of A. Denote by Ker(A) of size rij. The Jordan normal form J of A is unique the kernel or null space of matrix A. The geometric up to a permutation of the Jordan blocks. The Jordan multiplicity gi of eigenvalue 휆i equals the dimension of decomposition of A is A = VJV −1. Ker (A − 휆iI), which is the eigenspace of 휆i where I is the N × N identity matrix. The generalized eigenspaces B. Spectral Components Gi, i = 1; : : : ; k, of A are defined as The spectral components of the Fourier trans- mi form (1) are expressed in terms of the eigenvector Gi = Ker(A − 휆iI) ; (3) basis v1; : : : ; vN and its dual basis w1; : : : ; wN since where mi is the index of eigenvalue 휆i. The generalized the Jordan basis may not be orthogonal. Denote the N eigenspaces uniquely decompose C as the direct sum basis and dual basis matrices by V = [v1 ··· vN ] and k W = [w1 ··· ; wN ]. The dual basis matrix is the inverse N M −H C = Gi: (4) Hermitian W = V [14], [17]. i=1 Consider the jth spectral component of 휆i Jordan chains. Let v 2 Ker(A − 휆 I), v 6= 0, 1 i 1 Jij = span(v1; ··· vrij ): (11) be a proper eigenvector of A that generates generalized N eigenvectors by the recursion The projection matrix onto Jij parallel to C nJij is H Pij = VijW ; (12) Avp = 휆ivp + vp−1; p = 2; : : : ; r (5) ij where r is the minimal positive integer such that where r r−1 Vij = [v1 ··· vr ] (13) (A − 휆iI) vr = 0 and (A − 휆iI) vr 6= 0. A se- ij quence of vectors (v1; : : : ; vr) that satisfy (5) is a Jordan H rij ×N is the corresponding submatrix of V and Wij 2 C chain of length r [13]. The vectors in a Jordan chain are is the corresponding submatrix of W partitioned as linearly independent and generate the Jordan subspace W = [··· W H ··· W H ··· ]T : i1 igi (14) J = span (v1; v2; : : : ; vr) : (6) As shown in [12], the projection of signal s 2 CN Denote by the jth Jordan subspace of 휆 with Jij i onto Jordan subspace Jij can be written as dimension rij, i = 1; : : : ; k, j = 1; : : : ; gi. The Jordan s = s v + ··· + s v (15) spaces are disjoint and uniquely decompose the general- bij e1 1 erij rij H ized eigenspace Gi (3) of 휆i as = VijWij s: (16) gi M The next sections show that invariance of the graph Gi = Jij: (7) Fourier transform (1) is a useful equivalence relation on j=1 a set of graphs. Equivalence classes with respect to the The space CN can be expressed as the unique decom- GFT are explored in Sections III and IV. position of Jordan spaces III. ISOMORPHIC EQUIVALENCE CLASSES k gi N M M This section demonstrates that the graph Fourier trans- C = Jij: (8) i=1 j=1 form (1) is invariant up to a permutation of node labels 2 and establishes sets of isomorphic graphs as equivalence with respect to the invariance of the GFT (1) up to a classes with respect to invariance of the GFT (1). Two permutation of the graph signal and inverse permutation graphs G(A) and G(B) are isomorphic if their adja- of the graph Fourier transform. cency matrices are similar with respect to a permutation Theorem 1 establishes an invariance of the GFT over matrix T , or B = T AT −1 [18]. The graphs have graphs that only differ up to a node labeling, and the same Jordan normal form and the same spectra. Theorem 2 follows. Also, if V and V are eigenvector matrices of A A B The isomorphic equivalence of graphs is important and B, respectively, then V = TV . We prove that B A since it signifies that the rows and columns of an adja- the set GI of all graphs that are isomorphic to G(A) is A cency matrix can be permuted to accelerate the eigende- an equivalence class over which the GFT is preserved. composition. For example, permutations of highly sparse The next theorem shows that an appropriate permutation adjacency matrices can convert an arbitrary matrix to can be imposed on the graph signal and GFT to ensure nearly diagonal forms, such as with the Cuthill-McKee invariance of the GFT over all graphs G 2 GI .
