Radome Analysis Techniques
Total Page:16
File Type:pdf, Size:1020Kb
CORE Metadata, citation and similar papers at core.ac.uk Provided by Diponegoro University Institutional Repository RADOME ANALYSIS TECHNIQUES Dimas Satria Electrical Engineering – Faculty of Engineering Fontys University of Applied Sciences Diponegoro University Abstract Radar Dome, or usually called Radome, is usually placed over the antenna as an antenna protector from any physical thing that can break it. Ideally, radome does not degrade antenna performance. In fact, it may change antenna performance and cause several effects, such as boresight error, changing antenna side lobe level and depolarization. The antenna engineer must take stringent analysis to estimate the changes of performance due to placing radome. Methods in the analysis using fast receiving formulation based on Lorentz reciprocity and Geometrical Optics. The radome has been tilted for some angle combinations in azimuth and elevation with respect to the antenna under test in order to get the difference responses. From the results of measuring and analyzing the radome, it can be concluded that radome can change the antenna performance, including boresight shift, null fill-in and null shifting for difference signals, and changing antenna radiation pattern. In the CATR measurement with two reflectors, the extraneous signal which originates from feed is minimized by adding absorber at the side of the feed. Several things that affect to the accuracy of the simulation program are extraneous signal, loss tangent uncertainty, diffraction, and dielectric uncertainty and inhomogeneity. Key Words: Radome, CATR, Antenna, Boresight Error 1. INTRODUCTION In the CATR measurement with two reflectors, the extraneous signal which originates from The advancement of technologies in antenna’s feed is minimized by adding absorber at the world stimulates increasing new demands to side of the feed. Several things that affect to get better antenna performance on the design the accuracy of the simulation program are process for all components, including radome. extraneous signal, loss tangent uncertainty, Radome is dielectric material which is placed diffraction, and dielectric uncertainty and over the antenna in order to protect from its inhomogeneity. physical environment. 2. INTRODUCTION OF RADOME Radome ideally does not degrade the antenna performance because radome is radio Radome is abbreviation from radar dome. It is frequency (RF) transparent. In fact, some placed over the antenna for protection from its effects occurred in antenna performance with physical environment. Radome ideally does radome. Measuring the antenna performance not degrade the antenna performance because with and without radome and analyzing the radome is radio frequency transparent. effects caused by radome in analysis Radome is made from dielectric materials. In electrically are intended to ease analyzing fact, some effects occur in antenna boresight, transmitted signal, reflected signal, performance when antenna is covered by and transmittance on plane thin-wall radome radome. This chapter explains about materials in this assignment. Methods in the analysis and constructions of radome and some effects using fast receiving formulation based on in antenna performance with radome. Lorentz reciprocity and Geometrical Optics. The radome has been tilted for some angle 2.1 Dielectric Wall combinations in azimuth and elevation with respect to the antenna under test in order to get The wave that penetrates from a medium into the difference responses. different medium with the angle i will be partly reflected with reflected angle and 1 transmitted with incidence angle depending on E N 1 e j iti R e j iti the permittivity of those two materials. That 0 i j t j t T i i i i can be noted in Snell’s law as: E0 i1 i Rie e sin 1 1 RN 1 EN 1 t i T R 1 sini N 1 N 1 0 t where ti = layer thickness of ith layer Ri, Ti = Fresnel reflection and transmission coefficient i = propagation constant within the ith layer 2.2 Boresight Error Figure 2.1 The wave penetrating the dielectric Radome is made from dielectric material material. which distorts electromagnetic wave. The dielectric radome wall was bending the arrival When the wave propagates through the angle relative to the actual arrival angle before dielectric material, it will lose some energy. electromagnetic wave enters the radome. Power losses in radome are caused by the Difference between the arrival angle relative to ability of the radome to store electrical energy the actual arrival angle is called boresight error and wasting electrical energy as heat. Low (BSE). The rate of change of BSE is defined dielectric materials are desirable to make as boresight error slope (BSES). radome