Defensive Symbiosis in Drosophila: from Multiple Infections to Mechanism of Defense

Total Page:16

File Type:pdf, Size:1020Kb

Defensive Symbiosis in Drosophila: from Multiple Infections to Mechanism of Defense Defensive symbiosis in Drosophila: from multiple infections to mechanism of defense by Phineas T. Hamilton B.Sc., University of Victoria, 2006 M.Sc., University of Victoria, 2010 ADissertationSubmittedinPartialFulfillmentofthe Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Biology c Phineas Hamilton, 2015 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. ii Defensive symbiosis in Drosophila: from multiple infections to mechanism of defense by Phineas T. Hamilton B.Sc., University of Victoria, 2006 M.Sc., University of Victoria, 2010 Supervisory Committee Dr. Steve Perlman, Supervisor (Department of Biology) Dr. Brad Anholt, Departmental Member (Department of Biology) Dr. Ben Koop, Departmental Member (Department of Biology) Dr. Brian Starzomski, Outside Member (Department of Environmental Studies) iii Supervisory Committee Dr. Steve Perlman, Supervisor (Department of Biology) Dr. Brad Anholt, Departmental Member (Department of Biology) Dr. Ben Koop, Departmental Member (Department of Biology) Dr. Brian Starzomski, Outside Member (Department of Environmental Studies) ABSTRACT Multiple infections within the same host are now understood to be common and important determinants of the outcomes of disease processes. Multiple infections are particularly important in insects, which are often infected by vertically transmitted symbionts that are passed from the mother to her o↵spring. In many cases, these symbionts have evolved to confer high levels of protection against co-infecting para- sites, pathogens, or other natural enemies. Despite widespread examples of symbiont- mediated defense, there are key outstanding questions in the ecology and evolution of defensive symbiosis. These include the mechanisms through which protection is conferred, the specificity of defensive e↵ects against di↵erent parasites and pathogens, and the overall roles of defensive and other symbioses in host communities and ecosys- tems. To address these questions, I used a model of defensive symbiosis in which the bacterium Spiroplasma protects the woodland fly Drosophila neotestacea from the ne- matode parasite Howardula aoronymphium. First, I conducted a series of experiments iv that included transcriptome sequencing of D. neotestacea infected by Howardula and Spiroplasma to uncover the mechanistic basis of defense in this symbiosis. Through these experiments, I found evidence of a putative protein toxin encoded by Spiro- plasma that might contribute to defense. Following this, we characterized the protein as a novel member of a class of toxins known as ribosome-inactivating proteins (RIPs). RIPs are important virulence factors in bacteria such as enterohemorrhagic E. coli; IexploitedrecentapproachesforquantifyingRIPactivitytodesignsensitiveassays that demonstrate that Howardula su↵ers a high degree of ribosome cleavage specific to RIP attack during Spiroplasma-mediated defense. This is among the first demon- strations of a mechanism of defense against a specific enemy in an insect defensive symbiosis. Inextworkedwithcollaboratorstocultureandcharacterizeanoveltrypanoso- matid parasite of Drosophila that I uncovered during the above transcriptome se- quencing. Trypanosomatids are protist parasites that are common in insects, and the causes of important human diseases that include Chagas disease and African sleeping sickness. Despite Drosophila’s history as an important model of infection and immu- nity, little is known of its trypanosomatid parasites, and we describe this parasite as anewgenusandspecies:Jaenimonas drosophilae,thefirsttrypanosomatidformally described from a Drosophila host. We conduct a series of experiments to understand infection dynamics, immune responses and interactions with other parasites and sym- bionts within the host, beginning to establish Drosophila-Jaenimonas infections as a tractable model of trypanosomatid infection in insects. Finally, though examples of ecologically important defensive symbioses accumu- late, an understanding of their overall roles in ecosystems is lacking. I close with a synthesis of the ways in which symbioses - defensive or otherwise - can a↵ect ecosys- tem structure and function through their e↵ects on food webs. This work will help