An Anthropoid-Specific Segmental Duplication on Human Chromosome 1Q22
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Author Version (PDF)
Molecular BioSystems Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/molecularbiosystems Page 1 of 29 Molecular BioSystems Mutated Genes and Driver Pathways Involved in Myelodysplastic Syndromes—A Transcriptome Sequencing Based Approach Liang Liu1*, Hongyan Wang1*, Jianguo Wen2*, Chih-En Tseng2,3*, Youli Zu2, Chung-che Chang4§, Xiaobo Zhou1§ 1 Center for Bioinformatics and Systems Biology, Division of Radiologic Sciences, Wake Forest University Baptist Medical Center, Winston-Salem, NC 27157, USA. 2 Department of Pathology, the Methodist Hospital Research Institute, -
Mitoxplorer, a Visual Data Mining Platform To
mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, Cecilia Garcia-Perez, José Villaveces, Salma Gamal, Giovanni Cardone, Fabiana Perocchi, et al. To cite this version: Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, et al.. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dy- namics and mutations. Nucleic Acids Research, Oxford University Press, 2020, 10.1093/nar/gkz1128. hal-02394433 HAL Id: hal-02394433 https://hal-amu.archives-ouvertes.fr/hal-02394433 Submitted on 4 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz1128 Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz1128/5651332 by Bibliothèque de l'université la Méditerranée user on 04 December 2019 mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim1,†, Prasanna Koti1,†, Adrien Bonnard2, Fabio Marchiano3, Milena Durrbaum¨ 1, Cecilia Garcia-Perez4, Jose Villaveces1, Salma Gamal1, Giovanni Cardone1, Fabiana Perocchi4, Zuzana Storchova1,5 and Bianca H. -
Newly Identified Gon4l/Udu-Interacting Proteins
www.nature.com/scientificreports OPEN Newly identifed Gon4l/ Udu‑interacting proteins implicate novel functions Su‑Mei Tsai1, Kuo‑Chang Chu1 & Yun‑Jin Jiang1,2,3,4,5* Mutations of the Gon4l/udu gene in diferent organisms give rise to diverse phenotypes. Although the efects of Gon4l/Udu in transcriptional regulation have been demonstrated, they cannot solely explain the observed characteristics among species. To further understand the function of Gon4l/Udu, we used yeast two‑hybrid (Y2H) screening to identify interacting proteins in zebrafsh and mouse systems, confrmed the interactions by co‑immunoprecipitation assay, and found four novel Gon4l‑interacting proteins: BRCA1 associated protein‑1 (Bap1), DNA methyltransferase 1 (Dnmt1), Tho complex 1 (Thoc1, also known as Tho1 or HPR1), and Cryptochrome circadian regulator 3a (Cry3a). Furthermore, all known Gon4l/Udu‑interacting proteins—as found in this study, in previous reports, and in online resources—were investigated by Phenotype Enrichment Analysis. The most enriched phenotypes identifed include increased embryonic tissue cell apoptosis, embryonic lethality, increased T cell derived lymphoma incidence, decreased cell proliferation, chromosome instability, and abnormal dopamine level, characteristics that largely resemble those observed in reported Gon4l/udu mutant animals. Similar to the expression pattern of udu, those of bap1, dnmt1, thoc1, and cry3a are also found in the brain region and other tissues. Thus, these fndings indicate novel mechanisms of Gon4l/ Udu in regulating CpG methylation, histone expression/modifcation, DNA repair/genomic stability, and RNA binding/processing/export. Gon4l is a nuclear protein conserved among species. Animal models from invertebrates to vertebrates have shown that the protein Gon4-like (Gon4l) is essential for regulating cell proliferation and diferentiation. -
Identification of Hub Genes Associated with Prognosis, Diagnosis, Immune
Lei et al. Human Genomics (2021) 15:39 https://doi.org/10.1186/s40246-021-00341-4 PRIMARY RESEARCH Open Access Identification of hub genes associated with prognosis, diagnosis, immune infiltration and therapeutic drug in liver cancer by integrated analysis Xinyi Lei1, Miao Zhang2, Bingsheng Guan1, Qiang Chen3, Zhiyong Dong1* and Cunchuan Wang1* Abstract Background: Liver cancer is one of the most common cancers and causes of cancer death worldwide. The objective was to elucidate novel hub genes which were benefit for diagnosis, prognosis, and targeted therapy in liver cancer via integrated analysis. Methods: GSE84402, GSE101685, and GSE112791 were filtered from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified by using the GEO2R. The GO and KEGG pathway of DEGs were analyzed in the DAVID. PPI and TF network of the DEGs were constructed by using the STRING, TRANSFAC, and Harmonizome. The relationship between hub genes and prognoses in liver cancer was analyzed in