Trna Subcellular Dynamics Dictates Modification and Nutrient Sensing

Total Page:16

File Type:pdf, Size:1020Kb

Trna Subcellular Dynamics Dictates Modification and Nutrient Sensing tRNA subcellular dynamics dictates modification and nutrient sensing DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alan Christopher Kessler Graduate Program in Microbiology The Ohio State University 2018 Dissertation Committee: Dr. Juan D. Alfonzo, Advisor Dr. Jane E. Jackman Dr. Charles Daniels Dr. Patrice Hamel Copyright by Alan C. Kessler 2018 Abstract In all eukaryotes, tRNAs are transcribed in the nucleus and then exported to the cytoplasm to engage in protein synthesis. However, previous work in Saccharomyces cerevisiae showed that tRNAs can also be sent back to the nucleus, and intracellular transport can be altered in response to starvation, leading to nuclear accumulation of tRNA. At least in one case, retrograde nuclear transport from the cytoplasm is necessary for wybutosine formation in tRNAPhe. Despite the fact that retrograde transport has been firmly established in yeast, it has been difficult to assess whether such a mechanism has a broader evolutionary distribution in eukaryotes. In the first part of this dissertation, I examined the post-transcriptional modification Queuosine (Q), and its relationship to retrograde transport in Trypanosoma brucei. Q is found at the first position of the anticodon in several tRNAs (tRNATyr, tRNAAsp, tRNAAsn and tRNAHis) and is presumably important for protein synthesis, although its function is not yet fully understood. Eukaryotes cannot synthesize Q and must rely on uptake and salvage of the free base from either nutrients or from gut microbiota. Following uptake, the enzyme tRNA guanine-transglycosylase (TGT) is responsible for the incorporation of queuine into tRNA by replacing guanine. In this work I show that T. brucei’s TGT (TbTGT) is a nuclear enzyme essential for Q formation in tRNA. One of its natural substrates, tRNATyr, also contains an intron, which must be removed prior to Q formation. In the present work, I show that because essential components of the ii splicing machinery are cytoplasmic, there is a dynamic interplay between tRNA splicing and modifications, all driven by the intracellular distribution of the different maturation components. Taken together, I demonstrate the existence of a tRNA nuclear retrograde transport pathway in T. brucei akin to what has been described in yeast, but with implications for other eukaryotic systems. The latter half of the dissertation examines Q and its potential involvement in nutrient sensing in T. brucei. As T. brucei transitions from the procyclic insect stage, to the mammalian bloodstream stage, metabolic reprograming occurs, with concomitant changes in the expression of stage specific genes. Additionally, in T. brucei gene regulation occurs post-transcriptionally. Because of this, post- transcriptional modifications may play critical roles in regulating gene expression. Here I show that Q modification levels change between the procyclic and bloodstream developmental stages of the parasite. Q levels also fluctuate in response to changes in the availability of a subset of amino acids. These findings have implications for how organisms may use modifications to sense nutrient availability and adjust translational rates accordingly. iii Dedication I would like to dedicate this work to my loving mother Judy Kessler. Without her guidance and unwavering support, none of this would have been possible. iv Acknowledgments It would be impossible to acknowledge everyone who had a positive impact on my professional development during graduate school. First off, I would like to thank Dr. Juan Alfonzo and Dr. Mary Anne Rubio. They have both created an environment that has been challenging yet rewarding in all its aspects. From the interesting RNA topics, to the numerous political conversations we have had, it has all been intellectual and enjoyable. I appreciate all the jokes over the years which made failed experiments and mistakes seem light hearted and easier to deal with. The lab could not be described without the different friends that I have grown accustomed to over the years. One of my best friends in the lab, Katie McKenney, has been there for me throughout all the ups and downs experienced throughout graduate school. I appreciate all the moments she helped me with experiments, as well as her unwavering positive outlook. I would next like to thank Dr. Ian Fleming for his guidance and friendship. I will never be able to “pay the bills” as he once put it, but I am thankful for all his assistance in the lab and for “voting to allow me to say on that side of the lab.” There were also many others in the lab over the years which I have fond memories with including Dr. Zdeněk Paris, Dr. Paul Sample, Dr. Raphael Sores, Scott Hinger, Caitlin Moore, Gabriel d’Almeida. None of this would have been possible without the love and support that my family and friends have given me over the years. My mother Judy Kessler, has always encouraged me to find the right path in my life. She has been full of advice v and above all, helped me succeed in nearly every way imaginable. I was fortunate to have Michelle Gibbs always around through most of my graduate schooling. She has been caring, thoughtful, and made the experience more enjoyable. I would also like to mention my late father Christopher Kessler who has been a major source of inspiration throughout my life and late grandmother Adeline Kessler, who always encouraged me to never stop learning. vi Vita 2008 ....................................................... Kane Area High School 2012 ....................................................... B.S. Biology, Indiana University of PA 2012 to present ....................................... Graduate Teaching/Research Associate, Department of Microbiology, The Ohio State University Publications Kessler AC, Kulkarni SS, Paulines MJ, Rubio MAT, Limbach PA, Paris Z, Alfonzo JD. Retrograde nuclear transport from the cytoplasm is required for tRNATyr maturation in T. brucei. RNA Biology. 