Cycad Botanical Tour 0.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Cycad Botanical Tour 0.Pdf 10 Zululand Cycad, Holly Leaf Cycad 13 Uganda Giant Cycad, Encephalartos ferox Whitelock’s Cycad Encephalartos whitelockii A fairly small cycad with a subterranean trunk. This species has Characterized by stiff, 14-foot- a wide distribution in coastal areas of long leaves, this plant is a fast Mozambique and northern Natal, South grower. It is native to granite Africa where summers are hot and faces and rocky slopes in Central winters are mild. It grows in evergreen Africa, and can handle below- forests and sparse scrub sand dunes. freezing temperatures. This species produces some of the most colorful cones, Although hardy, E. whitelockii is very rare in ranging from scarlet to orange to pink. FUN FUN cultivation and is classified as Critically Endangered. FACT FACT 11 Gorongowe Cycad 14 Scaly Zamia, Encephalartos manikensis Count Peroffsky’s Cycad Lepidozamia peroffskyana Mountainous ridges and slopes in Mozambique and Zimbabwe are the Native to Australia’s wet, forested native habitat of this cycad. Several slopes and gullies, it’s also found in subspecies with distinct different many of the country’s public gardens features have been identified in because of its beautiful growth and Africa. However, at least one of the adaptability. And unlike most cycads, subpopulations is now extinct in its area. this one is spine-free making a garden-friendly specimen. Cycads have populated the planet since before the This species is pollinated by a type of weevil; up to 500 FUN dinosaurs —which likely dined on these plants! FUN weevils have been found on a single cone! FACT FACT Exclusive Video 12 Bushman’s River Cycad Encephalartos trispinosus Originally from South Africa, this small, but hardy species looks best when grown in full sun. It can also withstand moderate frosts. Once believed to be a form of E. horridus, it was identified as a separate species in 1965. Young cones are a distinct Find out how we help our cycads, by visiting this link: blue-green. sd.gozoo.org/cycad Made possible through the generosity of While its species name refers to the three sharp spines The Daphne Seybolt Culpeper Memorial Foundation on the tips of each leaflet, new emerging leaves are FUN FACT incredibly soft and velvety. sandiegozoo.org Cycad the numbers to the plant ID signs. The tour startsMatch by Map Locator (ML) 4, continues along Front 4 Sago Palm, King Sago 7 Golden Dioon Street past ML 6 and finishes at ML 8. Cycas revoluta Dioon merolae Coontie, Florida Arrowroot Probably the most popular cycad This plant is especially valued 1 Zamia integrifolia in cultivation, this plant is endemic among cycad hobbyists, but to Japan’s Ryukyu Islands. In its over-collection in the wild has Endemic to Florida and southeastern native habitat, it grows in extensive caused it to be designated a Georgia, this small cycad is also found colonies and is readily distinguished Vulnerable species. Its native in Cuba, Puerto Rico, the Cayman from other Cycas species by the habitat is forests in Chiapas and Islands, and the Bahamas. It is listed recurved margins on its leaflets. Oaxaca, Mexico. as Near Threatened due to habitat destruction for housing and agriculture. This is one of the most commonly grown cycads in the Older golden dioon plants often have reclining trunks, The Seminole Native Americans used the seeds as a landscaping industry. It is also very adaptable to growing FUN FUN while young plants always have “wooly” new fronds. source of edible starch. This plant is also a larval host for FACT in a container. In Japan, it is grown as a bonsai plant. FACT FUN FACT the atala butterfly. 2 Fern Palm, Queen Sago 5 Chestnut Dioon, Virgin Palm 8 Palma Teosinte (Sacred Ear) Cycas rumphii Dioon edule Dioon mejiae While most parts of cycads are Native to tropical deciduous and First collected in 1910, this hardy plant considered toxic to humans, the oak forests in Mexico. The leaves grows primarily in dry, rocky canyons seeds of this species are used are sometimes used in floral of Honduras, and has also been found by some cultures for the starch. arrangements, but the practice is in north-central Nicaragua. It‘s one However, it takes a great deal of now illegal because this species is of the most commonly grown Dioon, pounding, repeated washing, and threatened by over-collecting and and may be the most abundant cooking to make them suitable for habitat destruction. cycad in the world with an estimated the human stomach. 