UALCAN based on The Cancer Genome Atlas (TCGA). The diagnostic value of hub genes was evaluated by ROC. The relationship between hub genes and tumor-infiltrate lymphocytes was analyzed in TIMER. The protein levels of hub genes were verified in HPA. The interaction between the hub genes and the drug were identified in DGIdb. Results: In total, 108 upregulated and 60 downregulated DEGs were enriched in 148 GO terms and 20 KEGG pathways. The mRNA levels and protein levels of CDK1, HMMR, PTTG1, and TTK were higher in liver cancer tissues compared to normal tissues, which showed excellent diagnostic and prognostic value. CDK1, HMMR, PTTG1, and TTK were positively correlated with tumor-infiltrate lymphocytes, which might involve tumor immune response. -
Novel Biallelic Variants in MSTO1 Associated with Mitochondrial Myopathy
Downloaded from molecularcasestudies.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Novel biallelic variants in MSTO1 associated with mitochondrial myopathy 2 3 Laura Schultz-Rogers1, Alejandro Ferrer1, Nikita R. Dsouza2, Michael T. Zimmermann2,3, Benn 4 E. Smith4, Eric W. Klee1,5, Radhika Dhamija6 5 6 1Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905 USA 7 2Bioinformatics Research and Development Laboratory, Genomics Sciences and Precision 8 Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA 9 3Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI 10 53226, USA 11 4Department of Neurology, Mayo Clinic, Scottsdale, AZ, 85259 USA 12 5Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905 USA 13 6Department of Medical Genetics, Mayo Clinic, Phoenix, AZ, 85054 USA 14 Corresponding author’s email: [email protected] 15 16 HPO TERMS: 17 Hypotonia, early HP:0008947; Restrictive lung disease HP:0002091; Elevated creatine kinase 18 HP:0003236; Delayed gross motor development HP:0002194; Speech articulation difficulties 19 HP:0009088; Dysphagia HP:0002015; Waddling gait HP:0002515; Pectus excavatum 20 HP:0000767; Lumbar kyphosis HP:0008454; EMG: myopathic abnormalities HP:0003458 21 22 SHORT RUNNING TITLE: Novel biallelic variants in MSTO1 myopathy 23 24 25 26 Downloaded from molecularcasestudies.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press 27 ABSTRACT 28 Mitochondrial disorders are caused by nuclear and mitochondrial pathogenic variants 29 leading to defects in mitochondrial function and cellular respiration. Recently, the nuclear- 30 encoded mitochondrial fusion gene MSTO1 (Misato 1) has been implicated in mitochondrial 31 myopathy and ataxia. -
The Chromatin Factor Gon4l Regulates Embryonic Axis Extension by Promoting Mediolateral Cell Polarity and Notochord Boundary
bioRxiv preprint doi: https://doi.org/10.1101/154310; this version posted June 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 The chromatin factor Gon4l regulates embryonic axis extension by promoting mediolateral cell polarity 2 and notochord boundary formation through negative regulation of cell adhesion 3 4 Margot L K Williams1, Atsushi Sawada1,2, Terin Budine1, Chunyue Yin2,3, Paul Gontarz1, and Lilianna Solnica- 5 Krezel1,2* 6 7 1Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, 8 USA. 9 2Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA 10 3Current address: Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s 11 Hospital, Cincinnati, OH 45229, USA. 12 13 Anteroposterior axis extension during vertebrate gastrulation requires cell proliferation, embryonic 14 patterning, and morphogenesis to be spatiotemporally coordinated, but the underlying genetic 15 mechanisms remain poorly understood. Here we define a role for the conserved chromatin factor 16 Gon4l, encoded by ugly duckling (udu), in coordinating tissue patterning and axis extension during 17 zebrafish gastrulation. Although identified as a recessive enhancer of short axis phenotypes in planar 18 cell polarity (PCP) mutants, we found that Gon4l functions in a genetically independent, partially 19 overlapping fashion with PCP signaling to regulate mediolateral cell polarity underlying axis extension 20 in part by promoting notochord boundary formation. We identified direct genomic targets of Gon4l and 21 found that it acts as both a positive and negative regulator of gene expression, including limiting 22 expression of the cell-cell and cell-matrix adhesion molecules EpCAM and Integrinα3b. -