Recommended publications
  • Adjacency and Incidence Matrices
    Adjacency and Incidence Matrices 1 / 10 The Incidence Matrix of a Graph Definition Let G = (V ; E) be a graph where V = f1; 2;:::; ng and E = fe1; e2;:::; emg. The incidence matrix of G is an n × m matrix B = (bik ), where each row corresponds to a vertex and each column corresponds to an edge such that if ek is an edge between i and j, then all elements of column k are 0 except bik = bjk = 1. 1 2 e 21 1 13 f 61 0 07 3 B = 6 7 g 40 1 05 4 0 0 1 2 / 10 The First Theorem of Graph Theory Theorem If G is a multigraph with no loops and m edges, the sum of the degrees of all the vertices of G is 2m. Corollary The number of odd vertices in a loopless multigraph is even. 3 / 10 Linear Algebra and Incidence Matrices of Graphs Recall that the rank of a matrix is the dimension of its row space. Proposition Let G be a connected graph with n vertices and let B be the incidence matrix of G. Then the rank of B is n − 1 if G is bipartite and n otherwise. Example 1 2 e 21 1 13 f 61 0 07 3 B = 6 7 g 40 1 05 4 0 0 1 4 / 10 Linear Algebra and Incidence Matrices of Graphs Recall that the rank of a matrix is the dimension of its row space. Proposition Let G be a connected graph with n vertices and let B be the incidence matrix of G.
    [Show full text]
  • Network Properties Revealed Through Matrix Functions 697
    SIAM REVIEW c 2010 Society for Industrial and Applied Mathematics Vol. 52, No. 4, pp. 696–714 Network Properties Revealed ∗ through Matrix Functions † Ernesto Estrada Desmond J. Higham‡ Abstract. The emerging field of network science deals with the tasks of modeling, comparing, and summarizing large data sets that describe complex interactions. Because pairwise affinity data can be stored in a two-dimensional array, graph theory and applied linear algebra provide extremely useful tools. Here, we focus on the general concepts of centrality, com- municability,andbetweenness, each of which quantifies important features in a network. Some recent work in the mathematical physics literature has shown that the exponential of a network’s adjacency matrix can be used as the basis for defining and computing specific versions of these measures. We introduce here a general class of measures based on matrix functions, and show that a particular case involving a matrix resolvent arises naturally from graph-theoretic arguments. We also point out connections between these measures and the quantities typically computed when spectral methods are used for data mining tasks such as clustering and ordering. We finish with computational examples showing the new matrix resolvent version applied to real networks. Key words. centrality measures, clustering methods, communicability, Estrada index, Fiedler vector, graph Laplacian, graph spectrum, power series, resolvent AMS subject classifications. 05C50, 05C82, 91D30 DOI. 10.1137/090761070 1. Motivation. 1.1. Introduction. Connections are important. Across the natural, technologi- cal, and social sciences it often makes sense to focus on the pattern of interactions be- tween individual components in a system [1, 8, 61].
    [Show full text]
  • EUCLIDEAN DISTANCE MATRIX COMPLETION PROBLEMS June 6
    EUCLIDEAN DISTANCE MATRIX COMPLETION PROBLEMS HAW-REN FANG∗ AND DIANNE P. O’LEARY† June 6, 2010 Abstract. A Euclidean distance matrix is one in which the (i, j) entry specifies the squared distance between particle i and particle j. Given a partially-specified symmetric matrix A with zero diagonal, the Euclidean distance matrix completion problem (EDMCP) is to determine the unspecified entries to make A a Euclidean distance matrix. We survey three different approaches to solving the EDMCP. We advocate expressing the EDMCP as a nonconvex optimization problem using the particle positions as variables and solving using a modified Newton or quasi-Newton method. To avoid local minima, we develop a randomized initial- ization technique that involves a nonlinear version of the classical multidimensional scaling, and a dimensionality relaxation scheme with optional weighting. Our experiments show that the method easily solves the artificial problems introduced by Mor´e and Wu. It also solves the 12 much more difficult protein fragment problems introduced by Hen- drickson, and the 6 larger protein problems introduced by Grooms, Lewis, and Trosset. Key words. distance geometry, Euclidean distance matrices, global optimization, dimensional- ity relaxation, modified Cholesky factorizations, molecular conformation AMS subject classifications. 49M15, 65K05, 90C26, 92E10 1. Introduction. Given the distances between each pair of n particles in Rr, n r, it is easy to determine the relative positions of the particles. In many applications,≥ though, we are given only some of the distances and we would like to determine the missing distances and thus the particle positions. We focus in this paper on algorithms to solve this distance completion problem.
