Monitoring Trends in Land Change? the Big Tent – MTLC

Total Page:16

File Type:pdf, Size:1020Kb

Monitoring Trends in Land Change? the Big Tent – MTLC Monitoring Trends in Land Change? The Big Tent – MTLC A hierarchical land cover and land use change monitoring system that leverages existing projects and programs of work NLCD 2011 Tree Canopy Cover Research & Development, Quantitative Sciences Remote Sensing Applications Center Rocky Mountain Research Station, FIA Southern Research Station, FIA Northern Research Station, FIA Pacific Northwest Research Station, FIA State and Private Forestry, Forest Health Protection USGS, EROS What is the NLCD and Who are the Clients? . NLCD is the National Land Cover Database: . Land cover classification layer, percent tree canopy cover layer, and a percent impervious surface layer. Primarily based on LANDSAT (30meter pixels) imagery and ancillary data. Produced by the Multi-Resolution Land Cover (MRLC) consortium. Available free from http://www.mrlc.gov/ . The MRLC is a consortium of the following agencies and programs: These are the clients of the NLCD Percent Tree Canopy Cover is Important ! (Example of the NLCD 2001 Percent Tree Canopy Layer) .An integral part of both international and US forest land definitions . Important both within forest land areas and in areas not traditionally considered forest. .Irrespective of land use , it’s an additional dimension of fragmentation .Knowing where trees are (not just the forest) is an important first step in quantifying carbon and managing tree resources. The Opportunity . Motivation for Forest Service and FIA Leadership . If it’s related to trees, the Forest Service should be saying it . FIA is a fundamental component of Forest Service research. FIA is a data rich program: . Consistency between map based and plot based estimates: . If needed, the FIA survey design is easily intensified . How are we positioned ? . Implementation of tree canopy cover estimates on at all sampling locations. Experience with cutting edge modelling techniques . Biomass map . Forest type map update . Imputation approaches for the Atlas project NLCD Pilot Study Design 4x Intensity Photo-based Sample Locations 105 photo points to estimate % tree canopy cover for model development 2011 General Modelling Approach = Response developed by photo Interpreting Tree crown cover on NAIP Imagery for ~4160 8100m2 sampling chips per Landsat scene. Fig. from Homer et al. 2007 Random forests Example modelling Stochastic gradient boosting techniques Support vector machines Pilot Phase - Key Questions . Research on alternative pixel-level modelling techniques, alternative stratification/grouping strategies, using ordinal data for developing model, and model stability under different sampling intensification levels. (Moisen et al.,Tipton et al., Coulston et al.) . Research on the impact of scale of observation on tree canopy cover estimates. Relationship among plot based, PI based, and modeled estimates (Toney et al. 2009) at multiple scales. (Toney et al., Frescino et al., Gatziolis et al.) . Research on the impact of data normalization in the response variables. (Tipton et al.) . Assessment and recommendations on photo interpretation repeatability (Jackson et al.) . Research on modelling approaches for unique landscapes (Sen et al.) . Synthesis (Coulston et al.) Prototype Phase – Study Design Prototype Phase – Key Questions • How large an area can a single modeling unit encompass? • How many samples (photo interpreted plots) are needed per modeling unit? • Are normalized Landsat mosaic images required by the models or the maps? • What is the minimum set of predictor layers needed by the models? Timelines Major Milestones Major Milestones 1Q Aug Prototype Kickoff 2Q Sept 2010 3Q Pilot Complete 2010 Oct Pilot Complete 4Q Nov 1Q Dec 2Q Production Process Defined 2011 3Q Production Begins Jan SRS prototype data available 4Q Feb Prototype PI data available 1Q Mar 2Q 2012 Apr Prototype ancillary data available 3Q 2011 May 4Q 1Q Jun Prototype analyses complete 2Q Jul 2013 3Q Aug 4Q CONUS Complete Sept Production Begins 1Q 2Q 2014 3Q 4Q Coastal Alaska Complete 1Q 2Q 2015 3Q 4Q HI, PR, VI Compelete North American Forest Dynamics