Star Populations and the Solar Neighborhood

Total Page:16

File Type:pdf, Size:1020Kb

Star Populations and the Solar Neighborhood Sp.-V/AQuan/1999/10/11:10:50 Page 471 Chapter 19 Star Populations and the Solar Neighborhood Gerard F. Gilmore and Michael Zeilik 19.1 The Nearby Stars ..................... 471 19.2 The Brightest Stars .................... 475 19.3 Stellar Populations ..................... 478 19.4 Star Counts at High Latitudes .............. 480 19.5 Vertical Stellar Density Profile .............. 481 19.6 Main Sequence Field Stellar Luminosity Function ................... 485 19.7 White Dwarf Luminosity Function ........... 485 19.8 Luminosity Class Distribution for Nearby Field Stars .................... 486 19.9 Mass Density in the Solar Neighborhood ....... 487 19.10 Stellar Mass Function .................. 488 19.11 Solar Motion and Kinematics of Nearby Stars ........................ 493 19.1 THE NEARBY STARS Table 19.1 lists the 100 nearest stars to the Earth in order of increasing distance. Positions are calculated from observed positions with corrections for proper motions; they are given in the FK5 system with equinox = J2000.0 and epoch = J2000.0. The first column gives the identifier in the Hipparcos 471 Sp.-V/AQuan/1999/10/11:10:50 Page 472 472 / 19 STAR POPULATIONS AND THE SOLAR NEIGHBORHOOD Catalogue [1]; the last column gives the parallax in milliarcsecs with the associated standard deviation error. Table 19.1. Nearby stars. HD α (2000.0) HIP number δ (2000.0) Other name Sp. type V magnitude Abs VB− V Parallax 70890 N/A 14 29 42.95 α Cen C M5 Ve 11.01 15.45 +1.81 772.33 ± 2.42 −62 40 46.1 71681 128621 14 39 35.08 α Cen B K1 V 1.35 5.70 +0.88 742.12 ± 1.40 −60 50 13.8 71683 128620 14 39 36.50 α Cen A G2 V −0.01 4.34 +0.71 742.12 ± 1.40 −60 50 02.3 87937 N/A 17 57 48.50 Barnard’s star M5 V 9.54 13.24 +1.57 549.01 ± 1.58 +04 41 36.2 54035 95735 11 03 20.19 Gl 411 M2 Ve 7.49 10.46 +1.50 392.40 ± 0.91 +35 58 11.6 32349 48915 06 45 08.92 α CMa A1 V −1.44 1.45 +0.01 379.21 ± 1.58 −16 41 58.0 92403 N/A 18 49 49.36 Gl 729 M4.5 Ve 10.37 13.00 +1.51 336.48 ± 1.82 −23 50 10.4 16537 22049 03 32 55.84 Eri K2 V 3.72 6.18 +0.88 310.75 ± 0.85 −09 27 29.7 114046 217987 23 05 52.04 Gl 887 M2 Ve 7.35 9.76 +1.48 303.90 ± 0.87 −35 51 11.1 57548 N/A 11 47 44.40 Ross 128 M4.5 V 11.12 13.50 +1.75 