to develop a conceptual framework to link reductionist findings on specific symbioses to larger scale processes. v Contents Supervisory Committee ii Abstract iii Table of Contents v List of Tables vi List of Figures vii Acknowledgements xiii 1 An introduction: from multiple infections to defensive symbiosis 1 2 Transcriptional responses in a Drosophila defensive symbiosis 7 3 A novel ribosome-inactivating protein in a Drosophila defensive symbiont 27 4 Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association 44 5 Symbiosis in ecological networks 72 A Supplementary Information 90 vi List of Tables Table 4.1 Gene Ontology Enrichment analysis for genes up- and down- regulated in response to Jaenimonas exposure in D. melanogaster larvae. Selected gene ontology terms are shown to limit redun- dancy. Analysis was based on genes identified as di↵erentially expressed by Cu✏inks (Q < 0.05) and conducted using the on- line tool DAVID against a D. melanogaster background. 55 Table A.1 Targets, primer sequences, and reaction conditions for PCR and qPCR reactions of Chapter 2 . 90 Table A.2 Selected Gene Ontology categories significantly enriched in tran- scripts responding to Howardula and Spiroplasma infection. *** Padj < 0.01, ** Padj < 0.05, * Padj < 0.1. 91 Table A.3 Efficiencies of primers used for all assays in Chapter 3. Efficiency and specificity were validated on standard curves of 5 10-fold ⇥ serial dilutions of synthetic DNA (IDT gBlocks) for all primer sets, except for the primer pair for the Howardula normalizing primer set, which was tested using a dilution series of cDNA re- verse transcribed from Howardula-infected flies. Bases specific to sites of depurination are in bold, and deliberate mismatches underlined. 92 vii List of Figures Figure 2.1 Spiroplasma infection intensity (mean SE of log of Spiro- ± 2 plasma dnaA normalized against host tpi) over the development of Drosophila neotestacea.Errorbarsarestaggeredforclarity. There were no discernible e↵ects of Howardula exposure or in- fection status on Spiroplasma infection (N = 69). 16 Figure 2.2 Raw expression levels of assembled transcripts in the reduced transcriptome, with taxonomy assigned by BLASTx against the non-redundant database. Treatments containing both host and parasites are shown (S-HA+ and S+HA+), with total numbers of contigs for the host and parasites presented in legend. Nematode transcript abundance is 10foldlowerintheS+line. 17 ⇠ Figure 2.3 Heatmap of expression levels of transcripts with immune, stress or defense function, based on Gene Ontology. Transcripts are clustered on the y-axis based on similarity in expression lev- els across treatments (Euclidean distance of scaled responses), with the blue trace reflecting the relative magnitude of expres- sion across transcripts (as Z-scores). Expression patterns demon- strate a large immune gene response to Howardula (HA) exposure but little response to Spiroplasma (S-); note that most of these transcripts are not statistically significant in their responses to treatments. 19 Figure 2.4 Expression of the putative Spiroplasma ribosome-inactivating protein in one-day (n=31) and seven-day (n=14) old flies. Exper- imental treatments are unexposed (control), nematode-exposed and uninfected (HA -), and nematode exposed and infected (HA +). Expression is significantly higher in day-old nematode - flies. Flies in the seven-day experiment were also screened for trypanosomatid infection; all flies tested negative . 22 viii Figure 3.1 Spiroplasma strains encode divergent RIP-like sequences. Maximum- likelihood phylogeny of SpRIP from the defensive D. neotestacea strain of Spiroplasma,alignedwithotherputativeSpiroplasma RIPs and selected RIP seed sequences from the PFAM database (PF00161). Support values are calculated based on 1000 boot- straps using FastTree; the scale bar denotes substitutions per site. Single and double asterisks represent >70% and 90% boot- strap support, respectively. 31 Figure 3.2 Purified recombinant SpRIP degrades into a stable product over two weeks time at 4◦C. (A) Schematic of SpRIP domain pre- diction. SP, signal peptide. The black horizontal line a repre- sents the recombinant protein (Ala31 to His403) produced in this study. b represents the stable degradation product from purified recombinant SpRIP. (B) SDS-PAGE analysis of SpRIP (44 kDa) incubated at 4◦C.FigurecourtesyofFangniPeng. 