Depositional Dynamics of the Upper Eagle Ford (Upper Cretaceous): Karnes and Gonzales Counties, South Texas Josie Brunick University of Arkansas, Fayetteville

Total Page:16

File Type:pdf, Size:1020Kb

Depositional Dynamics of the Upper Eagle Ford (Upper Cretaceous): Karnes and Gonzales Counties, South Texas Josie Brunick University of Arkansas, Fayetteville University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2017 Depositional Dynamics of the Upper Eagle Ford (Upper Cretaceous): Karnes and Gonzales Counties, South Texas Josie Brunick University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Geochemistry Commons, and the Geology Commons Recommended Citation Brunick, Josie, "Depositional Dynamics of the Upper Eagle Ford (Upper Cretaceous): Karnes and Gonzales Counties, South Texas" (2017). Theses and Dissertations. 1889. http://scholarworks.uark.edu/etd/1889 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Depositional Dynamics of the Upper Eagle Ford (Upper Cretaceous): Karnes and Gonzales Counties, South Texas A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by Josie Brunick University of Arkansas Bachelor of Science in Geology, 2015 May 2017 University of Arkansas This thesis is approved for recommendation to the Graduate Council. Dr. Walter Manger Thesis Director Dr. Thomas McGilvery Dr. Adriana Potra Committee Member Committee Member Abstract The mixed siliciclastic/carbonate late Cretaceous Eagle Ford Formation is commonly divided into the lower Eagle Ford and the upper Eagle Ford. The lower Eagle Ford is arguably the most obvious organic rich interval highlighted with wireline log data; however, the upper Eagle Ford may have just as much potential for hydrocarbon production success as the lower Eagle Ford has had. A better understanding of the upper Eagle Ford will allow a more thorough and educated assessment into its full potential as an unconventional reservoir, and allow its sweet spots for oil or gas to be found and exploited. This study is based on the description and interpretation of four cores of the upper Eagle Ford located within Karnes and Gonzales counties, Texas, thin sections, and key XRF data in an effort to better understand its sediment sources and depositional regime. Seven lithofacies were identified in the upper Eagle Ford are as follows: 1) Bioturbated Wackestone/Packstone; 2) Deformed Wackestone/Packstone; 3) Wavy Laminated Wackestone/Packstone; 4) Massive Mudstone/Wackestone; 5) Coarsely to Finely Laminated Wackestone/Packstone; 6) Massive packstone/grainstone; 7) Volcanic Ash. The highest Total Organic Carbon (TOC) percent relative to each core always occurred within the base of the upper Eagle Ford. In fact, the highest TOC percentage recorded was 4.5% within the base of the upper Eagle Ford in the most distally located core. Thorium to Uranium ratios of the upper Eagle Ford were on average less than 1 indicating that the upper Eagle Ford contains very little terrigenous sourced material. Nickel, copper, vanadium, molybdenum, and uranium concentrations were also analyzed and correlated to relative organic matter influx and Paleoredox levels within the upper Eagle Ford in each core. ©2017 by Josie Brunick All Rights Reserved Acknowledgements Much appreciation and gratitude goes out to the San Antonio division of EOG Resources (Eddie Valek and Nestor Phillips) for giving me this dataset for my thesis, and to my thesis committee (Dr. Walter Manger, Dr. Thomas McGilvery, and Dr. Adriana Potra) for their patience with working with me. Dedication To my husband, who no matter how stressed and irritable I was during my college career, was always willing to put up with my neglect and never lost faith in me. Table of Contents I. Introduction ..............................................................................................................................1 A. Geologic Background ............................................................................................................... 3 B. Previous Investigations ............................................................................................................. 8 C. Statement of the Problem ........................................................................................................ 12 II. Data and Methods ..................................................................................................................13 A. Data Limitations...................................................................................................................... 16 III. Lithofacies Descriptions ........................................................................................................17 A. Bioturbated Wackestone/Packstone ........................................................................................ 19 B. Deformed Wackestone/Packstone .......................................................................................... 21 C. Wavy Laminated Wackestone/Packstone ............................................................................... 23 D. Massive Mudstone/Wackestone .............................................................................................. 25 E. Coarsely to Finely Laminated Wackestone/Packstone ........................................................... 27 F. Massive Packstone/Grainstone ............................................................................................... 30 G. Volcanic Ash ........................................................................................................................... 