299.58 ± 2.20 +00 48 16.4 104214 201091 21 06 53.94 61 Cyg A K5 Ve 5.20 7.49 +1.07 287.13 ± 1.51 +38 44 57.9 37279 61421 07 39 18.12 α CMi F5 IV–V 0.40 2.68 +0.43 285.93 ± 0.88 +05 13 30.0 104217 201092 21 06 55.26 61 Cyg B K7 Ve 6.05 8.33 +1.31 285.42 ± 0.72 +38 44 31.4 91772 173740 18 42 46.90 Gl 725B M5 V 9.70 11.97 +1.56 284.48 ± 5.01 +59 37 36.6 91768 173739 18 42 46.69 Gl 725A M4 V 8.94 11.18 +1.50 280.28 ± 2.57 +59 37 49.4 1475 1326 00 18 22.89 GX And M2 V 8.09 10.33 +1.56 280.27 ± 1.05 +44 01 22.6 108870 209100 22 03 21.66 Ind K5 Ve 4.69 6.89 +1.06 275.76 ± 0.69 −56 47 09.5 8102 10700 01 44 04.08 τ Cet G8 Vp 3.49 5.68 +0.73 274.17 ± 0.80 −15 56 14.9 5643 N/A 01 12 30.64 Gl 54.1 M5.5 Ve 12.10 14.25 +1.85 269.05 ± 7.57 −16 59 56.3 36208 N/A 07 27 24.50 Luyten’s star M3.5 9.84 11.94 +1.57 263.26 ± 1.43 +05 13 32.8 24186 33793 05 11 40.58 Kapteyn’s star M0 V 8.86 10.89 +1.55 255.26 ± 0.86 −45 01 06.3 105090 202560 21 17 15.27 AX Mic M0 Ve 6.69 8.71 +1.40 253.37 ± 1.13 −38 52 02.5 110893 239960 22 27 59.47 Kruger 60 M2 V 9.59 11.58 +1.61 249.52 ± 3.03 +57 41 45.1 30920 N/A 06 29 23.40 Ross 614 M4.5 Ve 11.12 13.05 +1.69 242.89 ± 2.64 −02 48 50.3 72511 N/A 14 49 34 N/A N/A 11.72 13.58 N/A 235.24 ± 22.43 −26 06 22 80824 N/A 16 30 18.06 Wolf 1061 M3.5 10.10 11.95 +1.58 234.51 ± 1.82 −12 39 45.3 439 225213 00 05 24.43 Gl 1 M4 V 8.56 10.36 +1.46 229.33 ± 1.08 −37 21 26.5 15689 N/A 03 22 05.50 N/A N/A 12.16 13.94 N/A 227.45 ± 61.79 −13 16 43.8 3829 N/A 00 49 09.90 Van Maanen 2 DG 12.37 14.15 +0.55 226.95 ± 5.35 +05 23 19.0 72509 N/A 14 49 31.76 Gl 563.2 M3 12.07 13.80 +1.52 221.80 ± 69.07 −26 06 42.0 86162 N/A 17 36 25.90 BD +68 946 M3.5 Vvar 9.15 10.81 +1.50 220.85 ± 0.92 +68 20 20.9 Sp.-V/AQuan/1999/10/11:10:50 Page 473 19.1 THE NEARBY STARS / 473 Table 19.1. (Continued.) HD α (2000.0) HIP number δ (2000.0) Other name Sp. type V magnitude Abs VB− V Parallax 85523 N/A 17 28 39.95 Gl 674 M3 9.38 11.10 +1.55 220.43 ± 1.63 −46 53 42.7 114110 N/A 23 06 39 GJ 293 DC 12.24 13.92 −0.17 216.52 ± 18.28 −14 52 19 57367 N/A 11 45 42.92 Gl 440 DQ6 11.50 13.18 +0.20 216.40 ± 2.11 −64 50 29.5 113020 79210 22 53 16.73 Ross 780 M5 V 10.16 11.80 +1.60 212.69 ± 2.10 −14 15 49.3 54211 79211 11 05 28.58 Gl 412A M2 Ve 8.82 10.40 +1.54 206.94 ± 1.19 +43 31 36.4 49908 88230 10 11 22.14 Gl 380 K2 Ve 6.60 8.16 +1.33 205.22 ± 0.81 +49 27 15.3 82725 N/A 16 54 32.47 N/A N/A 11.72 13.26 N/A 203.01 ± 29.27 −62 24 12.0 85605 N/A 17 29 36.25 N/A N/A 11.39 12.92 +1.10 202.69 ± 39.48 +24 39 14.7 106440 204961 21 33 33.98 Gl 832 M1 V 8.66 10.19 +1.52 202.53 ± 1.33 −49 00 32.4 86214 N/A 17 37 03.66 Gl 682 M3.5 10.94 12.43 +1.66 198.32 ± 2.43 −44 19 09.2 19849 26965 04 15 16.32 ω 2 Eri K1 Ve 4.43 5.92 +0.82 198.24 ± 0.84 −07 39 10.3 112460 N/A 22 46 49.73 EV Lac M4.5 Ve 10.29 11.77 +1.54 198.07 ± 2.05 +44 20 02.4 88601 165341 18 05 27.29 70 Oph K0 Ve 4.03 5.50 +0.86 196.62 ± 1.38 +02 30 00.4 97649 187642 19 50 47.00 α Aql A7 IV–V 0.76 2.20 +0.22 194.44 ± 0.94 +08 52 06.0 1242 N/A 00 15 28.11 L722-22 M4 11.49 12.90 +1.75 191.86 ± 17.24 −16 08 01.7 57544 N/A 11 47 41.38 Gl 445 M4 V 10.80 12.14 +1.57 185.48 ± 1.43 +78 41 28.2 67155 119850 13 45 43.78 Wolf 498 M4 Ve 8.46 9.79 +1.44 184.13 ± 1.27 +14 53 29.5 103039 N/A 20 52 33.02 N/A N/A 11.41 12.71 +1.65 182.15 ± 3.68 −16 58 29.1 21088 N/A 04 31 11.52 Gl 169.1A M4 10.82 12.11 +1.65 181.36 ± 3.67 +58 58 37.5 33226 265866 06 54 48.96 Wolf 294 M4 V 9.89 11.18 +1.57 181.32 ± 1.87 +33 16 05.4 53020 128620 10 50 52.06 Wolf 358 M5 V 11.64 12.89 +1.68 177.46 ± 23.00 +06 48 29.3 25878 36395 05 31 27.40 Wolf 1453 M1.5 V 7.97 9.19 +1.47 175.72 ± 1.20 −03 40 38.0 82817 152751 16 55 28.75 Wolf 630A M3 Ve 9.02 10.23 +1.55 174.23 ± 3.90 −08 20 10.8 96100 185144 19 32 21.59 σ Dra K0 V 4.67 5.87 +0.79 173.41 ± 0.46 +69 39 40.2 29295 42581 06 10 34.62 Gl 229 M1 Ve 8.15 9.34 +1.49 173.19 ± 1.12 −21 51 52.7 26857 N/A 05 42 09.27 Ross 47 M4 11.56 12.75 +1.62 172.78 ± 3.88 +12 29 21.6 86990 152751 17 46 34.23 Gl 693 M3.5 10.75 11.93 +1.66 172.08 ± 2.22 −57 19 08.6 94761 180617 19 16 55.26 Ross 652 M3.5 Ve 9.12 10.28 +1.46 170.26 ± 1.37 +05 10 08.1 73184 131977 14 57 28.00 Gl 570A K5 Ve 5.72 6.86 +1.02 169.32 ± 1.67 −21 24 55.7 37766 N/A 07 44 40.17 YZ CMi M4.5 Ve 11.19 12.32 +1.60 168.59 ± 2.67 +03 33 08.8 76074 155876 15 32 12.93 Gl 588 M3 9.31 10.44 +1.52 168.52 ± 1.42 −41 16 32.1 3821 4614 00 49 06.29 η Cas G3 V 3.46 4.59 +0.59 167.99 ± 0.62 +57 48 54.7 84478 156026 17 16 13.36 Gl 664 K5 Ve 6.33 7.45 +1.16 167.56 ± 1.06 −26 32 46.1 117473 156026 23 49 12.53 Gl 908 M2 Ve 8.98 10.10 +1.46 167.51 ± 1.49 +02 24 04.4 Sp.-V/AQuan/1999/10/11:10:50 Page 474 474 / 19 STAR POPULATIONS AND THE SOLAR NEIGHBORHOOD Table 19.1.