32 Figure 3.3 SpRIP depurinates rabbit 28S rRNA at the site of RIP attack in cell-free assays. Abundance of cDNA representing intact (A) and depurinated (B) rRNA template after incubation with 5.25 µMofrecombinantSpRIP for 30 min at 30◦C(N=6). SpRIP significantly decreases the abundance of intact template and in- creases the abundance of depurinated template (P < 0.001 for both)................................. 33 Figure 3.4 SpRIP causes dose-dependent depurination of rabbit 28S rRNA in cell free assays (N = 14). 34 Figure 3.5 SpRIP depurinates Howardula 28S rRNA at the site of RIP at- tack in assays with live Howardula. Abundance of cDNA rep- resenting intact (A) and depurinated (B) rRNA template after incubation with 5.25 µMofrecombinantSpRIP for 4 hours at 21◦C (N = 6). While abundance
Recommended publications
  • Assessment of Pathogenic Bacteria Transfer from Pristionchus
    Assessment of Pathogenic Bacteria Transfer From Pristionchus Entomophagus (Nematoda: Diplogasteridae) to the Invasive Ant Myrmica Rubra and Its Potential Role in Colony Mortality in Coastal Maine Suzanne Lynn Ishaq ( [email protected] ) School of Food and Agriculture, University of Maine, Orono, ME 04469 https://orcid.org/0000-0002- 2615-8055 Alice Hotopp University of Maine Samantha Silverbrand University of Maine Jonathan E. Dumont Husson University Amy Michaud University of California Davis Jean MacRae University of Maine S. Patricia Stock University of Arizona Eleanor Groden University of Maine Research Article Keywords: bacterial community, biological control, microbial transfer, nematodes, Illumina, Galleria mellonella larvae Posted Date: November 5th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-101817/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/38 Abstract Background: Necromenic nematode Pristionchus entomophagus has been frequently found in nests of the invasive European ant Myrmica rubra in coastal Maine, United States. The nematodes may contribute to ant mortality and collapse of colonies by transferring environmental bacteria. M. rubra ants naturally hosting nematodes were collected from collapsed wild nests in Maine and used for bacteria identication. Virulence assays were carried out to validate acquisition and vectoring of environmental bacteria to the ants. Results: Multiple bacteria species, including Paenibacillus spp., were found in the nematodes’ digestive tract. Serratia marcescens, Serratia nematodiphila, and Pseudomonas uorescens were collected from the hemolymph of nematode-infected Galleria mellonella larvae. Variability was observed in insect virulence in relation to the site origin of the nematodes. In vitro assays conrmed uptake of RFP-labeled Pseudomonas aeruginosa strain PA14 by nematodes.
    [Show full text]
  • Burkholderia As Bacterial Symbionts of Lagriinae Beetles
    Burkholderia as bacterial symbionts of Lagriinae beetles Symbiont transmission, prevalence and ecological significance in Lagria villosa and Lagria hirta (Coleoptera: Tenebrionidae) Dissertation To Fulfill the Requirements for the Degree of „doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty of Biology and Pharmacy of the Friedrich Schiller University Jena by B.Sc. Laura Victoria Flórez born on 19.08.1986 in Bogotá, Colombia Gutachter: 1) Prof. Dr. Martin Kaltenpoth – Johannes-Gutenberg-Universität, Mainz 2) Prof. Dr. Martha S. Hunter – University of Arizona, U.S.A. 3) Prof. Dr. Christian Hertweck – Friedrich-Schiller-Universität, Jena Das Promotionskolloquium wurde abgelegt am: 11.11.2016 “It's life that matters, nothing but life—the process of discovering, the everlasting and perpetual process, not the discovery itself, at all.” Fyodor Dostoyevsky, The Idiot CONTENT List of publications ................................................................................................................ 1 CHAPTER 1: General Introduction ....................................................................................... 2 1.1. The significance of microorganisms in eukaryote biology ....................................................... 2 1.2. The versatile lifestyles of Burkholderia bacteria .................................................................... 4 1.3. Lagriinae beetles and their unexplored symbiosis with bacteria ................................................ 6 1.4. Thesis outline ..........................................................................................................