32 IV. Depositional Processes Evaluation .......................................................................................35 A. Finely to Coarsely Laminated Wackestone/Packstone: Suspension Settling ......................... 35 B. Wavy Laminated Wackestone/Packstone: Bottom Water Currents ....................................... 37 C. Deformed Wackestone/Packstone: Post-Deposition Soft-Sediment Deformation Processes 39 D. Bioturbated Wackestone/Packstone: Higher Oxygenation and Thriving Organisms ............. 42 E. Massive Mudstone/Wackestone: Mass Wasting Events ......................................................... 42 F. Massive Packstone/Grainstone: Turbidites and Diagenetic Recrystallization ........................ 45 V. Geochemistry ..........................................................................................................................51 A. Introduction ............................................................................................................................. 51 B. Thorium to Uranium Ratio...................................................................................................... 52 C. Thorium to Uranium Ratio Method ........................................................................................ 56 D. Thorium to Uranium Ratio Results ......................................................................................... 56 E. Nickel and Copper Enrichments as Organic Matter Flux Indicators ...................................... 62 F. Nickel and Copper Analysis Results....................................................................................... 62 G. Molybdenum, Vanadium, and Uranium Enrichments as Paleoredox Conditions .................. 66 H. Molybdenum, Vanadium, and Uranium Analysis Results...................................................... 67 VI. Summary and Conclusions ...................................................................................................77 A. Lithological and Sedimentological Conclusions .................................................................... 77 B. Geochemistry Conclusions ..................................................................................................... 81 VII. References ...............................................................................................................................84 VIII. Appendices ..............................................................................................................................91 A. Appendix A: Core 1 TOC Data .............................................................................................. 91 B. Appendix B: Core 2 TOC Data ............................................................................................... 92 C. Appendix C: Core 3 TOC Data ............................................................................................... 93 D. Appendix D: Core 4 TOC Data .............................................................................................. 94 E. Appendix E: Core 1 XRF Data ............................................................................................... 95 F. Appendix F: Core 2 XRF Data ............................................................................................. 100 G. Appendix G: Core 3 XRF Data ............................................................................................. 112 H. Appendix H: Core 4 XRF Data ............................................................................................. 133 List of Figures Figure 1: EIA map of Eagle Ford Hydrocarbons ............................................................................ 2 Figure 2: Simplified stratigraphic column ...................................................................................... 3 Figure 3: Paleogeographic maps of the late Cretaceous ................................................................. 5 Figure 4: Structural and Geologic Features ...................................................................................
Recommended publications
  • Geologic Time Two Ways to Date Geologic Events Steno's Laws
    Frank Press • Raymond Siever • John Grotzinger • Thomas H. Jordan Understanding Earth Fourth Edition Chapter 10: The Rock Record and the Geologic Time Scale Lecture Slides prepared by Peter Copeland • Bill Dupré Copyright © 2004 by W. H. Freeman & Company Geologic Time Two Ways to Date Geologic Events A major difference between geologists and most other 1) relative dating (fossils, structure, cross- scientists is their concept of time. cutting relationships): how old a rock is compared to surrounding rocks A "long" time may not be important unless it is greater than 1 million years 2) absolute dating (isotopic, tree rings, etc.): actual number of years since the rock was formed Steno's Laws Principle of Superposition Nicholas Steno (1669) In a sequence of undisturbed • Principle of Superposition layered rocks, the oldest rocks are • Principle of Original on the bottom. Horizontality These laws apply to both sedimentary and volcanic rocks. Principle of Original Horizontality Layered strata are deposited horizontal or nearly horizontal or nearly parallel to the Earth’s surface. Fig. 10.3 Paleontology • The study of life in the past based on the fossil of plants and animals. Fossil: evidence of past life • Fossils that are preserved in sedimentary rocks are used to determine: 1) relative age 2) the environment of deposition Fig. 10.5 Unconformity A buried surface of erosion Fig. 10.6 Cross-cutting Relationships • Geometry of rocks that allows geologists to place rock unit in relative chronological order. • Used for relative dating. Fig. 10.8 Fig. 10.9 Fig. 10.9 Fig. 10.9 Fig. Story 10.11 Fig.