WO 2013/064702 A2 10 May 2013 (10.05.2013) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/064702 A2 10 May 2013 (10.05.2013) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12Q 1/68 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/EP2012/071868 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 5 November 20 12 (05 .11.20 12) NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (25) Filing Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (26) Publication Language: English ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 1118985.9 3 November 201 1 (03. 11.201 1) GB kind of regional protection available): ARIPO (BW, GH, 13/339,63 1 29 December 201 1 (29. 12.201 1) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: DIAGENIC ASA [NO/NO]; Grenseveien 92, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, N-0663 Oslo (NO). -
Whole Genome Sequencing Reveals a Frameshift Mutation and a Large
Raggio et al. Human Genomics (2021) 15:28 https://doi.org/10.1186/s40246-021-00328-1 PRIMARY RESEARCH Open Access Whole genome sequencing reveals a frameshift mutation and a large deletion in YY1AP1 in a girl with a panvascular artery disease Víctor Raggio1, Nicolas Dell’Oca1, Camila Simoes2, Alejandra Tapié1, Conrado Medici3, Gonzalo Costa3, Soledad Rodriguez1, Gonzalo Greif4, Estefania Garrone5, María Laura Rovella5, Virgina Gonzalez5, Margarita Halty6, Gabriel González3, Jong-Yeon Shin7, Sang-Yoon Shin7, Changhoon Kim8, Jeong-Sun Seo7,9, Martin Graña2, Hugo Naya2,10 and Lucia Spangenberg2,11* Abstract Background: Rare diseases are pathologies that affect less than 1 in 2000 people. They are difficult to diagnose due to their low frequency and their often highly heterogeneous symptoms. Rare diseases have in general a high impact on the quality of life and life expectancy of patients, which are in general children or young people. The advent of high-throughput sequencing techniques has improved diagnosis in several different areas, from pediatrics, achieving a diagnostic rate of 41% with whole genome sequencing (WGS) and 36% with whole exome sequencing, to neurology, achieving a diagnostic rate between 47 and 48.5% with WGS. This evidence has encouraged our group to pursue a molecular diagnosis using WGS for this and several other patients with rare diseases. Results: We used whole genome sequencing to achieve a molecular diagnosis of a 7-year-old girl with a severe panvascular artery disease that remained for several years undiagnosed. We found a frameshift variant in one copy and a large deletion involving two exons in the other copy of a gene called YY1AP1. -
Multi-Cancer Molecular Signatures and Their Interrelationships
Multi-cancer molecular signatures and their interrelationships Wei-Yi Cheng1, Tai-Hsien Ou Yang1, Hui Shen2, Peter W. Laird2, Dimitris Anastassiou1 and the Cancer Genome Atlas Research Network 1Columbia Initiative in Systems Biology and Department of Electrical Engineering, Columbia University, New York, NY, USA 2USC Epigenome Center, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Corresponding Author Dimitris Anastassiou, Columbia Initiative in Systems Biology and Department of Electrical Engineering, Columbia University, 1312S.W.Mudd Building, – Mail Code 4712, 500 West 120th Street, USA. Phone:+1212854-3113; E-mail: [email protected] This is version 2. A previous version of the same article appears at http://arxiv.org/pdf/1306.2584v1.pdf dated June 11, 2013. Please note: The pan-cancer molecular signatures disclosed in this article are the results of applying our data mining algorithm to the rich TCGA “pancan12” data sets from twelve different cancer types. These signatures have been identified as patterns, without any indication about their arXiv:1306.2584v2 [q-bio.QM] 11 Jul 2013 role or potential usefulness. We believe that each of them represents an important biomolecular event in cancer. We invite the cancer research community to contact us and help us interpret each of these pan-cancer signatures, and to investigate them for potential applications in diagnostic, prognostic and therapeutic products applicable to multiple cancer types. There will be additional versions of this article and we expect that the final version will contain many co-authors. 1 Although cancer is known to be characterized by several unifying biological hallmarks, systems biology has had limited success in identifying molecular signatures present in in all types of cancer. -
A Study of Alterations in DNA Epigenetic Modifications (5Mc and 5Hmc) and Gene Expression Influenced by Simulated Microgravity I