    [Show full text]
  • Downloading the Zinc-Finger Motif from the Gag Protein Must Have Assembly Files and Executing the Ipython Notebook Cells Occurred Independently Multiple Times
    The evolution of tyrosine-recombinase elements in Nematoda Amir Szitenberg1, Georgios Koutsovoulos2, Mark L Blaxter2 and David H Lunt1 1Evolutionary Biology Group, School of Biological, Biomedical & Environmental Sciences, University of Hull, Hull, HU6 7RX, UK 2Institute of Evolutionary Biology, The University of Edinburgh, EH9 3JT, UK [email protected] Abstract phylogenetically-based classification scheme. Nematode Transposable elements can be categorised into DNA and model species do not represent the diversity of RNA elements based on their mechanism of transposable elements in the phylum. transposition. Tyrosine recombinase elements (YREs) are relatively rare and poorly understood, despite Keywords: Nematoda; DIRS; PAT; transposable sharing characteristics with both DNA and RNA elements; phylogenetic classification; homoplasy; elements. Previously, the Nematoda have been reported to have a substantially different diversity of YREs compared to other animal phyla: the Dirs1-like YRE retrotransposon was encountered in most animal phyla Introduction but not in Nematoda, and a unique Pat1-like YRE retrotransposon has only been recorded from Nematoda. Transposable elements We explored the diversity of YREs in Nematoda by Transposable elements (TE) are mobile genetic elements sampling broadly across the phylum and including 34 capable of propagating within a genome and potentially genomes representing the three classes within transferring horizontally between organisms Nematoda. We developed a method to isolate and (Nakayashiki 2011). They typically constitute significant classify YREs based on both feature organization and proportions of bilaterian genomes, comprising 45% of phylogenetic relationships in an open and reproducible the human genome (Lander et al. 2001), 22% of the workflow. We also ensured that our phylogenetic Drosophila melanogaster genome (Kapitonov and Jurka approach to YRE classification identified truncated and 2003) and 12% of the Caenorhabditis elegans genome degenerate elements, informatively increasing the (Bessereau 2006).
    [Show full text]
  • PDF File Includes: 46 Main Text Supporting Information Appendix 47 Figures 1 to 4 Figures S1 to S7 48 Tables 1 to 2 Tables S1 to S2 49 50
    UVicSPACE: Research & Learning Repository _____________________________________________________________ Faculty of Science Faculty Publications _____________________________________________________________ This is a post-print version of the following article: Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens Vincent G. Martinson, Ryan M. R. Gawryluk, Brent E. Gowen, Caitlin I. Curtis, John Jaenike, & Steve J. Perlman December 2020 The final publication is available at: https://doi.org/10.1073/pnas.2000860117 Citation for this paper: Martinson, V. G., Gawryluk, R. M. R., Gowen, B. E., Curits, C. I., Jaenike, J., & Perlman, S. J. (2020). Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens. Proceedings of the National Academy of Sciences of the United States of America, 117(50), 31979-31986. https://doi.org/10.1073/pnas.2000860117. 1 Accepted Manuscript: 2 3 Martinson VG, Gawryluk RMR, Gowen BE, Curtis CI, Jaenike J, Perlman SJ. 2020. Multiple 4 origins of oBligate nematode and insect symBionts By a clade of Bacteria closely related to plant 5 pathogens. Proceedings of the National Academy of Sciences, USA. 117, 31979-31986. 6 doi/10.1073/pnas.2000860117 7 8 Main Manuscript for 9 Multiple origins of oBligate nematode and insect symBionts By memBers of 10 a newly characterized Bacterial clade 11 12 13 Authors. 14 Vincent G. Martinson1,2, Ryan M. R. Gawryluk3, Brent E. Gowen3, Caitlin I. Curtis3, John Jaenike1, Steve 15 J. Perlman3 16 1 Department of Biology, University of Rochester, Rochester, NY, USA, 14627 17 2 Department of Biology, University of New Mexico, AlBuquerque, NM, USA, 87131 18 3 Department of Biology, University of Victoria, Victoria, BC, Canada, V8W 3N5 19 20 Corresponding author.