    [Show full text]
  • Lab 7: Relative Dating and Geological Time
    LAB 7: RELATIVE DATING AND GEOLOGICAL TIME Lab Structure Synchronous lab work Yes – virtual office hours available Asynchronous lab work Yes Lab group meeting No Quiz None – Test 2 this week Recommended additional work None Required materials Pencil Learning Objectives After carefully reading this chapter, completing the exercises within it, and answering the questions at the end, you should be able to: • Apply basic geological principles to the determination of the relative ages of rocks. • Explain the difference between relative and absolute age-dating techniques. • Summarize the history of the geological time scale and the relationships between eons, eras, periods, and epochs. • Understand the importance and significance of unconformities. • Explain why an understanding of geological time is critical to both geologists and the general public. Key Terms • Eon • Original horizontality • Era • Cross-cutting • Period • Inclusions • Relative dating • Faunal succession • Absolute dating • Unconformity • Isotopic dating • Angular unconformity • Stratigraphy • Disconformity • Strata • Nonconformity • Superposition • Paraconformity Time is the dimension that sets geology apart from most other sciences. Geological time is vast, and Earth has changed enough over that time that some of the rock types that formed in the past could not form Lab 7: Relative Dating and Geological Time | 181 today. Furthermore, as we’ve discussed, even though most geological processes are very, very slow, the vast amount of time that has passed has allowed for the formation of extraordinary geological features, as shown in Figure 7.0.1. Figure 7.0.1: Arizona’s Grand Canyon is an icon for geological time; 1,450 million years are represented by this photo.
    [Show full text]
  • Evaluation of the Depositional Environment of the Eagle Ford
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 Evaluation of the depositional environment of the Eagle Ford Formation using well log, seismic, and core data in the Hawkville Trough, LaSalle and McMullen counties, south Texas Zachary Paul Hendershott Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Earth Sciences Commons Recommended Citation Hendershott, Zachary Paul, "Evaluation of the depositional environment of the Eagle Ford Formation using well log, seismic, and core data in the Hawkville Trough, LaSalle and McMullen counties, south Texas" (2012). LSU Master's Theses. 863. https://digitalcommons.lsu.edu/gradschool_theses/863 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. EVALUATION OF THE DEPOSITIONAL ENVIRONMENT OF THE EAGLE FORD FORMATION USING WELL LOG, SEISMIC, AND CORE DATA IN THE HAWKVILLE TROUGH, LASALLE AND MCMULLEN COUNTIES, SOUTH TEXAS A Thesis Submitted to the Graduate Faculty of the Louisiana State University Agricultural and Mechanical College in partial fulfillment of the requirements for degree of Master of Science in The Department of Geology and Geophysics by Zachary Paul Hendershott B.S., University of the South – Sewanee, 2009 December 2012 ACKNOWLEDGEMENTS I would like to thank my committee chair and advisor, Dr. Jeffrey Nunn, for his constant guidance and support during my academic career at LSU.