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Genome Informatics Facility Publications Genome Informatics Facility 1-28-2016 A Study of Alterations in DNA Epigenetic Modifications (5mC and 5hmC) and Gene Expression Influenced by Simulated Microgravity in Human Lymphoblastoid Cells Basudev Chowdhury Purdue University Arun S. Seetharam Iowa State University, [email protected] Zhiping Wang Indiana University School of Medicine Yunlong Liu Indiana University School of Medicine Amy C. Lossie Purdue University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/genomeinformatics_pubs Part of the Bioinformatics Commons, Genetics Commons, and the Genomics Commons Recommended Citation Chowdhury, Basudev; Seetharam, Arun S.; Wang, Zhiping; Liu, Yunlong; Lossie, Amy C.; Thimmapuram, Jyothi; and Irudayaraj, Joseph, "A Study of Alterations in DNA Epigenetic Modifications (5mC and 5hmC) and Gene Expression Influenced by Simulated Microgravity in Human Lymphoblastoid Cells" (2016). Genome Informatics Facility Publications. 4. https://lib.dr.iastate.edu/genomeinformatics_pubs/4 This Article is brought to you for free and open access by the Genome Informatics Facility at Iowa State University Digital Repository. It has been accepted for inclusion in Genome Informatics Facility Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A Study of Alterations in DNA Epigenetic Modifications (5mC and 5hmC) and Gene Expression Influenced by Simulated Microgravity in Human Lymphoblastoid Cells Abstract Cells alter their gene expression in response to exposure to various environmental changes. Epigenetic mechanisms such as DNA methylation are believed to regulate the alterations in gene expression patterns. -
Novel Biallelic Variants in MSTO1 Associated with Mitochondrial Myopathy
COLD SPRING HARBOR Molecular Case Studies | RESEARCH REPORT Novel biallelic variants in MSTO1 associated with mitochondrial myopathy Laura Schultz-Rogers,1 Alejandro Ferrer,1 Nikita R. Dsouza,2 Michael T. Zimmermann,2,3 Benn E. Smith,4 Eric W. Klee,1,5 and Radhika Dhamija6 1Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA; 2Bioinformatics Research and Development Laboratory, Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; 3Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; 4Department of Neurology, Mayo Clinic, Scottsdale, Arizona 85259, USA; 5Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA; 6Department of Medical Genetics, Mayo Clinic, Phoenix, Arizona 85054, USA Abstract Mitochondrial disorders are caused by nuclear and mitochondrial pathogenic variants leading to defects in mitochondrial function and cellular respiration. Recently, the nuclear-encoded mitochondrial fusion gene MSTO1 (Misato 1) has been implicated in mitochondrial myopathy and ataxia. Here we report on a 30-yr-old man presenting with a maternally inherited NM_018116.3:c.651C>G, p.F217L missense variant as well as a paternally inherited arr[GRCh37] 1q22(155581773_155706887) × 1 deletion encompass- ing exons 7–14 of MSTO1. His phenotype included muscle weakness, hypotonia, early mo- tor developmental delay, pectus excavatum, and scoliosis. Testing revealed elevated Corresponding author: plasma creatine kinase, and electromyogram results were consistent with longstanding [email protected] generalized myopathy. These phenotypic features overlap well with previously reported pa- tients harboring biallelic MSTO1 variants. Additionally, our patient presents with dysphagia © 2019 Schultz-Rogers et al. This and restrictive lung disease, not previously reported for MSTO1-associated disorders. -
Single-Cell Genomics
Single-Cell Genomics Exploring new applications in microfluidics Mark Lynch April 10, 2019 Agenda 1. Microfluidics solutions for single-cell analysis 2. Single-cell total RNA sequencing 3. Single-cell high-throughput (HT) RNA expression and protein sequencing (REAP-seq) 4. Creating single-cell microenvironments 2 Microfluidic solutions for single-cell analysis Cellular analysis cell by cell The single-cell revolution is only beginning Science special issue, A Fantastic Voyage in Science, 2018 Breakthrough of the Year, Genomics, 2017 published in December 4 Driving those advances are techniques for isolating thousands of intact cells from living organisms, efficiently sequencing expressed genetic material in each cell and using computers, or labeling the cells, to reconstruct their relationships in space and time. That technical trifecta ‘will transform the next decade of research,’ says Nikolaus Rajewsky, a systems biologist at the Max Delbrück Center for Molecular Medicine in Berlin. —Elizabeth Pennisi, writing in ‘Science’ about the 2018 Breakthrough of the Year 5 Creating a cell atlas The only way to identify and understand all cells in a tissue Three cell-based approaches: 1. Classification 2. Characterization 3. Context 6 The benefit Individual cells behave differently from the average of many cells Modified from Dominguez et al. Journal of Immunological Methods (2014) 7 Cell characterization Deep profiling of cells to study multiple modes Stuart and Satija. Nature Reviews Genetics (2019) 8 Microfluidics Integrated fluidic circuit