    [Show full text]
  • Diagonal Sums of Doubly Stochastic Matrices Arxiv:2101.04143V1 [Math
    Diagonal Sums of Doubly Stochastic Matrices Richard A. Brualdi∗ Geir Dahl† 7 December 2020 Abstract Let Ωn denote the class of n × n doubly stochastic matrices (each such matrix is entrywise nonnegative and every row and column sum is 1). We study the diagonals of matrices in Ωn. The main question is: which A 2 Ωn are such that the diagonals in A that avoid the zeros of A all have the same sum of their entries. We give a characterization of such matrices, and establish several classes of patterns of such matrices. Key words. Doubly stochastic matrix, diagonal sum, patterns. AMS subject classifications. 05C50, 15A15. 1 Introduction Let Mn denote the (vector) space of real n×n matrices and on this space we consider arXiv:2101.04143v1 [math.CO] 11 Jan 2021 P the usual scalar product A · B = i;j aijbij for A; B 2 Mn, A = [aij], B = [bij]. A permutation σ = (k1; k2; : : : ; kn) of f1; 2; : : : ; ng can be identified with an n × n permutation matrix P = Pσ = [pij] by defining pij = 1, if j = ki, and pij = 0, otherwise. If X = [xij] is an n × n matrix, the entries of X in the positions of X in ∗Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA. [email protected] †Department of Mathematics, University of Oslo, Norway. [email protected]. Correspond- ing author. 1 which P has a 1 is the diagonal Dσ of X corresponding to σ and P , and their sum n X dP (X) = xi;ki i=1 is a diagonal sum of X.
    [Show full text]
  • Polynomial Sequences Generated by Linear Recurrences
    Innocent Ndikubwayo Polynomial Sequences Generated by Linear Recurrences: Location and Reality of Zeros Polynomial Sequences Generated by Linear Recurrences: Location and Reality of Zeros Linear Recurrences: Location by Sequences Generated Polynomial Innocent Ndikubwayo ISBN 978-91-7911-462-6 Department of Mathematics Doctoral Thesis in Mathematics at Stockholm University, Sweden 2021 Polynomial Sequences Generated by Linear Recurrences: Location and Reality of Zeros Innocent Ndikubwayo Academic dissertation for the Degree of Doctor of Philosophy in Mathematics at Stockholm University to be publicly defended on Friday 14 May 2021 at 15.00 in sal 14 (Gradängsalen), hus 5, Kräftriket, Roslagsvägen 101 and online via Zoom, public link is available at the department website. Abstract In this thesis, we study the problem of location of the zeros of individual polynomials in sequences of polynomials generated by linear recurrence relations. In paper I, we establish the necessary and sufficient conditions that guarantee hyperbolicity of all the polynomials generated by a three-term recurrence of length 2, whose coefficients are arbitrary real polynomials. These zeros are dense on the real intervals of an explicitly defined real semialgebraic curve. Paper II extends Paper I to three-term recurrences of length greater than 2. We prove that there always exist non- hyperbolic polynomial(s) in the generated sequence. We further show that with at most finitely many known exceptions, all the zeros of all the polynomials generated by the recurrence lie and are dense on an explicitly defined real semialgebraic curve which consists of real intervals and non-real segments. The boundary points of this curve form a subset of zero locus of the discriminant of the characteristic polynomial of the recurrence.