NAFD Phase 3 University of Maryland Rocky Mountain Research Station, FIA Pacific Northwest Research Station NASA-Goddard NASA-Ames NAFD Science (NASA, PNW, UMD, CONAFOR, Canadian Forest Service, and others) Characterizing disturbance and regrowth patterns on US forests by analyzing a biennial time series of Landsat imagery over a sample of Landsat data cubes spread across US Forests. Objectives include: • Produce nationwide estimates of forest dynamics • Convert data cube reflectance to data cube biomass • Develop nationwide maps of forest biomass dynamics • Begin trials in Canada and Mexico • Quantify forest component of woody encroachment nationally NAFD Applications (NASA, PNW, UMD, all FIA units) Illustrate how FIA data can be combined with temporal disturbance and biomass products to answer management questions relevant to FIA users. Objectives: • Develop FIA monitoring products that take advantage of satellite-derived disturbance and biomass data (storm-related loss, harvest rates across time and ownerships, fragmentation, carbon considerations) • Develop tool kit to enable users to request analyses through FIA NAFD Phase 3: US Forest Disturbance History from Landsat 1) Conduct an annual, wall-to-wall analysis of US disturbance history between1985-2010 2) Undertake a detailed validation of the resultant national disturbance map 3) Examine variation in post-disturbance forest recovery trajectories, using repeat measurements from FIA plot data, 4) Determine disturbance causal agents *** Different types of disturbance have different… Carbon Consequences Spatial Patterns Fire Fire Clearcut Temporal Intensities Clearcut We will build a database of forest change processes Web GeoDatabase Browser/Distribution Forest Change Processes User Community Suburbanizatio Pests and Hurricanes/ Conversi Change Agent Forestry Fires n/Urbanization Pathogens Tornadoes on Timber Decadal Census – Digitized Aerial Ground Landsat Landsat Treatment & # new housing sketches of insect measurements-wind change Data Source NDVI change Removals units damage speed detection US Forest Health Program U.S. National NLCD MTBS UFSF FIA (Smith http://www.fs.fed.u Hurricane Center Retrofit Data (Theobald 2004) (Eidenshenk Reference et al. 2009) s/r3/resources/hea (Jarvinen et al. Set (Fry et et al. 2007) lth/fid_surveys.sht 1984) al. 2009) ml County polygons polygon <1 ha to 100m grid lines 30m grid 30m Grain or > county Spatial sampled - national sampled - national national national National Extent national Grain 5-10 year cycles decadal annual annual annual decadal Tempora l Extent varies by region 1940-2030 varies by region 1851-2008 1984-2007 1992-2001 We will explore potential for using Landsat spectral trajectories to classify forest disturbance types Green Leaf Area Forest Structure 0.9 0.35 0.8 0.3 0.7 0.25 0.6 Reflectance 0.2 NDVI 0.5 Forest Stdev 0.15 TM B5 0.4 Forest Avg Clearcut 0.3 0.1 Fire 0.2 0.05 1 3 4 5 7 8 10 1 3 4 5 7 8 10 Years Since Disturbance Years Since Disturbance We will determine how forest type/ecosystem differences impact Landsat spectral classification of disturbance types Boreal Forest - Canada Temperate/Tropical Forest - Mexico 4500 4500 4000 Clearcut 4000 Clearcut 3500 Fire 3500 Fire 3000 3000 2500 2500 Reflectance Reflectance 2000 2000 Band 5 5 Band 1500 5 Band 1500 TM 1000 TM 1000 500 500 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Time Since Disturbance Time Since Disturbance Clearcut Clearcut Fire Fire We will assess the degree to which textural metrics enhance our image-based predictions of disturbance type Different disturbance processes result in different patterns of landscape structure and fragmentation that are visible in Landsat Imagery. 1984 1987 Harvest Fire Suburbanization Patch level spatial metrics Continuous Discrete Shape •Homogeneity • Direction •Edge Contrast • Fractal •Heterogeneity • dimension •Texture Area •Range/Mean • •Compactness Timeline • 3-yr project spanning July 2011 – June 2014 • NAFD Phase 3 Kickoff Meeting – June 2011 • Deliverables for Task 4 – Cause of disturbance Database of forest change agents Library of spectral trajectories Exploration into textural components Pulling it all together for national mapping.