500,000 to 1,000,000 plants. The seeds of this cycad float! That’s an excellent The seeds are boiled, ground, and used for tortillas, The leaflets and seeds of this species grow smaller as adaptation for a plant that lives in coastal habitats, tamales, and other products in Honduras. The leaves FUN FUN you move north in its range. FUN FACT as queen sagos do. FACT FACT are used in religious celebrations. 3 Emperor Sago, Prince Sago 6 Cardboard Palm 9 Gum Palm, Giant Dioon Cycas taitungensis Zamia furfuracea Dioon spinulosum This endangered species is a This plant seldom grows a tall trunk One of the tallest of all cycads vigorous grower ; some people because its contractile roots pull the in the Americas, with trunks believe it is the fastest growing of caudex down into the ground. Found rising to almost 50 feet. Native all cycads. Its species name comes in the coastal regions of eastern to ravines and canyons in Mexico, from its native habitat: rocky Mexico, over-collecting has taken its this endangered species is slopes of Taitung County, Taiwan. toll and this species is endangered in threatened by habitat loss and the wild. over-collecting. This cycad was only identified as a distinct species Commonly grown in cultivation, it makes a great container It produces some of the largest cones, with a in 1994. Until that time, it was believed to be another FUN FUN plant for the deck, patio, or indoors as a houseplant. FUN female cone easily weighing up to 55 pounds. FACT species, Cycas taiwaniana. FACT FACT 10 Zululand Cycad, Holly Leaf Cycad 13 Uganda Giant Cycad, Encephalartos ferox Whitelock’s Cycad Encephalartos whitelockii A fairly small cycad with a subterranean trunk. This species has Characterized by stiff, 14-foot- a wide distribution in coastal areas of long leaves, this plant is a fast Mozambique and northern Natal, South grower. It is native to granite Africa where summers are hot and faces and rocky slopes in Central winters are mild. It grows in evergreen Africa, and can handle below- forests and sparse scrub sand dunes. freezing temperatures. This species produces some of the most colorful cones, Although hardy, E. whitelockii is very rare in ranging from scarlet to orange to pink. FUN FUN cultivation and is classified as Critically Endangered. FACT FACT 11 Gorongowe Cycad 14 Scaly Zamia, Encephalartos manikensis Count Peroffsky’s Cycad Lepidozamia peroffskyana Mountainous ridges and slopes in Mozambique and Zimbabwe are the Native to Australia’s wet, forested native habitat of this cycad. Several slopes and gullies, it’s also found in subspecies with distinct different many of the country’s public gardens features have been identified in because of its beautiful growth and Africa. However, at least one of the adaptability. And unlike most cycads, subpopulations is now extinct in its area. this one is spine-free making a garden-friendly specimen. Cycads have populated the planet since before the This species is pollinated by a type of weevil; up to 500 FUN dinosaurs —which likely dined on these plants! FUN weevils have been found on a single cone! FACT FACT Exclusive Video 12 Bushman’s River Cycad Encephalartos trispinosus Originally from South Africa, this small, but hardy species looks best when grown in full sun. It can also withstand moderate frosts. Once believed to be a form of E. horridus, it was identified as a separate species in 1965. Young cones are a distinct Find out how we help our cycads, by visiting this link: blue-green. sd.gozoo.org/cycad Made possible through the generosity of While its species name refers to the three sharp spines The Daphne Seybolt Culpeper Memorial Foundation on the tips of each leaflet, new emerging leaves are FUN FACT incredibly soft and velvety. sandiegozoo.org Cycad.