2017. Sep 13:1-9. ahead of print. Kessler AC, d’Almeida GS, Alfonzo JD. The role of intracellular compartmentalization on tRNA processing and modification. RNA Biology. 2017. Aug 29:1-13. ahead of print. Lopes RR, Silveria Gde O, Eitler R, Vidal RS, Kessler A, Hinger S, Paris Z, Alfonzo JD, Polycarpo C. The essential function of the trypanosoma brucei Trl1 homolog in procyclic cells is maturation of the intron-containing tRNATyr. RNA. 2016. 22(8):1190-9. Lopes RR, Kessler AC, Polycarpo C, Alfonzo JD. Cutting, dicing, healing and sealing: The molecular surgery of tRNA. Wiley Interdiscip. Rev. RNA. 2015. 6(3):337-49. Fields of Study Major Field: Microbiology vii Table of Contents Abstract ............................................................................................................. ii Acknowledgments ............................................................................................. v Vita ................................................................................................................... vii Publications ...................................................................................................... vii Fields of Study ................................................................................................. vii Table of Contents ............................................................................................ viii List of Tables .................................................................................................... xii List of Figures ................................................................................................... xii Chapter 1 : Introduction ..................................................................................... 1 1.1 A brief Introduction to Trypanosoma brucei ................................................. 1 1.2 Gene regulation in T. brucei ........................................................................ 4 1.3 Transfer RNA .............................................................................................. 6 1.4 Role of compartmentalization on tRNA processing and modification ........ 10 1.4.1 Functionality checkpoints: Early steps in tRNA maturation in eukaryotes ..................................................................................................................... 16 1.4.2 The cytosolic fate of tRNA modifications ............................................. 22 1.4.3 The connection between tRNA splicing and modifications .................. 25 viii 1.4.4 Intracellular transport dynamics that set the order of modifications .... 31 1.4.5 Modifications and the Mitochondria ..................................................... 39 1.5 The Queuosine Modification ...................................................................... 46 1.5.1 The Queuosine Pathways of Bacteria and Eukarya ............................ 47 1.5.2 TGT in Bacteria and Eukarya .............................................................. 50 1.5.3 The Biological Role of Q ..................................................................... 52 Chapter 2 : Retrograde transport is required for tRNA maturation in T. brucei ........................................................................................ 56 2.1 Introduction ............................................................................................... 57 2.2 Results ...................................................................................................... 60 2.2.1
Recommended publications
  • (12) United States Patent (10) Patent No.: US 6,822,071 B1 Stephens Et Al
    USOO6822071B1 (12) United States Patent (10) Patent No.: US 6,822,071 B1 Stephens et al. (45) Date of Patent: Nov. 23, 2004 (54) POLYPEPTIDES FROM CHLAMYDIA (56) References Cited PNEUMONIAE AND THEIR USE IN THE DIAGNOSIS, PREVENTION AND FOREIGN PATENT DOCUMENTS TREATMENT OF DISEASE WO 99/27105 * 6/1999 (75) Inventors: Richard S. Stephens, Orinda, CA (US); OTHER PUBLICATIONS Wayne Mitchell, San Francsico, CA Gerhold et al-BioEssays 18(12):973-981, 1996.* (US); Sue S. Kalman, Saratoga, CA Wells et al Journal of Leukocyte Biology 61(5):545-550, (US); Ronald Davis, Palo Alto, CA 1997.* (US) Russell et al Journal of Molecular Biology 244:33-350, 1994.* (73) Assignee: The Regents of the University of Rudinger et al., in “Peptide Hormones' Parsons, TA ets, California, Oakland, CA (US) University Park Press pp. 1–6, 1976.* Burgess et al, The Journal of Cell Biology, 111:2129-2138, Notice: Subject to any disclaimer, the term of this 1990.* patent is extended or adjusted under 35 Lazar et al, Molecular and Cellular Biology U.S.C. 154(b) by 0 days. 8(3):1247–1252, 1988.* Jobling et al, Mol-Microbiol. 5(7): 1755–67, 1991.* (21) Appl. No.: 09/438,185 Pir-68 Database Accession No. E72002 Kalmar et al. Apr. (22) Filed: Nov. 11, 1999 23, 1999.* (Under 37 CFR 1.47) * cited by examiner Primary Examiner Patricia A. Duffy Related U.S. Application Data (74) Attorney, Agent, or Firm Townsend and Townsend (60) Provisional application No. 60/128,606, filed on Apr. 8, and Crew 1999, and provisional application No.