Recommended publications
  • Dynamics and Disturbance in an Old-Growth Forest Remnant In
    DYNAMICS AND DISTURBANCE IN AN OLD-GROWTH FOREST REMNANT IN WESTERN OHIO Thesis Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Biology By Sean Michael Goins UNIVERSITY OF DAYTON Dayton, Ohio August, 2012 DYNAMICS AND DISTURBANCE IN AN OLD-GROWTH FOREST REMNANT IN WESTERN OHIO Name: Goins, Sean Michael APPROVED BY: __________________________________________ Ryan W. McEwan, Ph.D. Committee Chair Assistant Professor __________________________________________ M. Eric Benbow, Ph.D. Committee Member Assistant Professor __________________________________________ Mark G. Nielsen, Ph.D. Committee Member Associate Professor ii ABSTRACT DYNAMICS AND DISTURBANCE IN AN OLD-GROWTH FOREST REMNANT IN WESTERN OHIO Name: Goins, Sean Michael University of Dayton Advisor: Dr. Ryan W. McEwan Forest communities are dynamic through time, reacting to shifts in disturbance and climate regimes. A widespread community shift has been witnessed in many forests of eastern North America wherein oak (Quercus spp.) populations are decreasing while maple (Acer spp.) populations are increasing. Altered fire regimes over the last century are thought to be the primary driver of oak-to-maple community shifts; however, the influence of other non-equilibrium processes on this community shift remains under- explored. Our study sought to determine the community structure and disturbance history of an old-growth forest remnant in an area of western Ohio where fires were historically uncommon. To determine community structure, abundance of woody species was measured within 32 plots at 4 canopy strata and dendrochronology was used to determine the relative age-structure of the forest.
    [Show full text]
  • Old-Growth Forests
    Pacific Northwest Research Station NEW FINDINGS ABOUT OLD-GROWTH FORESTS I N S U M M A R Y ot all forests with old trees are scientifically defined for many centuries. Today’s old-growth forests developed as old growth. Among those that are, the variations along multiple pathways with many low-severity and some Nare so striking that multiple definitions of old-growth high-severity disturbances along the way. And, scientists forests are needed, even when the discussion is restricted to are learning, the journey matters—old-growth ecosystems Pacific coast old-growth forests from southwestern Oregon contribute to ecological diversity through every stage of to southwestern British Columbia. forest development. Heterogeneity in the pathways to old- growth forests accounts for many of the differences among Scientists understand the basic structural features of old- old-growth forests. growth forests and have learned much about habitat use of forests by spotted owls and other species. Less known, Complexity does not mean chaos or a lack of pattern. Sci- however, are the character and development of the live and entists from the Pacific Northwest (PNW) Research Station, dead trees and other plants. We are learning much about along with scientists and students from universities, see the structural complexity of these forests and how it leads to some common elements and themes in the many pathways. ecological complexity—which makes possible their famous The new findings suggest we may need to change our strat- biodiversity. For example, we are gaining new insights into egies for conserving and restoring old-growth ecosystems. canopy complexity in old-growth forests.