Recommended publications
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • Cycad Aulacaspis Scale
    Invasive Insects: Risks and Pathways Project CYCAD AULACASPIS SCALE UPDATED: APRIL 2020 Invasive insects are a huge biosecurity challenge. We profile some of the most harmful insect invaders overseas to show why we must keep them out of Australia. Species Cycad aulacaspis scale / Aulacaspis yasumatsui. Also known as Asian cycad scale. Main impacts Decimates wild cycad populations, kills cultivated cycads. Native range Thailand. Invasive range China, Taiwan, Singapore, Indonesia, Guam, United States, Caribbean Islands, Mexico, France, Ivory Coast1,2. Detected in New Zealand in 2004, but eradicated.2 Main pathways of global spread As a contaminant of traded nursery material (cycads and cycad foliage).3 WHAT TO LOOK OUT FOR The adult female cycad aulacaspis scale has a white cover (scale), 1.2–1.6 mm long, ENVIRONMENTAL variable in shape and sometimes translucent enough to see the orange insect with its IMPACTS OVERSEAS orange eggs beneath. The scale of the male is white and elongate, 0.5–0.6 mm long. Photo: Jeffrey W. Lotz, Florida Department of Agriculture and Consumer Services, The cycad aulacaspis scale has decimated Bugwood.org | CC BY 3.0 cycads on Guam since it appeared there in 2003. The affected species, Cycas micronesica, was once the most common cause cycad extinctions around the world, Taiwan, 100,000 cycads were destroyed tree on Guam, but was listed by the IUCN 7 including in India10 and Indonesia11. The by an outbreak of the scale . It is difficult as endangered in 2006 following attacks continuous removal of plant sap by the to control in cultivation because of high by three insect pests, of which this scale scale depletes cycads of carbohydrates4,9.
    [Show full text]
  • Bowenia Serrulata (W
    ResearchOnline@JCU This file is part of the following reference: Wilson, Gary Whittaker (2004) The Biology and Systematics of Bowenia Hook ex. Hook f. (Stangeriaceae: Bowenioideae). Masters (Research) thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/1270/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://eprints.jcu.edu.au/1270/ The Biology and Systematics of Bowenia Hook ex. Hook f. (Stangeriaceae: Bowenioideae) Thesis submitted by Gary Whittaker Wilson B. App. Sc. (Biol); GDT (2º Science). (Central Queensland University) in March 2004 for the degree of Master of Science in the Department of Tropical Plant Science, James Cook University of North Queensland STATEMENT OF ACCESS I, the undersigned, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and by microfilm or other photographic means, and allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: ‘In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author, and to make proper written acknowledgment for any assistance which I have obtained from it.’ ………………………….. ……………… Gary Whittaker Wilson Date DECLARATION I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text.
    [Show full text]
  • Somatic Embryogenesis and Regeneration of Endangered Cycad Species
    Somatic Embryogenesis and Regeneration of Endangered Cycad Species R.E. Litz and P.A. Moon V.M. Chavez Avila Tropical Research and Education Center Jardin Botanico, Instituto de Biologia University of Florida Universidad Nacional Autonoma de Mexico 18905 SW 280 Street Apartado Postal 70-614 Homestead FL, 33031-3314 04510 Mexico DF USA Mexico Keywords: Somatic embryo, gymnosperm, Cycadales, conservation Abstract The Cycadales (Gymnospermae) include some of the world's most endangered and rare plant species. Many of the cycad species are known only as single specimen trees (e.g., Encephalartos woodii), as very small populations in the wild (e.g., Ceratozamia hildae) or have become extinct in the wild (e.g., Ceratozamia euryphyllidia). All cycads are dioecious, so that seed production is no longer possible with the rarest of the species. Conditions for induction of embryogenic cultures from leaves of mature phase trees of several species in the family Zamiaceae have been reported, and plants have been regenerated from somatic embryos. Embryogenic cultures of two species have been successfully cryopreserved. These strategies should contribute to the conservation of these endangered species and could lay the basis for commercial propagation of these beautiful but rare plants. INTRODUCTION The Cycadales represent the most ancient surviving group of higher plants, having arisen during the Permian era and flourished in the Mesozoic and Jurassic periods. They have been referred to as "living fossils" (Gilbert, 1984). Norstog (1987) considered that the cycads are unique for the study of the evolution of development in higher plants. There are only three extant cycad families, the Cycadaceae, Stangeriaceae and Zamiaceae, and these contain approximately 224 species.