Recommended publications
  • Modeling Super-Earth Atmospheres in Preparation for Upcoming Extremely Large Telescopes
    Modeling Super-Earth Atmospheres In Preparation for Upcoming Extremely Large Telescopes Maggie Thompson1 Jonathan Fortney1, Andy Skemer1, Tyler Robinson2, Theodora Karalidi1, Steph Sallum1 1University of California, Santa Cruz, CA; 2Northern Arizona University, Flagstaff, AZ ExoPAG 19 January 6, 2019 Seattle, Washington Image Credit: NASA Ames/JPL-Caltech/T. Pyle Roadmap Research Goals & Current Atmosphere Modeling Selecting Super-Earths for State of Super-Earth Tool (Past & Present) Follow-Up Observations Detection Preliminary Assessment of Future Observatories for Conclusions & Upcoming Instruments’ Super-Earths Future Work Capabilities for Super-Earths M. Thompson — ExoPAG 19 01/06/19 Research Goals • Extend previous modeling tool to simulate super-Earth planet atmospheres around M, K and G stars • Apply modified code to explore the parameter space of actual and synthetic super-Earths to select most suitable set of confirmed exoplanets for follow-up observations with JWST and next-generation ground-based telescopes • Inform the design of advanced instruments such as the Planetary Systems Imager (PSI), a proposed second-generation instrument for TMT/GMT M. Thompson — ExoPAG 19 01/06/19 Current State of Super-Earth Detections (1) Neptune Mass Range of Interest Earth Data from NASA Exoplanet Archive M. Thompson — ExoPAG 19 01/06/19 Current State of Super-Earth Detections (2) A Approximate Habitable Zone Host Star Spectral Type F G K M Data from NASA Exoplanet Archive M. Thompson — ExoPAG 19 01/06/19 Atmosphere Modeling Tool Evolution of Atmosphere Model • Solar System Planets & Moons ~ 1980’s (e.g., McKay et al. 1989) • Brown Dwarfs ~ 2000’s (e.g., Burrows et al. 2001) • Hot Jupiters & Other Giant Exoplanets ~ 2000’s (e.g., Fortney et al.
    [Show full text]
  • 02 Southern Cross
    Asterism Southern Cross The Southern Cross is located in the constellation Crux, the smallest of the 88 constellations. It is one of the most distinctive. With the four stars Mimosa BeCrux, Ga Crux, A Crux and Delta Crucis, forming the arms of the cross. The Southern Cross was also used as a remarkably accurate timepiece by all the people of the southern hemisphere, referred to as the ‘Southern Celestial Clock’ by the portuguese naturalist Cristoval D’Acosta. It is perpendicular as it passes the meridian, and the exact time can thus be calculated visually from its angle. The german explorer Baron Alexander von Humboldt, sailing across the southern oceans in 1799, wrote: “It is a timepiece, which advances very regularly nearly 4 minutes a day, and no other group of stars affords to the naked eye an observation of time so easily made”. Asterism - An asterism is a distinctive pattern of stars or a distinctive group of stars in the sky. Constellation - A grouping of stars that make an imaginary picture in the sky. There are 88 constellations. The stars and objects nearby The Main-Themes in asterism Southern Cross Southern Cross Ga Crux A Crux Mimosa, Be Crux Delta Crucis The Motives in asterism Southern Cross Crucis A Bayer / Flamsteed indication AM Arp+Madore - A Catalogue of Southern peculiar Galaxies and Associations [B10] Boss, 1910 - Preliminary General Catalogue of 6188 Stars C Cluster CCDM Catalogue des composantes d’étoiles doubles et multiples CD Cordoba Durchmusterung Declination Cel Celescope Catalog of ultraviolet Magnitudes CPC
    [Show full text]
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • Exoplanet Exploration Program Updates
    Exoplanet Exploration Program Updates Dr. Gary H. Blackwood, Program Manager Dr. Karl R. Stapelfeldt, Program Chief Scientist Jet Propulsion Laboratory California Institute of Technology January 7, 2018 ExoPAG 17, National Harbor, Maryland © 2018 All rights reserved Artist concept of Kepler-16b Kepler / K2 Program Progress vs 2010 Decadal Priorities Program Science Updates NASA Exoplanet Exploration Program Astrophysics Division, NASA Science Mission Directorate NASA's search for habitable planets and life beyond our solar system Program purpose described in 2014 NASA Science Plan 1. Discover planets around other stars 2. Characterize their properties 3. Identify candidates that could harbor life ExEP serves the science community and NASA by implementing NASA’s space science vision for exoplanets https://exoplanets.nasa.gov WFIRST JWST2 PLATO Missions TESS Kepler LUVOIR5 CHEOPS 4 Spitzer Gaia Hubble1 Starshade HabEx5 CoRoT3 Rendezvous5 OST5 NASA Non-NASA Missions Missions W. M. Keck Observatory Large Binocular 1 NASA/ESA Partnership Telescope Interferometer NN-EXPLORE 2 NASA/ESA/CSA Partnership 3 CNES/ESA Ground Telescopes with NASA participation 5 4 ESA/Swiss Space Office 2020 Decadal Survey Studies NASA Exoplanet Exploration Program Space Missions and Mission Studies Communications Kepler & Probe-Scale Studies K2 Starshade Coronagraph Supporting Research & Technology Key NASA Exoplanet Science Institute Sustaining Occulting Technology Development Research Masks Deformable Mirrors NN-EXPLORE Keck Single Archives, Tools, Sagan Fellowships, Aperture Professional Engagement Imaging & RV High-Contrast Imaging Deployable Starshades Large Binocular Telescope Interferometer https://exoplanets.nasa.gov 4 NASA Exoplanet Exploration Program Astrophysics Division, Science Mission Directorate Program Office (JPL) PM- Dr. G. Blackwood DPM- K. Short Chief Scientist – Dr.