    [Show full text]
  • Recent Spread of a Drosophila Defensive Symbiont John Jaenike, Robert Unckless, Sarah N
    REPORTS Down, 13. H. Kimura, K. Kasahara, T. Takeda, Tectonophysics 472, Fig. 3. (A) Stacked seismograms for microearthquakes in the A 1 s epicentre 18 (2009). Off-Kanto cluster. Vertical (UD) and radial (R) components are P P-S 2000 (nm/s) 14. S. Asano et al., J. Phys. Earth 33, 173 (1985). shown. A dashed vertical line indicates the arrival time of the UD 15. K. Suyehiro et al., Science 272, 390 (1996). P-S wave determined from cross-correlation analysis (22). (B) 16. S. Ozawa, H. Suito, M. Tobita, Earth Planets Space 59, Schematic ray paths of direct S and P-S waves are shown. Solid 1241 (2007). R and dashed lines denote P and S waves, respectively. A star 17. H. Hirose, S. Sekine, H. Kimura, K. Obara, Eos Trans. AGU S 89, U32A (2008). and an inverted triangle denote a hypocenter and a station, 18. H. Kimura, K. Kasahara, T. Igarashi, N. Hirata, respectively. 0246 Time (s) Tectonophysics 417, 101 (2006). 19. R. M. Nadeau, T. V. McEvilly, Science 285, 718 B (1999). 20. This is a reprocessing of (21) because only the depth S range where commercial drilling can reach was processed S VCR-layer previously. For processing, see (22). R1 21. Japan National Oil Corporation (JNOC), “Shallow ocean R2 off the Boso Peninsula” (Report of the Marine P Fundamental Geophysical Survey, JNOC, 2000). 22. Materials and methods are available as supporting Fig. 4. Schematic illustration material on Science Online. 23. C. A. Zelt, P. J. Barton, J. Geophys. Res. 103, (B4), 7187 of subsurface structure, the (1998).
    [Show full text]
  • Toward 959 Nematode Genomes
    Edinburgh Research Explorer Toward 959 nematode genomes Citation for published version: Kumar, S, Koutsovoulos, G, Kaur, G & Blaxter, M 2012, 'Toward 959 nematode genomes', Worm, vol. 1, no. 1, pp. 42-50. Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Worm Publisher Rights Statement: Freely available via PMC. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 30. Sep. 2021 Worm 1:1, 42–50; January/February/March 2012; G 2012 Landes Bioscience Toward 959 nematode genomes Sujai Kumar, Georgios Koutsovoulos, Gaganjot Kaur and Mark Blaxter* Institute of Evolutionary Biology; University of Edinburgh; Edinburgh, UK Keywords: nematode, genome, next-generation sequencing, second-generation sequencing, wiki 13 The sequencing of the complete genome of the nematode Raw sequencing costs have dropped five orders of magnitude Caenorhabditis elegans was a landmark achievement and in the past ten years, which means that it is now a viable research ushered in a new era of whole-organism, systems analyses of goal to obtain genome sequences for all nematodes of interest, the biology of this powerful model organism.
    [Show full text]
  • Meeting Program & Abstracts
    International Congress on Invertebrate Pathology and Microbial Control and the 48th Annual Meeting of the Society for Invertebrate Pathology Vancouver, Canada August 9-13, 2015 Society for Invertebrate Pathology 48th Annual Meeting August 9-13, 2015 University of British Columbia Vancouver7 BC West 10th --> To To West 4th --> W E S B R O O K M A L L Walter Gage Pharmacy To Wesbrook Village --> Residence & West Coast Suites Doug Mitchell Student MacInnes War Thunderbird Rec Centre 6 Field Memorial Woodward Sports Centre (SRC) Gym Life IRC Sciences Accommodation Centre Student C6 Walter Gage Residence and West Union Bldg Aquatic Trolley N. W. M A R I N E D R I V E Coast Suites (SUB) Centre Bus Loop Hillel House The Nest Osborne Centre Meeting Space 5 Allard Hall New Alumni E5 The Nest Tennis Centre Centre Chan Breakfast Irving K Barber Centre D Buchanan Hennings E5 Pacic Spirit Cafeteria In The Forest Student Union Building C Beaty Biodiversity Sciences B Clock Tower Museum Centre 4 AERL A Chemistry Mixer Flag Pole B3 Sage Bistro Cecil Green Plaza Park House Koerner Henry Angus Earth Sciences Library Scarfe H.R. MacMillan Frederic Sage Bistro EOS Wood 3 Event Thea’s Lounge Geography CIRS Pad Swing First Nations Longhouse Ritsumeikan House Museum of Liu Institute Anthropology Asian Centre 2 Totem Park Residence Nitobe Memorial Garden Marine Drive Residence --> nical Garden To Bota Place Vanier Residence S. W. M A R I N E D R I V E Bus Loop 1 Parking Public Washrooms G6 UBC Hospital F4/5 UBC CAMPUS SECURITY II J SIP 2015 Vancouver Meeting at a Glance SATURDAY – August 8 ● How sea stars get wasted: Evidence of a viral 14:00 – 20:00 Registration Gage Reception etiology and host response to sea star wasting disease – C.