    [Show full text]
  • Chemical Element Concentrations of Cycad Leaves: Do We Know Enough?
    horticulturae Review Chemical Element Concentrations of Cycad Leaves: Do We Know Enough? Benjamin E. Deloso 1 , Murukesan V. Krishnapillai 2 , Ulysses F. Ferreras 3, Anders J. Lindström 4, Michael Calonje 5 and Thomas E. Marler 6,* 1 College of Natural and Applied Sciences, University of Guam, Mangilao, GU 96923, USA; [email protected] 2 Cooperative Research and Extension, Yap Campus, College of Micronesia-FSM, Colonia, Yap 96943, Micronesia; [email protected] 3 Philippine Native Plants Conservation Society Inc., Ninoy Aquino Parks and Wildlife Center, Quezon City 1101, Philippines; [email protected] 4 Plant Collections Department, Nong Nooch Tropical Botanical Garden, 34/1 Sukhumvit Highway, Najomtien, Sattahip, Chonburi 20250, Thailand; [email protected] 5 Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL 33156, USA; [email protected] 6 Western Pacific Tropical Research Center, University of Guam, Mangilao, GU 96923, USA * Correspondence: [email protected] Received: 13 October 2020; Accepted: 16 November 2020; Published: 19 November 2020 Abstract: The literature containing which chemical elements are found in cycad leaves was reviewed to determine the range in values of concentrations reported for essential and beneficial elements. We found 46 of the 358 described cycad species had at least one element reported to date. The only genus that was missing from the data was Microcycas. Many of the species reports contained concentrations of one to several macronutrients and no other elements. The cycad leaves contained greater nitrogen and phosphorus concentrations than the reported means for plants throughout the world. Magnesium was identified as the macronutrient that has been least studied.
    [Show full text]
  • ENCEPHALARTOSNCEPHALARTOS Tydskrif Van Die Broodboom Vereniging Van Suid-Afrika
    Journal of the Cycad Society of South Africa EENCEPHALARTOSNCEPHALARTOS Tydskrif van die Broodboom Vereniging van Suid-Afrika No. 109 September 2012 ISSN 1012-9987 Visits to three Encephalartos ferox colonies: provisional impressions Philip Rousseau¹* & George James Mann² As part of the larger endeavor to produce a mono- graphic revision of the genus Encephalartos, field work was conducted on three natural populations of Encephalartos ferox. Encephalartos ferox has always been regarded as a morphologically (both vegetative and reproductive) variable species (Vorster 2004), yet easily distinguishable as a sp e cie s, even at juvenile and s e e dling s t age s. B e c aus e of its well-defined diagnostic features, Dr. Piet Vorster places the species as unassociated in his groupings of species, a position confirmed by the senior author’s molecular work (Rousseau 2012). Encephalartos ferox is characterised by very wide ovate and heavily dentate leaflets, undulate in its width, unmistakable smooth pinkish to red cones, and seeds with a red sarcotesta. Amongst collectors special interest has always been shown towards the variability primarily in the so called “cigar leaf form” (Figure 1) and the “yellow cone form” (Figure 2). The known distribution of E. ferox extends from northern KwaZulu-Natal in South Africa, northwards in a more or less continues strip halfway up the Mozambican coast, the latter range involving the provinces of Maputo, Gaza, Inhambane and Sofala. Plants invariably grows at low elevation and close to the sea (IUCN 2010). The first field trip was by the first author to a population in the northeastern corner of KwaZulu-Natal (Maputaland) in January 2012.