    [Show full text]
  • Frontier: First Encounters 2 Contents
    Frontier: First Encounters 2 Contents Credits v Preface vii Quick start ix 1 Tutorial 1 1.1 Your first view . 1 1.2 You and your ship (Inventory mode) . 2 1.3 The galaxy . 3 1.4 Where to go, and what to do there . 5 1.5 Getting out of here . 9 1.6 Arriving . 11 1.7 On landing . 14 2 The controls 17 2.1 Welcome to your Saker Mk III . 17 2.2 Ship instrumentation, and how to use it . 17 2.3 The View Panel (F1) . 19 2.4 The Inventory Panel (F2) . 22 2.5 The Map Panel (F3) . 25 2.6 The Communications Panel (F4) . 28 2.7 The Scanner . 30 2.8 Fuel Gauge and Temperature Gauges . 31 2.9 Warning Lights . 31 2.10 Dual Console . 32 2.11 Options . 35 3 Flying a spacecraft 37 3.1 Basic flight controls . 37 3.2 Fly-by-wire — an idiot’s guide . 38 3.3 Launching and docking procedures . 39 3.4 Flying between star-systems . 44 3.5 Flying within a system . 46 3.6 Intra-system flight without an autopilot . 49 3.7 Manual flight, and relative velocities . 51 3.8 Your pilot’s test — a revision guide . 55 3.9 Basic combat controls . 57 i ii CONTENTS 3.10 The combat drill . 59 3.11 Combat techniques . 63 3.12 Interception techniques . 68 3.13 Planetary combat . 70 3.14 Full manual flight control (Advanced) . 73 4 Careers 77 4.1 Bulletin Boards . 77 4.2 Deliveries . 79 4.2.1 Parcel courier .
    [Show full text]
  • Chandra Spectroscopy of the Hot Star Β Crucis and the Discovery of a Pre-Main-Sequence Companion David H
    Mon. Not. R. Astron. Soc. (2008) doi:10.1111/j.1365-2966.2008.13176.x Chandra spectroscopy of the hot star β Crucis and the discovery of a pre-main-sequence companion David H. Cohen,1 Michael A. Kuhn,1† Marc Gagn´e,2 Eric L. N. Jensen1 and Nathan A. Miller3 1Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA 2Department of Geology and Astronomy, West Chester University of Pennsylvania, West Chester, PA 19383, USA 3Department of Physics and Astronomy, University of Wisconsin-Eau Claire, Eau Claire, WI 54702, USA Accepted 2008 February 29. Received 2008 February 29; in original form 2007 December 6 ABSTRACT In order to test the O star wind-shock scenario for X-ray production in less luminous stars with weaker winds, we made a pointed 74-ks observation of the nearby early B giant, β Crucis (β Cru; B0.5 III), with the Chandra High Energy Transmission Grating Spectrometer. We find that the X-ray spectrum is quite soft, with a dominant thermal component near 3 million K, and that the emission lines are resolved but quite narrow, with half widths of 150 km s−1. The forbidden-to-intercombination line ratios of Ne IX and Mg XI indicate that the hot plasma is distributed in the wind, rather than confined near the photosphere. It is difficult to understand the X-ray data in the context of the standard wind-shock paradigm for OB stars, primarily because of the narrow lines, but also because of the high X-ray production efficiency. A scenario in which the bulk of the outer wind is shock heated is broadly consistent with the data, but not very well motivated theoretically.