    [Show full text]
  • Sass Forestecomgt 2018.Pdf
    Forest Ecology and Management 419–420 (2018) 31–41 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Lasting legacies of historical clearcutting, wind, and salvage logging on old- T growth Tsuga canadensis-Pinus strobus forests ⁎ Emma M. Sassa, , Anthony W. D'Amatoa, David R. Fosterb a Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 05405, USA b Harvard Forest, Harvard University, 324 N Main St, Petersham, MA 01366, USA ARTICLE INFO ABSTRACT Keywords: Disturbance events affect forest composition and structure across a range of spatial and temporal scales, and Coarse woody debris subsequent forest development may differ after natural, anthropogenic, or compound disturbances. Following Compound disturbance large, natural disturbances, salvage logging is a common and often controversial management practice in many Forest structure regions of the globe. Yet, while the short-term impacts of salvage logging have been studied in many systems, the Large, infrequent natural disturbance long-term effects remain unclear. We capitalized on over eighty years of data following an old-growth Tsuga Pine-hemlock forests canadensis-Pinus strobus forest in southwestern New Hampshire, USA after the 1938 hurricane, which severely Pit and mound structures damaged forests across much of New England. To our knowledge, this study provides the longest evaluation of salvage logging impacts, and it highlights developmental trajectories for Tsuga canadensis-Pinus strobus forests under a variety of disturbance histories. Specifically, we examined development from an old-growth condition in 1930 through 2016 across three different disturbance histories: (1) clearcut logging prior to the 1938 hurricane with some subsequent damage by the hurricane (“logged”), (2) severe damage from the 1938 hurricane (“hurricane”), and (3) severe damage from the hurricane followed by salvage logging (“salvaged”).
    [Show full text]
  • The Impacts of Increasing Drought on Forest Dynamics, Structure, and Biodiversity in the United States
    Global Change Biology (2016) 22, 2329–2352, doi: 10.1111/gcb.13160 SPECIAL FEATURE The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States JAMES S. CLARK1 , LOUIS IVERSON2 , CHRISTOPHER W. WOODALL3 ,CRAIGD.ALLEN4 , DAVID M. BELL5 , DON C. BRAGG6 , ANTHONY W. D’AMATO7 ,FRANKW.DAVIS8 , MICHELLE H. HERSH9 , INES IBANEZ10, STEPHEN T. JACKSON11, STEPHEN MATTHEWS12, NEIL PEDERSON13, MATTHEW PETERS14,MARKW.SCHWARTZ15, KRISTEN M. WARING16 andNIKLAUS E. ZIMMERMANN17 1Nicholas School of the Environment, Duke University, Durham, NC 27708, USA, 2Forest Service, Northern Research Station 359 Main Road, Delaware, OH 43015, USA, 3Forest Service 1992 Folwell Avenue,Saint Paul, MN 55108, USA, 4U.S. Geological Survey, Fort Collins Science Center Jemez Mountains Field Station, Los Alamos, NM 87544, USA, 5Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA, 6Forest Service, Southern Research Station, Monticello, AR 71656, USA, 7Rubenstein School of Environment and Natural Resources, University of Vermont, 04E Aiken Center, 81 Carrigan Dr., Burlington, VT 05405, USA, 8Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA, 9Department of Biology, Sarah Lawrence College, New York, NY 10708, USA, 10School of Natural Resources and Environment, University of Michigan, 2546 Dana Building, Ann Arbor, MI 48109, USA, 11U.S. Geological Survey, Southwest Climate Science Center and Department of Geosciences, University of Arizona, 1064 E. Lowell
    [Show full text]
  • Ecological Insights from Long-Term Research Plots in Tropical and Temperate Forests
    Ecological Insights from Long-term Research Plots in Tropical and Temperate Forests Organized Oral Session 40 was co-organized by Amy Wolf, Stuart Davies, and Richard Condit, and held on 6 August 2009 during the 94th ES A Annual Meeting in Albuquerque, New Mexico. An International Network of Forest Research Sites This session was devoted to findings from an international network of long-term forest dynamics plots, providing some of the first comparisons between the tropical and temperate study areas. Whereas most ecologists recognize the importance of long-term research (Callahan 1984, Likens 1989, Magnuson 1990, Hobbie et al. 2003, and others), large-scale projects like this one are rare. The global network of forest dynamics plots has expanded since its origin in the early 1980s, yet research at the plots has remained integrated due to a combination of individual scientists' efforts and institutional commitments from the Center for Tropical Forest Science (CTFS, <www.ctfs.si.edu> of the Smithsonian Tropical Research Institute and the Arnold Arboretum of Harvard University (Hubbell and Foster 1983, Condit 1995). Today, 26 large plots have been established in tropical or subtropical forests of Central and South America, Africa, Asia, and Oceania, along with 8 recently added temperate forest plots. A standard protocol (Condit 1998) is followed at all sites, including the marking, mapping, and measuring of all trees and shrubs with stem diameters >1 cm. Reports October 2009 519 Reports An underlying objective of the ESA session was to illustrate how an understanding of forest dynamics can contribute to long-term strategies of sustainable forest management in a changing global environment.