    [Show full text]
  • Multiple Origins of Obligate Nematode and Insect Symbionts by a Clade of Bacteria Closely Related to Plant Pathogens
    Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens Vincent G. Martinsona,b,1, Ryan M. R. Gawrylukc, Brent E. Gowenc, Caitlin I. Curtisc, John Jaenikea, and Steve J. Perlmanc aDepartment of Biology, University of Rochester, Rochester, NY, 14627; bDepartment of Biology, University of New Mexico, Albuquerque, NM 87131; and cDepartment of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada Edited by Joan E. Strassmann, Washington University in St. Louis, St. Louis, MO, and approved October 10, 2020 (received for review January 15, 2020) Obligate symbioses involving intracellular bacteria have trans- the symbiont Sodalis has independently given rise to numer- formed eukaryotic life, from providing aerobic respiration and ous obligate nutritional symbioses in blood-feeding flies and photosynthesis to enabling colonization of previously inaccessible lice, sap-feeding mealybugs, spittlebugs, hoppers, and grain- niches, such as feeding on xylem and phloem, and surviving in feeding weevils (9). deep-sea hydrothermal vents. A major challenge in the study of Less studied are young obligate symbioses in host lineages that obligate symbioses is to understand how they arise. Because the did not already house obligate symbionts (i.e., “symbiont-naive” best studied obligate symbioses are ancient, it is especially chal- hosts) (10). Some of the best known examples originate through lenging to identify early or intermediate stages. Here we report host manipulation by the symbiont via addiction or reproductive the discovery of a nascent obligate symbiosis in Howardula aor- control. Addiction or dependence may be a common route for onymphium, a well-studied nematode parasite of Drosophila flies.
    [Show full text]
  • A Ribosome-Inactivating Protein in a Drosophila Defensive Symbiont
    A ribosome-inactivating protein in a Drosophila defensive symbiont Phineas T. Hamiltona,1, Fangni Pengb, Martin J. Boulangerb, and Steve J. Perlmana,c,1 aDepartment of Biology, University of Victoria, Victoria, BC, Canada V8W 2Y2; bDepartment of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 5C2; and cIntegrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 Edited by Nancy A. Moran, University of Texas at Austin, Austin, TX, and approved November 24, 2015 (received for review September 18, 2015) Vertically transmitted symbionts that protect their hosts against the proximate causes of defense are largely unknown, although parasites and pathogens are well known from insects, yet the recent studies have provided some intriguing early insights: A underlying mechanisms of symbiont-mediated defense are largely Pseudomonas symbiont of rove beetles produces a polyketide unclear. A striking example of an ecologically important defensive toxin thought to deter predation by spiders (14), Streptomyces symbiosis involves the woodland fly Drosophila neotestacea, symbionts of beewolves produce antibiotics to protect the host which is protected by the bacterial endosymbiont Spiroplasma from fungal infection (17), and bacteriophages encoding putative when parasitized by the nematode Howardula aoronymphium. toxins are required for Hamiltonella defensa to protect its aphid The benefit of this defense strategy has led to the rapid spread host from parasitic wasps (18),
    [Show full text]
  • The Evolutionary Ecology of an Insect-Bacterial Mutualism Thesis
    The evolutionary ecology of an insect-bacterial mutualism Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy By Chris Corbin September 2017 1 Abstract Heritable bacterial endosymbionts are responsible for much phenotypic diversity in insects. Mutualists drive large-scale processes such as niche invasion, speciation and mass resistance to natural enemies. However, to persist, mutualists need to be able to transmit with high fidelity from one generation to the next, to be able to express their beneficial phenotypes, and for the benefits they grant the host to outweigh their costs. The effect of ecologically-relevant environmental temperature variations upon transmission and phenotype is a poorly understood area of endosymbiont biology, as is how the symbiont’s cost varies under ecological stress. In this thesis, I examined these parameters for Spiroplasma strain hy1, a defensive mutualist which protects the cosmopolitan, temperate fruit fly Drosophila hydei from attack by a parasitoid wasp. I detected Spiroplasma hy1 in D. hydei individuals from the south of the U.K. The bacterium is at low prevalence compared to hy1 in other localities such as North America and Japan, but its presence in this temperate region conflicts with past studies indicating high sensitivity to low temperatures. I first demonstrate that the vertical transmission of Spiroplasma hy1 is more robust to the cool temperatures typical of temperate breeding seasons than previously considered, with transmission in a ‘permissive passage’ experiment occurring at high fidelity for two generations at a constant 18°C and in an alternating 18/15°C condition.