    [Show full text]
  • The Generalized Dedekind Determinant
    Contemporary Mathematics Volume 655, 2015 http://dx.doi.org/10.1090/conm/655/13232 The Generalized Dedekind Determinant M. Ram Murty and Kaneenika Sinha Abstract. The aim of this note is to calculate the determinants of certain matrices which arise in three different settings, namely from characters on finite abelian groups, zeta functions on lattices and Fourier coefficients of normalized Hecke eigenforms. Seemingly disparate, these results arise from a common framework suggested by elementary linear algebra. 1. Introduction The purpose of this note is three-fold. We prove three seemingly disparate results about matrices which arise in three different settings, namely from charac- ters on finite abelian groups, zeta functions on lattices and Fourier coefficients of normalized Hecke eigenforms. In this section, we state these theorems. In Section 2, we state a lemma from elementary linear algebra, which lies at the heart of our three theorems. A detailed discussion and proofs of the theorems appear in Sections 3, 4 and 5. In what follows below, for any n × n matrix A and for 1 ≤ i, j ≤ n, Ai,j or (A)i,j will denote the (i, j)-th entry of A. A diagonal matrix with diagonal entries y1,y2, ...yn will be denoted as diag (y1,y2, ...yn). Theorem 1.1. Let G = {x1,x2,...xn} be a finite abelian group and let f : G → C be a complex-valued function on G. Let F be an n × n matrix defined by F −1 i,j = f(xi xj). For a character χ on G, (that is, a homomorphism of G into the multiplicative group of the field C of complex numbers), we define Sχ := f(s)χ(s).
    [Show full text]
  • Explicit Inverse of a Tridiagonal (P, R)–Toeplitz Matrix
    Explicit inverse of a tridiagonal (p; r){Toeplitz matrix A.M. Encinas, M.J. Jim´enez Departament de Matemtiques Universitat Politcnica de Catalunya Abstract Tridiagonal matrices appears in many contexts in pure and applied mathematics, so the study of the inverse of these matrices becomes of specific interest. In recent years the invertibility of nonsingular tridiagonal matrices has been quite investigated in different fields, not only from the theoretical point of view (either in the framework of linear algebra or in the ambit of numerical analysis), but also due to applications, for instance in the study of sound propagation problems or certain quantum oscillators. However, explicit inverses are known only in a few cases, in particular when the tridiagonal matrix has constant diagonals or the coefficients of these diagonals are subjected to some restrictions like the tridiagonal p{Toeplitz matrices [7], such that their three diagonals are formed by p{periodic sequences. The recent formulae for the inversion of tridiagonal p{Toeplitz matrices are based, more o less directly, on the solution of second order linear difference equations, although most of them use a cumbersome formulation, that in fact don not take into account the periodicity of the coefficients. This contribution presents the explicit inverse of a tridiagonal matrix (p; r){Toeplitz, which diagonal coefficients are in a more general class of sequences than periodic ones, that we have called quasi{periodic sequences. A tridiagonal matrix A = (aij) of order n + 2 is called (p; r){Toeplitz if there exists m 2 N0 such that n + 2 = mp and ai+p;j+p = raij; i; j = 0;:::; (m − 1)p: Equivalently, A is a (p; r){Toeplitz matrix iff k ai+kp;j+kp = r aij; i; j = 0; : : : ; p; k = 0; : : : ; m − 1: We have developed a technique that reduces any linear second order difference equation with periodic or quasi-periodic coefficients to a difference equation of the same kind but with constant coefficients [3].