    [Show full text]
  • Silvicultural Activities: Description and Terminology 1
    WHITE PAPER F14-SO-WP-SILV-34 Silvicultural Activities: Description and Terminology 1 David C. Powell; Forest Silviculturist Supervisor’s Office; Pendleton, OR Initial Version: JUNE 1992 Most Recent Revision: FEBRUARY 2018 Introduction ........................................................................................................................ 2 Silvicultural systems ............................................................................................................ 2 Age-based silvicultural systems .................................................................................... 2 Even-aged management ............................................................................................... 3 Figure 1 – Three common stand structures ........................................................................... 4 Figure 2 – Clearcutting ............................................................................................................ 5 Figure 3 – Seed-tree and shelterwood cutting ....................................................................... 6 Figure 4 – Windthrow in spruce-fir forest in the northern Blue Mountains .......................... 8 Figure 5 – Examples of overstory removal and understory removal cutting ......................... 9 Uneven-aged management ........................................................................................ 10 Figure 6 – Examples of individual-tree selection cutting in ponderosa pine ....................... 12 Figure 7 – Examples of group selection
    [Show full text]
  • Decelerating Growth in Tropical Forest Trees
    Ecology Letters, (2007) 10: 461–469 doi: 10.1111/j.1461-0248.2007.01033.x LETTER Decelerating growth in tropical forest trees Abstract Kenneth J. Feeley,1* S. Joseph The impacts of global change on tropical forests remain poorly understood. We Wright,2 M. N. Nur Supardi,3 examined changes in tree growth rates over the past two decades for all species occurring Abd Rahman Kassim3 and Stuart in large (50-ha) forest dynamics plots in Panama and Malaysia. Stem growth rates 2,4 J. Davies declined significantly at both forests regardless of initial size or organizational level 1 Center for Tropical Forest (species, community or stand). Decreasing growth rates were widespread, occurring in Science, Arnold Arboretum Asia 24–71% of species at Barro Colorado Island, Panama (BCI) and in 58–95% of species at Program, Harvard University, 22 Pasoh, Malaysia (depending on the sizes of stems included). Changes in growth were not Divinity Avenue, Cambridge, consistently associated with initial growth rate, adult stature, or wood density. Changes in MA 02138, USA 2Smithsonian Tropical Research growth were significantly associated with regional climate changes: at both sites growth Institute, Panama City, Panama was negatively correlated with annual mean daily minimum temperatures, and at BCI 3Forest Environment Division, growth was positively correlated with annual precipitation and number of rainfree days Forest Research Institute (a measure of relative insolation). While the underlying cause(s) of decelerating growth is Malaysia, Kuala Lumpur, still unresolved, these patterns strongly contradict the hypothesized pantropical increase Malaysia 52109 in tree growth rates caused by carbon fertilization. Decelerating tree growth will have 4Center for Tropical Forest important economic and environmental implications.