    [Show full text]
  • Parasitylenchus Nearcticus Sp.N. (Tylenchida : Allontonematidae
    FlIndam. app!. Nemawl., 1997,20 (2),187-190 Parasitylenchus nearcticus sp. n. (Tylenchida : Allantonematidae) parasitizing Drosophila (Diptera : Drosophilidae) in North America * George O. POINAR,Jr., ** JohnJAENlKE and ** Irene DOMBECK "' DepaTtment ofEntomology, Oregon State University, Cmvallis, OR 97331, USA, and "'* Department ofBiology, University ofRochester, Rochester, NY 14627, USA. Accepted for publication 22 1vlarch 1996. Summary - Parasitylenchus nearclicus sp. n. (Tylenchida: Allantonematidae) is described as a parasite of Drosophila recens (Diptera: Drosophilidae) coLlected from the Adirondack Mountains in New York State, USA. The new species is compared to the single previously known species of Parasitylenchus from Great Britain and a key to the allantonematid parasites of Drosophilidae is presented. The females of the rwo parasitic generations show dimorphism in regards to the form of the stylet and pharyngeal glands. P. nearClicus n.sp. sterilizes females of D. recens, thus having an effect on the popLÙation ecology of this host. Résumé - Parasitylenchus nearcticus sp. n. (Tylenchida: Allantonernatidae) parasite de Drosophila (Diptera: Drosophilidae) en Amérique du nord - Parasùylenchlls nearclicus sp. n. (Tylenchida: AlIantonematidae) est décrit comme parasite de Drosophila recens (Diptera : Drosoph.iJidae) récolté dans les Adirondacks Mountains, État de New York, États-Unis d'Amérique. Cene nouvelle espèce est comparée à la seLÙe espèce connue - en Grande-Bretagne - du genre ParasùylenchllS, et une clé des AlIantonematidae parasites de Drosophilidae est présentée. Les femelJes des deux générations parasites montrent un dimorphisme dans la forme du stylet et des glandes pharyngiennes. P. nearClicus sp. n. stérilise les femelles de D. recens, ayant ainsi un impact sur l'écologie des populations de son hôte. Key-words : AlIantonematidae, Drosophila recens, insect parasitism, nematodes, Parasùylenchus nearClicus sp.
    [Show full text]
  • Thesis Outline
    UNIVERSITY OF SOUTHAMPTON Faculty of Engineering, Science, and Mathematics School of Ocean and Earth Science Resolving phylogenetic relationships within the order Enoplida (Phylum Nematoda) by Holly Marie Bik Thesis of the degree of Doctor of Philosophy January 2010 Graduate School of the National Oceanography Centre, Southampton This PhD Dissertation by Holly Marie Bik has been produced under the supervision of the following persons Supervisors Prof John Lambshead Dr Lawrence Hawkins Dr Alan Hughes Dr David Lunt Research Advisor Prof W. Kelley Thomas Chair of Advisory Panel Dr Martin Sheader 2 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS SCHOOL OF OCEAN & EARTH SCIENCE Doctor of Philosophy RESOLVING PHYLOGENETIC RELATIONSHIPS WITHIN THE ORDER ENOPLIDA (PHYLUM NEMATODA) by Holly Marie Bik The Order Enoplida (Phylum Nematoda) has been proposed as a divergent nematode lineage—Enoplid nematodes are thought to exhibit morphological and developmental characteristics present in the ‘ancestral nematode’. However, previous molecular phylogenies have failed to unequivocally confirm the position of this group. The Enoplida is primarily comprised of free-living marine species; if these taxa represent close relatives of the nematode ancestor, this relationship would presumably imply a marine origin for the phylum. Prior to this investigation, few publically available gene sequences existed for Enoplid nematodes, and published sequences represented only shallow water fauna from Northwest Europe. This study has aimed to improve resolution at the base of the nematode tree, using drastically increased taxon-sampling within the previously neglected Enoplid clade. Morphological identifications, nuclear gene sequences (18S and 28S rRNA), and mitochondrial gene sequences (Cox1) were obtained from marine specimens representing a variety of deep-sea and intertidal habitats.
    [Show full text]