    [Show full text]
  • Dimensionality Reduction
    CHAPTER 7 Dimensionality Reduction We saw in Chapter 6 that high-dimensional data has some peculiar characteristics, some of which are counterintuitive. For example, in high dimensions the center of the space is devoid of points, with most of the points being scattered along the surface of the space or in the corners. There is also an apparent proliferation of orthogonal axes. As a consequence high-dimensional data can cause problems for data mining and analysis, although in some cases high-dimensionality can help, for example, for nonlinear classification. Nevertheless, it is important to check whether the dimensionality can be reduced while preserving the essential properties of the full data matrix. This can aid data visualization as well as data mining. In this chapter we study methods that allow us to obtain optimal lower-dimensional projections of the data. 7.1 BACKGROUND Let the data D consist of n points over d attributes, that is, it is an n × d matrix, given as ⎛ ⎞ X X ··· Xd ⎜ 1 2 ⎟ ⎜ x x ··· x ⎟ ⎜x1 11 12 1d ⎟ ⎜ x x ··· x ⎟ D =⎜x2 21 22 2d ⎟ ⎜ . ⎟ ⎝ . .. ⎠ xn xn1 xn2 ··· xnd T Each point xi = (xi1,xi2,...,xid) is a vector in the ambient d-dimensional vector space spanned by the d standard basis vectors e1,e2,...,ed ,whereei corresponds to the ith attribute Xi . Recall that the standard basis is an orthonormal basis for the data T space, that is, the basis vectors are pairwise orthogonal, ei ej = 0, and have unit length ei = 1. T As such, given any other set of d orthonormal vectors u1,u2,...,ud ,withui uj = 0 T and ui = 1(orui ui = 1), we can re-express each point x as the linear combination x = a1u1 + a2u2 +···+adud (7.1) 183 184 Dimensionality Reduction T where the vector a = (a1,a2,...,ad ) represents the coordinates of x in the new basis.
    [Show full text]
  • Toeplitz and Toeplitz-Block-Toeplitz Matrices and Their Correlation with Syzygies of Polynomials
    TOEPLITZ AND TOEPLITZ-BLOCK-TOEPLITZ MATRICES AND THEIR CORRELATION WITH SYZYGIES OF POLYNOMIALS HOUSSAM KHALIL∗, BERNARD MOURRAIN† , AND MICHELLE SCHATZMAN‡ Abstract. In this paper, we re-investigate the resolution of Toeplitz systems T u = g, from a new point of view, by correlating the solution of such problems with syzygies of polynomials or moving lines. We show an explicit connection between the generators of a Toeplitz matrix and the generators of the corresponding module of syzygies. We show that this module is generated by two elements of degree n and the solution of T u = g can be reinterpreted as the remainder of an explicit vector depending on g, by these two generators. This approach extends naturally to multivariate problems and we describe for Toeplitz-block-Toeplitz matrices, the structure of the corresponding generators. Key words. Toeplitz matrix, rational interpolation, syzygie 1. Introduction. Structured matrices appear in various domains, such as scientific computing, signal processing, . They usually express, in a linearize way, a problem which depends on less pa- rameters than the number of entries of the corresponding matrix. An important area of research is devoted to the development of methods for the treatment of such matrices, which depend on the actual parameters involved in these matrices. Among well-known structured matrices, Toeplitz and Hankel structures have been intensively studied [5, 6]. Nearly optimal algorithms are known for the multiplication or the resolution of linear systems, for such structure. Namely, if A is a Toeplitz matrix of size n, multiplying it by a vector or solving a linear system with A requires O˜(n) arithmetic operations (where O˜(n) = O(n logc(n)) for some c > 0) [2, 12].
    [Show full text]
  • Dynamical Systems Associated with Adjacency Matrices
    DISCRETE AND CONTINUOUS doi:10.3934/dcdsb.2018190 DYNAMICAL SYSTEMS SERIES B Volume 23, Number 5, July 2018 pp. 1945{1973 DYNAMICAL SYSTEMS ASSOCIATED WITH ADJACENCY MATRICES Delio Mugnolo Delio Mugnolo, Lehrgebiet Analysis, Fakult¨atMathematik und Informatik FernUniversit¨atin Hagen, D-58084 Hagen, Germany Abstract. We develop the theory of linear evolution equations associated with the adjacency matrix of a graph, focusing in particular on infinite graphs of two kinds: uniformly locally finite graphs as well as locally finite line graphs. We discuss in detail qualitative properties of solutions to these problems by quadratic form methods. We distinguish between backward and forward evo- lution equations: the latter have typical features of diffusive processes, but cannot be well-posed on graphs with unbounded degree. On the contrary, well-posedness of backward equations is a typical feature of line graphs. We suggest how to detect even cycles and/or couples of odd cycles on graphs by studying backward equations for the adjacency matrix on their line graph. 1. Introduction. The aim of this paper is to discuss the properties of the linear dynamical system du (t) = Au(t) (1.1) dt where A is the adjacency matrix of a graph G with vertex set V and edge set E. Of course, in the case of finite graphs A is a bounded linear operator on the finite di- mensional Hilbert space CjVj. Hence the solution is given by the exponential matrix etA, but computing it is in general a hard task, since A carries little structure and can be a sparse or dense matrix, depending on the underlying graph.