    [Show full text]
  • Eagle Ford Group and Associated Cenomanian–Turonian Strata, U.S
    U.S. Gulf Coast Petroleum Systems Project Assessment of Undiscovered Oil and Gas Resources in the Eagle Ford Group and Associated Cenomanian–Turonian Strata, U.S. Gulf Coast, Texas, 2018 Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 8.5 billion barrels of oil and 66 trillion cubic feet of gas in continuous accumulations in the Upper Cretaceous Eagle Ford Group and associated Cenomanian–Turonian strata in onshore lands of the U.S. Gulf Coast region, Texas. −102° −100° −98° −96° −94° −92° −90° EXPLANATION Introduction 32° LOUISIANA Eagle Ford Marl The U.S. Geological Survey (USGS) Continuous Oil AU TEXAS assessed undiscovered, technically MISSISSIPPI Submarine Plateau-Karnes Trough Continuous Oil AU recoverable hydrocarbon resources in Cenomanian–Turonian self-sourced continuous reservoirs of 30° Mudstone Continuous Oil AU the Upper Cretaceous Eagle Ford Group Eagle Ford Marl Continuous and associated Cenomanian–Turonian Gas AU Submarine Plateau–Karnes strata, which are present in the subsurface Trough Continuous Gas AU 28° across the U.S. Gulf Coast region, Texas Cenomanian–Turonian Mudstone Continuous (fig. 1). The USGS completes geology- GULF OF MEXICO Gas AU based assessments using the elements Cenomanian–Turonian 0 100 200 MILES Downdip Continuous of the total petroleum system (TPS), 26° Gas AU 0 100 200 KILOMETERS which include source rock thickness, MEXICO NM OK AR TN GA organic richness, and thermal maturity for MS AL self-sourced continuous accumulations. Base map from U.S. Department of the Interior National Park Service TX LA FL Assessment units (AUs) within a TPS Map are defined by strata that share similar Figure 1.
    [Show full text]
  • Estimating the Evolutionary Rates in Mosasauroids and Plesiosaurs: Discussion of Niche Occupation in Late Cretaceous Seas
    Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas Daniel Madzia1 and Andrea Cau2 1 Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland 2 Independent, Parma, Italy ABSTRACT Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species- level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the Submitted 31 July 2019 predators/scavengers and polycotylids as their prey. The first mosasauroids differed Accepted 18 March 2020 from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence Published 13 April 2020 suggests that early representatives of Mosasauroidea diversified after competitions with Corresponding author plesiosaurs.
    [Show full text]
  • The Geohistorical Time Arrow: from Steno's Stratigraphic Principles To
    JOURNAL OF GEOSCIENCE EDUCATION 62, 691–700 (2014) The Geohistorical Time Arrow: From Steno’s Stratigraphic Principles to Boltzmann’s Past Hypothesis Gadi Kravitz1,a ABSTRACT Geologists have always embraced the time arrow in order to reconstruct the past geology of Earth, thus turning geology into a historical science. The covert assumption regarding the direction of time from past to present appears in Nicolas Steno’s principles of stratigraphy. The intuitive–metaphysical nature of Steno’s assumption was based on a biblical narrative; therefore, he never attempted to justify it in any way. In this article, I intend to show that contrary to Steno’s principles, the theoretical status of modern geohistory is much better from a scientific point of view. The uniformity principle enables modern geohistory to establish the time arrow on the basis of the second law of thermodynamics, i.e., on a physical law, on the one hand, and on a historical law, on the other. In other words, we can say that modern actualism is based on the uniformity principle. This principle is essentially based on the principle of causality, which in turn obtains its justification from the second law of thermodynamics. I will argue that despite this advantage, the shadow that metaphysics has cast on geohistory has not disappeared completely, since the thermodynamic time arrow is based on a metaphysical assumption—Boltzmann’s past hypothesis. All professors engaged in geological education should know these philosophical–theoretical arguments and include them in the curriculum of studies dealing with the basic assumptions of geoscience in general and the uniformity principle and deep time in particular.