    [Show full text]
  • Sex Change in Cycads
    Palms& CycadsNo 76 July - September2002 1 Sex Change in Cycads Rov Osbornet and Root Gorelick2 tP O Box 244, Burpengary, Queensland,4505Australia :Department of Biology, Arizona State University, Tbmpe,AZ 85287-1501, U.S.A. Introduction Trees", also mentionstwo cycad sex changeincidents: a fernalespecirnen of Becausecycads are strictly and Cycascircinalis fagain,rlore probably C. unifonnly dioecious,occasional early rumphiil that changedto male after being reportsof sex changein theseplants were mechanicallydarnaged fthis rnay be the largely discountedas erroneous(Mehra samecase as referredto by Charnberlain]. 1986).lndeed, there have been some claims and a male of the salnespecies which of sexchanges for which otherexplanations produceda fernalecone after severefrost are rrore appropriate.Nevertheless, exposure. attentionmust be paid to the increasing A detailedaccount of a particularcycad numberof apparentlygenuine cases of sex sex reversalis given by Van Wyk & changesthat have been reportedover the Claassen( l98l) andrelates to oneof several past70 years.In this articlewe sutnmarise specirnens of Encephalartos incidentsof 30 cycad sex reversals, umbeluziensisgrowing in Dr Claassen's including several previously un- garden in Pretoria, South Africa. The documentedcases. We alsomention details particularspecimen produced a malecone of some"false" cases and suggest possible in 1970,but a fernalecone in l9l9 and controlling mechanisms. A table thereafter.As theplant in questionwas in a summarisesthe known casesof cycad sex rlore exposedsituation that others in the change,and a bibliographyis provided. salnegarden, it is speculatedthat a freak cold weatherspell in 1972may haveinitiated Know,n cases o.f'sex change - listed the change. chronologicalllt "Encephalartos",the journal of the Cycad Society of South Africa, has The earliestreference to sex changein publicisednurlerous incidents of cycadsex cycadsis that given by Schuster(1932) change.These are summarised in this and who tells of a Cvc'asrevoluta plant that the following paragraph.H.J.
    [Show full text]
  • Download the PDF File
    ISSN 2473-442X CONTENTS Message from Dr. Patrick Griffith, Co-chair, IUCN/SSC CSG 3 Official newsletter of IUCN/SSC Cycad Specialist Group Botanic Garden: In Focus Vol. IV I Issue 2 I December 2019 Montgomery Botanical Center’s Cycad Collection – Focus on research and conservation 5 Michael Calonje & Patrick Griffith Feature Articles Towards an approach for the conservation and illegal trade prevention of South Africa’s endangered Encephalartos spp. 10 James A. R. Clugston, Michelle Van Der Bankand Ronny M. Kobongo Fire is the most important threat for conservation of Dioon merolae (espadaña) in the hill Nambiyigua, municipality of Villaflores, Chiapas, Mexico 13 Miguel Angel Pérez-Farrera & Mauricio Martínez Martínez Ex-situ Cycad Conservation [1]: Public and Private Collections 16 Chip Jones & JS Khuraijam The Cycad Specialist Group (CSG) is a component of the IUCN Species Research and Conservation News Survival Commission (IUCN/SSC). It consists of a group of volunteer The Cycad Extinction Crisis in South Africa 19 experts addressing conservation Wynand van Eeden & Tim Gregory issues related to cycads, a highly What is Ceratozamia becerrae ? 21 threatened group of land plants. The Andrew P. Vovides, Miguel Angel Pérez-Farrera & José Said Gutiérrez-Ortega CSG exists to bring together the world’s cycad conservation expertise, Preliminary Finding: Seed longevity of Encephalartos in controlled storage 23 and to disseminate this expertise to Ngawethu Ngaka and Phakamani Xaba organizations and agencies which can use this guidance to advance cycad Meeting Reports conservation. 2nd Nong Nooch Cycad Horticulture Workshop 25 Official website of CSG: Anders Lindstrom http://www.cycadgroup.org/ Plant Conservation Genetics Workshop 26 Co-Chairs Caroline Iacuaniello, Stephanie Steele & Christy Powell John Donaldson Patrick Griffith CSG Members 28 Vice Chairs Michael Calonje Cristina Lopez-Gallego Red List Authority Coordinator De Wet Bosenberg CSG Newsletter Committee JS Khuraijam, Editor Irene Terry Andrew P.