for communications because these deal with low intensity signals. Any loss signal can be critical for communication systems. A measure of power loss in dielectric material to total power transmitted trough dielectric is ) called loss tangent. B d ( e d A B u t Two categories for radome wall constructions i n are: g a M Boresight Solid (monolithic) design, commonly shift made of the resin incorporating reinforcements such as chopped glass fibers; 0 Angle (radian) Sandwich design, combinations of high- density (high relative dielectric constant) Figure 2.2 Boresight Error and low-density (low relative dielectric constant) materials. Figure 2.2 illustrates that A is the original received signal without radome and B is the Sandwich radome is more broadband than measured received signal of the antenna under monolithic radome and has higher strength-to- test covered with radome. The peak of weight ratio. received signal is shifted. The difference angle between the peak of A and the peak of B is Forward and reverse propagating waves on the called boresight error/boresight shift. BSE N-layer dielectric radome wall can be depends on polarization, frequency, and formulated by: antenna orientation. BSE can cause miss distance of a missile flying guidance trajectory. 2 2.3 Depolarization incident on the wall and E t is the transmitted wave after propagating wall radome. Depolarization occurs when electromagnetic propagates through discontinuous electric and 2.4 Antenna Aperture magnetic properties as permittivity and permeability . When electric field is parallel The physical aperture of a monopulse antenna to the plane of incident it is referred to as is usually divided into four quadrants. Transverse Magnetic (TM) and when electric (A-B) field is perpendicular to the plane of incident it 180o 180o Hybrid Hybrid is referred to as Transverse Electric (TE). (A+B) el (C A) (D B) Magnitude and phase differences between Patch A B perpendicular ( ) and parallel ( // ) of Antenna reflection and transmission coefficient will C D result in depolarization. (C-D) az (A B) (C D) 180o 180o Hybrid Hybrid We may see depolarization affecting the (C+D) A B C D electric field in terms of transmission coefficient and reflection coefficient at the Figure 2.4 Four quadrants of monopulse intercept point on dielectric wall at angle of antenna the incident electric field like the figure 2.3 below: It produces sum signal, azimuth difference signal, and elevation difference signal. Ei Ei Referenced to figure 2.4, summing amplitudes D and phases of all quadrant apertures results E i // sum signal. The sum of amplitudes and phases t t E E G of aperture A and B subtracted by the sum of k amplitudes and phases of aperture C and D n E t // results azimuth difference signal. The sum of amplitudes and phases of aperture A and C Figure 2.3 Depolarization effect subtracted by the sum of amplitudes and phases of aperture B and D results elevation From the figure above, n is surface normal difference signal. vector and k is the direction of propagation vector. The perpendicular vector is: Extraneous signal may cause: Boresight error; D n k Increasing side lobe level; (n k n k )a (n k n k )a (n k n k )a Peak shifting in sum signal; D y z z y x z x x z y x y y x z Null shifting in difference signal; 2 2 2 (n k n k ) (n k n k ) (n k n k ) Null fill-in in difference signal; y z z y z x x z x y y x D d a d a d a Changing the beamwidth of the antenna. x x y y z z 3. MEASUREMENT METHOD The parallel vector is: The measurements require that the tested G D k antenna is illuminated by a uniform plane (d k d k )a (d k d k )a (d k d k )a wave. That will be achieved in the far field for G y z z y x z x x z y x y y x z range length r > 2D2/λ in which many cases 2 2 2 (d ykz dzk y ) (dzkx dxkz ) (dxk y d ykx ) needs relatively long distances. Compact Antenna Test Range (CATR) technique can G gxax g yay gzaz create plane wave fields at distances shorter when compared to the needed distance under the conventional Far Field criteria. ax , ay , and az are unit vectors along the x, y, and z axes. E i is the electric field of the wave 3 The configuration of CATR in measurements radome x uses dual parabolic cylindrical reflectors. They are vertical and horizontal collimation antenna reflectors. Figure 3.1 shows the CATR el configuration for this measurement. z az Vertical Collimation Reflector y RADOME ANTENNA Figure 3.3 Tilting radome in azimuth and elevation Horizontal Collimation Reflector 4. RESULTS AND ANALYSES Figure 3.1 CATR configuration The analyses were carried out only at 9.6 GHz. The measured signals can be seen at figure 4.1 To analyze plane wall radome covered and the sum simulation signals can be seen at antenna’s performance, these measurement figure 4.2.