    [Show full text]
  • Pre-Fire Treatment Effects and Post-Fire Forest Dynamics on the Rodeo-Chediski Burn Area, Arizona
    Pre-fire treatment effects and post-fire forest dynamics on the Rodeo-Chediski burn area, Arizona by Barbara A. Strom A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of Master of Science in Forestry Northern Arizona University May 2005 Approved: __________________________________ Peter Z. Fulé, Ph.D., Chair __________________________________ Stephen C. Hart, Ph.D. __________________________________ Thomas E. Kolb, Ph.D. ABSTRACT Pre-fire treatment effects and post-fire forest dynamics on the Rodeo-Chediski burn area, Arizona Barbara A. Strom The 2002 Rodeo-Chediski fire was the largest wildfire in Arizona history at 189,000 ha (468,000 acres), and exhibited some of the most extreme fire behavior ever seen in the Southwest. Pre-fire fuel reduction treatments of thinning, timber harvesting, and prescribed burning on the White Mountain Apache Tribal lands (WMAT) and thinning on the Apache-Sitgreaves National Forest (A-S) set the stage for a test of the upper boundary of effectiveness of fuel reduction treatments at decreasing burn severity. On the WMAT, we sampled 90 six-hectare study sites two years after the fire, representing 30% of the entire burn area on White Mountain Apache Tribe lands, or 34,000 hectares, and comprising a matrix of three burn severities (low, moderate, or high) and three treatments (cutting and prescribed burning, prescribed burning only, or no treatment). Prescribed burning without cutting was associated with reduced burn severity, but the combination of cutting and prescribed burning had the greatest ameliorative effect. Increasing degree of treatment was associated with an increase in the number of live trees and a decrease in the extremity of fire behavior as indicated by crown base height and bole char height.
    [Show full text]
  • FAO Forestry Paper 120. Decline and Dieback of Trees and Forests
    FAO Decline and diebackdieback FORESTRY of tretreess and forestsforests PAPER 120 A globalgIoia overviewoverview by William M. CieslaCiesla FADFAO Forest Resources DivisionDivision and Edwin DonaubauerDonaubauer Federal Forest Research CentreCentre Vienna, Austria Food and Agriculture Organization of the United Nations Rome, 19941994 The designations employedemployed and the presentation of material inin thisthis publication do not imply the expression of any opinion whatsoever onon the part ofof thethe FoodFood andand AgricultureAgriculture OrganizationOrganization ofof thethe UnitedUnited Nations concerning the legallega! status ofof anyany country,country, territory,territory, citycity oror area or of itsits authorities,authorities, oror concerningconcerning thethe delimitationdelimitation ofof itsits frontiers or boundarboundaries.ies. M-34M-34 ISBN 92-5-103502-492-5-103502-4 All rights reserved. No part of this publicationpublication may be reproduced,reproduced, stored in aa retrieval system, or transmittedtransmitted inin any form or by any means, electronic, mechani-mechani­ cal, photocopying or otherwise, without the prior permission of the copyrightownecopyright owner.r. Applications for such permission, withwith aa statement of the purpose andand extentextent ofof the reproduction,reproduction, should bebe addressed toto thethe Director,Director, Publications Division,Division, FoodFood andand Agriculture Organization ofof the United Nations,Nations, VVialeiale delle Terme di Caracalla, 00100 Rome, Italy.Italy. 0© FAO FAO 19941994
    [Show full text]
  • Margaret Rowan Metz
    CURRICULUM VITAE Margaret Rowan Metz Department of Biology 503-768-7684 (tel) Lewis & Clark College 503-768-7658 (fax) 0615 SW Palatine Hill Rd., MSC 53 [email protected] Portland, OR 97219 www.margaretmetz.com PROFESSIONAL APPOINTMENTS Assistant Professor Department of Biology, Lewis & Clark College, Portland, OR. August 2014-present. Project Scientist Department of Plant Pathology, University of California, Davis. 2014. Postdoctoral Researcher Department of Plant Pathology, University of California, Davis. 2008-2014. EDUCATION Ph.D. University of California, Berkeley, Integrative Biology. 