    [Show full text]
  • A Note on Multilevel Toeplitz Matrices
    Spec. Matrices 2019; 7:114–126 Research Article Open Access Lei Cao and Selcuk Koyuncu* A note on multilevel Toeplitz matrices https://doi.org/110.1515/spma-2019-0011 Received August 7, 2019; accepted September 12, 2019 Abstract: Chien, Liu, Nakazato and Tam proved that all n × n classical Toeplitz matrices (one-level Toeplitz matrices) are unitarily similar to complex symmetric matrices via two types of unitary matrices and the type of the unitary matrices only depends on the parity of n. In this paper we extend their result to multilevel Toeplitz matrices that any multilevel Toeplitz matrix is unitarily similar to a complex symmetric matrix. We provide a method to construct the unitary matrices that uniformly turn any multilevel Toeplitz matrix to a complex symmetric matrix by taking tensor products of these two types of unitary matrices for one-level Toeplitz matrices according to the parity of each level of the multilevel Toeplitz matrices. In addition, we introduce a class of complex symmetric matrices that are unitarily similar to some p-level Toeplitz matrices. Keywords: Multilevel Toeplitz matrix; Unitary similarity; Complex symmetric matrices 1 Introduction Although every complex square matrix is similar to a complex symmetric matrix (see Theorem 4.4.24, [5]), it is known that not every n × n matrix is unitarily similar to a complex symmetric matrix when n ≥ 3 (See [4]). Some characterizations of matrices unitarily equivalent to a complex symmetric matrix (UECSM) were given by [1] and [3]. Very recently, a constructive proof that every Toeplitz matrix is unitarily similar to a complex symmetric matrix was given in [2] in which the unitary matrices turning all n × n Toeplitz matrices to complex symmetric matrices was given explicitly.
    [Show full text]
  • Totally Positive Toeplitz Matrices and Quantum Cohomology of Partial Flag Varieties
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 16, Number 2, Pages 363{392 S 0894-0347(02)00412-5 Article electronically published on November 29, 2002 TOTALLY POSITIVE TOEPLITZ MATRICES AND QUANTUM COHOMOLOGY OF PARTIAL FLAG VARIETIES KONSTANZE RIETSCH 1. Introduction A matrix is called totally nonnegative if all of its minors are nonnegative. Totally nonnegative infinite Toeplitz matrices were studied first in the 1950's. They are characterized in the following theorem conjectured by Schoenberg and proved by Edrei. Theorem 1.1 ([10]). The Toeplitz matrix ∞×1 1 a1 1 0 1 a2 a1 1 B . .. C B . a2 a1 . C B C A = B .. .. .. C B ad . C B C B .. .. C Bad+1 . a1 1 C B C B . C B . .. .. a a .. C B 2 1 C B . C B .. .. .. .. ..C B C is totally nonnegative@ precisely if its generating function is of theA form, 2 (1 + βit) 1+a1t + a2t + =exp(tα) ; ··· (1 γit) i Y2N − where α R 0 and β1 β2 0,γ1 γ2 0 with βi + γi < . 2 ≥ ≥ ≥···≥ ≥ ≥···≥ 1 This beautiful result has been reproved many times; see [32]P for anP overview. It may be thought of as giving a parameterization of the totally nonnegative Toeplitz matrices by ~ N N ~ (α;(βi)i; (~γi)i) R 0 R 0 R 0 i(βi +~γi) < ; f 2 ≥ × ≥ × ≥ j 1g i X2N where β~i = βi βi+1 andγ ~i = γi γi+1. − − Received by the editors December 10, 2001 and, in revised form, September 14, 2002. 2000 Mathematics Subject Classification. Primary 20G20, 15A48, 14N35, 14N15.
    [Show full text]