    [Show full text]
  • Cycad Forensics: Tracing the Origin of Poached Cycads Using Stable Isotopes, Trace Element Concentrations and Radiocarbon Dating Techniques
    Cycad forensics: Tracing the origin of poached cycads using stable isotopes, trace element concentrations and radiocarbon dating techniques by Kirsten Retief Supervisors: Dr Adam West (UCT) and Ms Michele Pfab (SANBI) Submitted in partial fulfillment of the requirements for the degree of Masters of Science in Conservation Biology 5 June 2013 Percy FitzPatrick Institution of African Ornithology, UniversityDepartment of Biologicalof Cape Sciences Town University of Cape Town, Rondebosch Cape Town South Africa 7701 i The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Table of Contents Acknowledgements iii Plagiarism declaration iv Abstract v Chapter 1: Status of cycads and background to developing a forensic technique 1 1. Why are cycads threatened? 2 2. Importance of cycads 4 3. Current conservation strategies 5 4. Stable isotopes in forensic science 7 5. Trace element concentrations 15 6. Principles for using isotopes as a tracer 15 7. Radiocarbon dating 16 8. Cycad life history, anatomy and age of tissues 18 9. Recapitulation 22 Chapter 2: Applying stable isotope and radiocarbon dating techniques to cycads 23 1. Introduction 24 2. Methods 26 2.1 Sampling selection and sites 26 2.2 Sampling techniques 30 2.3 Processing samples 35 2.4 Cellulose extraction 37 2.5 Oxygen and sulphur stable isotopes 37 2.6 CarbonUniversity and nitrogen stable of isotopes Cape Town 38 2.7 Strontium, lead and elemental concentration analysis 39 2.8 Radiocarbon dating 41 2.9 Data analysis 42 3.
    [Show full text]
  • Coevolution of Cycads and Dinosaurs George E
    Coevolution of cycads and dinosaurs George E. Mustoe* INTRODUCTION TOXICOLOGY OF EXTANT CYCADS cycads suggests that the biosynthesis of ycads were a major component of Illustrations in textbooks commonly these compounds was a trait that C forests during the Mesozoic Era, the depict herbivorous dinosaurs browsing evolved early in the history of the shade of their fronds falling upon the on cycad fronds, but biochemical evi- Cycadales. Brenner et al. (2002) sug- scaly backs of multitudes of dinosaurs dence from extant cycads suggests that gested that macrozamin possibly serves a that roamed the land. Paleontologists these reconstructions are incorrect. regulatory function during cycad have long postulated that cycad foliage Foliage of modern cycads is highly toxic growth, but a strong case can be made provided an important food source for to vertebrates because of the presence that the most important reason for the reptilian herbivores, but the extinction of two powerful neurotoxins and carcin- evolution of cycad toxins was their of dinosaurs and the contemporaneous ogens, cycasin (methylazoxymethanol- usefulness as a defense against foliage precipitous decline in cycad popula- beta-D-glucoside) and macrozamin (beta- predation at a time when dinosaurs were tions at the close of the Cretaceous N-methylamine-L-alanine). Acute symp- the dominant herbivores. The protective have generally been assumed to have toms triggered by cycad foliage inges- role of these toxins is evidenced by the resulted from different causes. Ecologic tion include vomiting, diarrhea, and seed dispersal characteristics of effects triggered by a cosmic impact are abdominal cramps, followed later by loss modern cycads. a widely-accepted explanation for dino- of coordination and paralysis of the saur extinction; cycads are presumed to limbs.