    [Show full text]
  • Theory and Perspective on Stimulation of Unconventional Tight
    Theory and Perspective on Stimulation of Unconventional Tight Oil Reservoir in China Zhifeng Luo Professor National key Laboratory of Oil and Gas Reservoir and Exploitation; College of Oil and Gas Engineering, Southwest Petroleum University, Chengdu 610500, China; e-mail: [email protected] Yujia Gao∗ Postgraduate College of Oil and Gas Engineering, Southwest Petroleum University,Chengdu 610500, China; e-mail:[email protected] Liqiang Zhao Professor National key Laboratory of Oil and Gas Reservoir and Exploitation; College of Oil and Gas Engineering, Southwest Petroleum University,Chengdu 610500, China; e-mail: [email protected] Pingli Liu Professor National key Laboratory of Oil and Gas Reservoir and Exploitation; College of Oil and Gas Engineering, Southwest Petroleum University,Chengdu 610500, China; e-mail: [email protected] Nianyin Li Professor National key Laboratory of Oil and Gas Reservoir and Exploitation; College of Oil and Gas Engineering, Southwest Petroleum University, Chengdu 610500, China; e-mail: [email protected] ABSTRACT China has tremendous unconventional tight oil resources which are widely distributed in lots of petroliferous basin. However, compared with North American, all the tight oil reservoirs discovered in China has its own characteristics including continental sedimentation, interbeded formation, worse reservoir physical properties and less oil reserves per unit volume, which make it much harder to stimulate. Based on thorough analysis of successful stimulation experiences in North American, taking the characteristic of China’s tight oil reservoir into consideration, this article emphasized that increasing stimulated volume must be paid attention to, what’s more, integrated fracturing technology must be adopted into tight oil reservoir stimulation to promote both production and recovery efficiency.
    [Show full text]
  • U.S. Geological Survey Fact Sheet 2020-3045
    U.S. Gulf Coast Petroleum Systems Project Assessment of Undiscovered Oil and Gas Resources in the Upper Cretaceous Austin Chalk and Tokio and Eutaw Formations, U.S. Gulf Coast, 2019 Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 6.9 billion barrels of oil and 41.5 trillion cubic feet of natural gas in conventional and continuous accumulations in the Upper Cretaceous Austin Chalk and Tokio and Eutaw Formations onshore and in State waters of the U.S. Gulf Coast region. Introduction Geologic Models for Assessment The U.S. Geological Survey (USGS) assessed undiscovered, The Austin Chalk, consisting of both chalk and marl, was technically recoverable oil and gas in the Upper Cretaceous deposited on a broad, low-relief marine shelf that deepened to the (Coniacian–Santonian) Austin Chalk and Tokio and Eutaw Forma- south and west during the Coniacian–Santonian marine transgression. tions in the subsurface of the Gulf Coast from southern Texas to Landward, to the northeast, the Austin Chalk transitions into sandstone the Florida Panhandle. The Austin Chalk and related stratigraphic and mudstone of the Tokio Formation in Arkansas and Louisiana and the units present onshore and in State waters of the U.S. Gulf Coast Eutaw Formation in Mississippi and Alabama. The Tokio and Eutaw region are part of the Upper Jurassic–Cretaceous–Tertiary Composite Formations were deposited in shallow to marginal marine depositional Total Petroleum System (TPS) (Condon and Dyman, 2006). environments at the leading edge of the marine transgression. The source of hydrocarbons in Austin Chalk, Tokio, and Eutaw reservoirs 100° 98° 96° 94° 92° 90° 88° 86° varies spatially throughout the onshore Gulf Coast.
    [Show full text]
  • Diagenesis in the Upper Cretaceous Eagle Ford Shale
    DIAGENESIS IN THE UPPER CRETACEOUS EAGLE FORD SHALE, SOUTH TEXAS by Allison Schaiberger Copyright by Allison Schaiberger (2016) All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date ______________________ Signed: ____________________________________ Allison Schaiberger Signed: ____________________________________ Dr. Steve Sonnenberg Thesis Advisor Signed: ____________________________________ Dr. Stephen Enders Interim Department Head Department of Geology and Geological Engineering Golden, Colorado Date ______________________ ii ABSTRACT This study utilizes three cores provided by Devon Energy from LaVaca and Dewitt Counties, TX, which were analyzed with a focus on diagenetic fabrics within the Lower Eagle Ford. A better understanding of paragenesis within the organic-rich Lower Eagle Ford was developed with the use of XRF and XRD measurements, thin section samples, stable isotope analysis, and CL analysis. The majority of diagenetic alteration occurred early at shallow depths within anoxic/suboxic environments and slightly sulfate-reducing conditions from diagenetic fluids with varying isotopic composition. Diagenetic expression variation is most influenced by the depositional facies in which alteration occurs. Within the study area, four identified depositional facies (A-D), and five diagenetic facies (1-5) were identified within the Lower Eagle Ford study area based
    [Show full text]
  • Geologic Models and Evaluation of Undiscovered Conventional and Continuous Oil and Gas Resources— Upper Cretaceous Austin Chalk, U.S
    Geologic Models and Evaluation of Undiscovered Conventional and Continuous Oil and Gas Resources— Upper Cretaceous Austin Chalk, U.S. Gulf Coast Scientific Investigations Report 2012–5159 U.S. Department of the Interior U.S. Geological Survey Front Cover. Photos taken by Krystal Pearson, U.S. Geological Survey, near the old Sprinkle Road bridge on Little Walnut Creek, Travis County, Texas. Geologic Models and Evaluation of Undiscovered Conventional and Continuous Oil and Gas Resources—Upper Cretaceous Austin Chalk, U.S. Gulf Coast By Krystal Pearson Scientific Investigations Report 2012–5159 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Pearson, Krystal, 2012, Geologic models and evaluation of undiscovered conventional and continuous oil and gas resources—Upper Cretaceous Austin Chalk, U.S.