2007. Spatiotemporal variation in seedling dynamics and the maintenance of forest diversity in an Amazonian forest. Thesis committee: Drs. Wayne Sousa (advisor), David Ackerly, John Battles, & Carla D’Antonio. A.B. Princeton University, Ecology and Evolutionary Biology, cum laude. 1998. GRANTS AND FELLOWSHIPS 2017 Center for Tropical Forest Science, Smithsonian Tropical Research Institute $34,500 “Long-term studies of flowering, fruiting and seedling dynamics at Yasuní.” 2016-2020 NSF Dimensions of Biodiversity $1,600,000 “Dynamical interactions between plant and oomycete biodiversity in a temperate forest.” PIs: B. Tyler, N. Grunwald, A. Jones, M. Metz, J. Lutz, D. Oline. Subaward to Lewis & Clark College to support undergraduate research experiences $127,355 2011-2017 NSF Long-term Research in Environmental Biology (renewal) $450,000 “Collaborative Research: LTREB Renewal - Long-term studies of flowering, fruiting and seedling recruitment in Neotropical forests: global change, climate variability and mechanisms.” PIs: N. C. Garwood, M. R. Metz, H. C. Muller-Landau, N. Swenson, M. Uriarte, S. J. Wright, J. K. Zimmerman. 2011-2016 NSF Ecology of Infectious Diseases $785,398 “Collaborative Research: Interacting disturbances: leaf to landscape dynamics of emerging disease, fire and drought in California coastal forests.” Lead PI D.
    [Show full text]
  • Disturbance History and Dynamics of an Old-Growth Nothofagus Forest in Southern Patagonia
    Article Disturbance History and Dynamics of an Old-Growth Nothofagus Forest in Southern Patagonia Mariano Martín Amoroso 1,2,* and Ana Paula Blazina 3 1 Universidad Nacional de Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Mitre 630, San Carlos de Bariloche CP 8400, Argentina 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Av. de los Pioneros 2350, San Carlos de Bariloche CP 8400, Argentina 3 Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Bernardo Houssay 200, Ushuaia V9410, Argentina; [email protected] * Correspondence: [email protected] Received: 3 December 2019; Accepted: 10 January 2020; Published: 14 January 2020 Abstract: The identification of disturbance events using disturbance chronologies has become a valuable tool in reconstructing disturbance history in temperate forests worldwide; yet detailed reconstructions of disturbance history and their effect on the structure and dynamics of the old-growth Nothofagus forests in the southern Patagonia are scarce. We reconstructed forest dynamics and disturbance history of an old-growth N. pumilio forest in the Toro River Valley, Santa Cruz, Argentina using dendroecological techniques. Since a variation in the disturbance regimes was expected with changing elevation, we sampled at different elevations. We found distinct differences in forest structure, dynamics, and disturbance history with changes in the elevation. The disturbance chronologies provided robust evidence that forests in the study area have been subjected to multiple disturbance events over the last 200 years. Yet, recognizing the agent of disturbance could be difficult in these montane forests and further studies are required.
    [Show full text]
  • Restoring Fire-Adapted Ecosystems: Proceedings of the 2005 National Silviculture Workshop
    United States Department of Restoring Fire-Adapted Agriculture Forest Service Ecosystems: Proceedings of the Pacific Southwest 2005 National Silviculture Research Station Workshop General Technical Report PSW-GTR-203 June 6-10, 2005 Tahoe City, California January 2007 Historic and Future Trends Management Strategies Silvicultural Options Risks And Impacts Abstract Powers, Robert F., tech. editor. 2007. Restoring fire-adapted ecosystems: proceedings of the 2005 national silviculture workshop. Gen. Tech. Rep. PSW-GTR-203. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. 306 p. Many federal forests are at risk to catastrophic wild fire owing to past management practices and policies. Mangers of these forests face the immense challenge of making their forests resilient to wild fire, and the problem is complicated by the specter of climate change that may affect wild fire frequency and intensity. Some of the Nationʼs leading scientists and practitioner present approaches in tackling the problem. Key words: wild fire, fuel management, thinning, climate change, fire history, resilience The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).
    [Show full text]