    [Show full text]
  • Startheater 3 Man
    AGES 8+ 2009 ® Planetarium Projector with Astronomy Software Instruction Manual Table of Contents Discover the Universe! .......................................................................................................3 Your Own Planetarium ......................................................................................................3 What Is a Constellation? ....................................................................................................3 The Star Sphere ....................................................................................................................4 Assembly and Operation ..................................................................................................4 Installing Batteries .......................................................................................................4 Operating Your Planetarium ....................................................................................5 Setting the Date and Time ........................................................................................6 Care and Maintenance.......................................................................................................6 Meteors and Comets ..........................................................................................................7 The Constellations...............................................................................................................7 The Moving Sky..................................................................................................................10
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Publications Ofthe Astronomical Society Ofthe Pacific 99:490-496, June 1987
    Publications ofthe Astronomical Society ofthe Pacific 99:490-496, June 1987 RADIAL VELOCITIES OF M DWARF STARS GEOFFREY W. MARCY,* VICTORIA LINDSAY,* AND KAREN WILSON Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132 Received 1987 February 26, revised 1987 March 28 ABSTRACT Radial velocities for 72 M dwarfs have been obtained having internal errors of about 0.1 km s1 and external errors of about 0.4 km s_1. Multiple velocity measurements of ten dMe stars have yielded a set of six which have no stellar companions, providing confirmation that the dMe phenomenon can occur in single stars. These single dMe stars have low space motions indicative of relative youth. Four stars from the entire survey were found to have double-line spectra and two were found to be single-line spectroscopic binaries of low amplitude. The zero point of the velocity scale is found to agree well with that of O. C. Wilson (1967) and differences are noted among other radial-velocity studies. Most of the stars in this study have velocities sufficiently well determined to constitute potential radial-velocity standards. Key words: K-M dwarfs-radial velocities I. Introduction atic difference between their velocities and O. C. 1 Accurate measurements of radial velocities for M Wilson's of —1.7 km s , a discrepancy not explainable by dwarfs are used to address a number of astrophysical the random errors of the two studies. problems such as the age dependence of the kinematics of Thus, it is not known at present which zero point is to the Galaxy (cf.
    [Show full text]
  • The HR Diagram
    Name_______________________ Class_______________________ Date_______________________ Assignment #10 – The H-R Diagram A star is a delicately balanced ball of gas, fighting between two impulses: gravity, which wants to squeeze the gas all down to a single point, and radiation pressure, which wants to blast all the gas out to infinity. These two opposite forces balance out in a process called Hydrostatic Equilibrium, and keep the gas at a stable, fairly constant size. The radiation itself is due to the fusion of protons in the star's core – a process that produces huge amounts of energy. In class we've examined the most important properties of stars: their temperatures, colors and brightnesses. Now let's see if we can find some relationships between these stellar properties. We know that hotter stars are brighter, as described by the Stefan-Boltzmann Law, and we know that the hotter stars are also bluer, as described by Wien's Law. The H-R diagram is a way of displaying an important relationship between a star's Absolute Magnitude (or Luminosity), and its Spectral Type (or temperature). Remember, Absolute Magnitude is how bright a star would appear to be, if it were 10 parsecs away. Luminosity is how much total energy a star gives off per second. As we studied in a previous exercise, Spectral Type is a system of classifying stars by temperature, from hottest (type O) to coldest (type M). Each letter in the Spectral Type list (O, B, A, F, G, K, and M) is further subdivided into 10 steps, numbered 0 through 9, to make finer distinctions between stars.