    [Show full text]
  • Application of Organic Petrography in North American Shale Petroleum Systems: a Review
    International Journal of Coal Geology 163 (2016) 8–51 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Application of organic petrography in North American shale petroleum systems: A review Paul C. Hackley a, Brian J. Cardott b a U.S. Geological Survey, MS 956 National Center, 12201 Sunrise Valley Dr, Reston, VA 20192, USA b Oklahoma Geological Survey, 100 E. Boyd St., Rm. N-131, Norman, OK 73019-0628, USA article info abstract Article history: Organic petrography via incident light microscopy has broad application to shale petroleum systems, including Received 13 April 2016 delineation of thermal maturity windows and determination of organo-facies. Incident light microscopy allows Received in revised form 10 June 2016 practitioners the ability to identify various types of organic components and demonstrates that solid bitumen Accepted 13 June 2016 is the dominant organic matter occurring in shale plays of peak oil and gas window thermal maturity, whereas Available online 16 June 2016 oil-prone Type I/II kerogens have converted to hydrocarbons and are not present. High magnification SEM obser- Keywords: vation of an interconnected organic porosity occurring in the solid bitumen of thermally mature shale reservoirs Organic petrology has enabled major advances in our understanding of hydrocarbon migration and storage in shale, but suffers Thermal maturity from inability to confirm the type of organic matter present. Herein we review organic petrography applications Shale petroleum systems in the North American shale plays through discussion of incident light photographic examples. In the first part of Unconventional resources the manuscript we provide basic practical information on the measurement of organic reflectance and outline Vitrinite reflectance fluorescence microscopy and other petrographic approaches to the determination of thermal maturity.
    [Show full text]
  • An Outline of Tectonic, Igneous, and Metamorphic Events in the Goshute-Toano Range Between Silver Zone Pass and White Horse Pass
    U.S. Department of the Interior U.S. Geological Survey An Outline of Tectonic, Igneous, and Metamorphic Events in the Goshute-Toano Range Between Silver Zone Pass and White Horse Pass, Elko County, Nevada: A History of Superposed Contractional and Extensional Deformation U.S. Geological Survey Professional Paper 1593 An Outline of Tectonic, Igneous, and Metamorphic Events in the Goshute-Toano Range Between Silver Zone Pass and White Horse Pass, Elko County, Nevada: A History of Superposed Contractional and Extensional Deformation By Keith B. Ketner, Warren C. Day, Maya Elrick, Myra K. Vaag, Robert A. Zimmermann, Lawrence W. Snee, Richard W. Saltus, John E. Repetski, Bruce R. Wardlaw, Michael E. Taylor, and Anita G. Harris T OF U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1593 EN TH TM E R I A N P T E E D R . I O S . R U M 9 A 8 4 R C H 3, 1 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Mark Schaefer, Acting Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data An outline of tectonic, igneous, and metamorphic events in the Goshute-Toano range between Silver Zone Pass and White Horse Pass, Elko Couty, Nevada: a history of superposed contractional and extensional deformation / by Keith B.
    [Show full text]