    [Show full text]
  • Cycas Revoluta1
    Fact Sheet FPS-162 October, 1999 Cycas revoluta1 Edward F. Gilman2 Introduction The palm-like King Sago has a short, dark brown, unbranching trunk topped with graceful, arching, dark green, feathery leaves, two to three feet long (Fig. 1). King Sago is not a palm tree. It will eventually reach to about eight feet tall, but grows about one or two inches per year. The individual leaflets each end in a sharp tip. Although very slow-growing, King Sago is much prized for its tropical effect and easy care and makes an excellent specimen or container plant. It is easy to grow as a house plant. General Information Scientific name: Cycas revoluta Pronunciation: SYE-kus rev-voe-LOO-tuh Common name(s): King Sago Family: Cycadaceae Plant type: shrub USDA hardiness zones: 8B through 11 (Fig. 2) Planting month for zone 8: year round Planting month for zone 9: year round Figure 1. King Sago. Planting month for zone 10 and 11: year round Origin: not native to North America Uses: container or above-ground planter; border; mass Description planting; accent; suitable for growing indoors Height: 3 to 10 feet Availablity: somewhat available, may have to go out of the Spread: 4 to 8 feet region to find the plant Plant habit: palm Plant density: moderate Growth rate: slow Texture: fine 1.This document is Fact Sheet FPS-162, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: October 1999. Please visit the EDIS web site at http://edis.ifas.ufl.edu.
    [Show full text]
  • Comparative Biology of Cycad Pollen, Seed and Tissue - a Plant Conservation Perspective
    Bot. Rev. (2018) 84:295–314 https://doi.org/10.1007/s12229-018-9203-z Comparative Biology of Cycad Pollen, Seed and Tissue - A Plant Conservation Perspective J. Nadarajan1,2 & E. E. Benson 3 & P. Xaba 4 & K. Harding3 & A. Lindstrom5 & J. Donaldson4 & C. E. Seal1 & D. Kamoga6 & E. M. G. Agoo7 & N. Li 8 & E. King9 & H. W. Pritchard1,10 1 Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK; e-mail: [email protected] 2 The New Zealand Institute for Plant & Food Research Ltd, Private Bag 11600, Palmerston North 4442, New Zealand; e-mail [email protected] 3 Damar Research Scientists, Damar, Cuparmuir, Fife KY15 5RJ, UK; e-mail: [email protected]; [email protected] 4 South African National Biodiversity Institute, Kirstenbosch National Botanical Garden, Cape Town, Republic of South Africa; e-mail: [email protected]; [email protected] 5 Nong Nooch Tropical Botanical Garden, Chonburi 20250, Thailand; e-mail: [email protected] 6 Joint Ethnobotanical Research Advocacy, P.O.Box 27901, Kampala, Uganda; e-mail: [email protected] 7 De La Salle University, Manila, Philippines; e-mail: [email protected] 8 Fairy Lake Botanic Garden, Shenzhen, Guangdong, People’s Republic of China; e-mail: [email protected] 9 UNEP-World Conservation Monitoring Centre, Cambridge, UK; e-mail: [email protected] 10 Author for Correspondence; e-mail: [email protected] Published online: 5 July 2018 # The Author(s) 2018 Abstract Cycads are the most endangered of plant groups based on IUCN Red List assessments; all are in Appendix I or II of CITES, about 40% are within biodiversity ‘hotspots,’ and the call for action to improve their protection is long- standing.
    [Show full text]