    [Show full text]
  • To Trappist-1 RAIR Golaith Ship
    Mission Profile Navigator 10:07 AM - 12/2/2018 page 1 of 10 Interstellar Mission Profile for SGC Navigator - Report - Printable ver 4.3 Start: omicron 2 40 Eri (Star Trek Vulcan home star) (HD Dest: Trappist-1 2Mass J23062928-0502285 in Aquarii [X -9.150] [Y - 26965) (Keid) (HIP 19849) in Eridani [X 14.437] [Y - 38.296] [Z -3.452] 7.102] [Z -2.167] Rendezvous Earth date arrival: Tuesday, December 8, 2420 Ship Type: RAIR Golaith Ship date arrival: Tuesday, January 8, 2419 Type 2: Rendezvous with a coasting leg ( Top speed is reached before mid-point ) Start Position: Start Date: 2-December-2018 Star System omicron 2 40 Eri (Star Trek Vulcan home star) (HD 26965) (Keid) Earth Polar Primary Star: (HIP 19849) RA hours: inactive Type: K0 V Planets: 1e RA min: inactive Binary: B, C, b RA sec: inactive Type: M4.5V, DA2.9 dec. degrees inactive Rank from Earth: 69 Abs Mag.: 5.915956445 dec. minutes inactive dec. seconds inactive Galactic SGC Stats Distance l/y Sector X Y Z Earth to Start Position: 16.2346953 Kappa 14.43696547 -7.10221947 -2.16744969 Destination Arrival Date (Earth time): 8-December-2420 Star System Earth Polar Trappist-1 2Mass J23062928-0502285 Primary Star: RA hours: inactive Type: M8V Planets 4, 3e RA min: inactive Binary: B C RA sec: inactive Type: 0 dec. degrees inactive Rank from Earth 679 Abs Mag.: 18.4 dec. minutes inactive Course Headings SGC decimal dec. seconds inactive RA: (0 <360) 232.905748 dec: (0-180) 91.8817176 Galactic SGC Sector X Y Z Destination: Apparent position | Start of Mission Omega -9.09279603 -38.2336637 -3.46695345 Destination: Real position | Start of Mission Omega -9.09548281 -38.2366036 -3.46626331 Destination: Real position | End of Mission Omega -9.14988933 -38.2961361 -3.45228825 Shifts in distances of Destination Distance l/y X Y Z Change in Apparent vs.
    [Show full text]
  • Meeting Program
    A A S MEETING PROGRAM 211TH MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY WITH THE HIGH ENERGY ASTROPHYSICS DIVISION (HEAD) AND THE HISTORICAL ASTRONOMY DIVISION (HAD) 7-11 JANUARY 2008 AUSTIN, TX All scientific session will be held at the: Austin Convention Center COUNCIL .......................... 2 500 East Cesar Chavez St. Austin, TX 78701 EXHIBITS ........................... 4 FURTHER IN GRATITUDE INFORMATION ............... 6 AAS Paper Sorters SCHEDULE ....................... 7 Rachel Akeson, David Bartlett, Elizabeth Barton, SUNDAY ........................17 Joan Centrella, Jun Cui, Susana Deustua, Tapasi Ghosh, Jennifer Grier, Joe Hahn, Hugh Harris, MONDAY .......................21 Chryssa Kouveliotou, John Martin, Kevin Marvel, Kristen Menou, Brian Patten, Robert Quimby, Chris Springob, Joe Tenn, Dirk Terrell, Dave TUESDAY .......................25 Thompson, Liese van Zee, and Amy Winebarger WEDNESDAY ................77 We would like to thank the THURSDAY ................. 143 following sponsors: FRIDAY ......................... 203 Elsevier Northrop Grumman SATURDAY .................. 241 Lockheed Martin The TABASGO Foundation AUTHOR INDEX ........ 242 AAS COUNCIL J. Craig Wheeler Univ. of Texas President (6/2006-6/2008) John P. Huchra Harvard-Smithsonian, President-Elect CfA (6/2007-6/2008) Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) Robert W. O’Connell Univ. of Virginia Vice-President (6/2006-6/2009) Lee W. Hartman Univ. of Michigan Vice-President (6/2007-6/2010) John Graham CIW Secretary (6/2004-6/2010) OFFICERS Hervey (Peter) STScI Treasurer Stockman (6/2005-6/2008) Timothy F. Slater Univ. of Arizona Education Officer (6/2006-6/2009) Mike A’Hearn Univ. of Maryland Pub. Board Chair (6/2005-6/2008) Kevin Marvel AAS Executive Officer (6/2006-Present) Gary J. Ferland Univ. of Kentucky (6/2007-6/2008) Suzanne Hawley Univ.
    [Show full text]