    [Show full text]
  • Prolonging Healthy Aging: Longevity Vitamins and Proteins PERSPECTIVE Bruce N
    PERSPECTIVE Prolonging healthy aging: Longevity vitamins and proteins PERSPECTIVE Bruce N. Amesa,1 Edited by Cynthia Kenyon, Calico Labs, San Francisco, CA, and approved September 13, 2018 (received for review May 30, 2018) It is proposed that proteins/enzymes be classified into two classes according to their essentiality for immediate survival/reproduction and their function in long-term health: that is, survival proteins versus longevity proteins. As proposed by the triage theory, a modest deficiency of one of the nutrients/cofactors triggers a built-in rationing mechanism that favors the proteins needed for immediate survival and reproduction (survival proteins) while sacrificing those needed to protect against future damage (longevity proteins). Impairment of the function of longevity proteins results in an insidious acceleration of the risk of diseases associated with aging. I also propose that nutrients required for the function of longevity proteins constitute a class of vitamins that are here named “longevity vitamins.” I suggest that many such nutrients play a dual role for both survival and longevity. The evidence for classifying taurine as a conditional vitamin, and the following 10 compounds as putative longevity vitamins, is reviewed: the fungal antioxidant ergo- thioneine; the bacterial metabolites pyrroloquinoline quinone (PQQ) and queuine; and the plant antioxidant carotenoids lutein, zeaxanthin, lycopene, α-andβ-carotene, β-cryptoxanthin, and the marine carotenoid astaxanthin. Because nutrient deficiencies are highly prevalent in the United States (and elsewhere), appro- priate supplementation and/or an improved diet could reduce much of the consequent risk of chronic disease and premature aging. vitamins | essential minerals | aging | nutrition I propose that an optimal level of many of the known adverse health effects.
    [Show full text]
  • Preferential Import of Queuosine-Modified Trnas Into
    Published online 9 July 2021 Nucleic Acids Research, 2021, Vol. 49, No. 14 8247–8260 https://doi.org/10.1093/nar/gkab567 Preferential import of queuosine-modified tRNAs into Trypanosoma brucei mitochondrion is critical for organellar protein synthesis Sneha Kulkarni1,2, Mary Anne T. Rubio1,3,EvaHegedusov˝ a´ 1, Robert L. Ross4, Patrick A. Limbach 5, Juan D. Alfonzo3 and Zdenekˇ Paris 1,2,* 1Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceskˇ eBud´ ejovice,ˇ Czech Republic, 2Faculty 3 of Science, University of South Bohemia, Ceskˇ eBud´ ejovice,ˇ Czech Republic, Department of Microbiology and The Downloaded from https://academic.oup.com/nar/article/49/14/8247/6318497 by guest on 01 October 2021 Center for RNA Biology, The Ohio State University, Columbus, OH, USA, 4Metabolomics Mass Spectrometry Core, Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA and 5Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA Received November 30, 2020; Revised May 28, 2021; Editorial Decision June 13, 2021; Accepted June 21, 2021 ABSTRACT sine (Q), a hypermodified 7-deaza-guanosine, is one of the most chemically intricate modifications described to date. Transfer RNAs (tRNAs) are key players in protein syn- Q is found at the wobble position 34 of tRNAs that contain thesis. To be fully active, tRNAs undergo extensive a5-GUN-3 anticodon sequence, where N represents any post-transcriptional modifications, including queuo- of the canonical nucleotides, which includes tRNAHisGUG, sine (Q), a hypermodified 7-deaza-guanosine present tRNAAspGUC, tRNAAsnGUU, tRNATyr GUA (3). Q is in the anticodon of several tRNAs in bacteria and eu- found in both bacteria and eukarya, and catalyzed by tRNA karya.
    [Show full text]
  • Discovery of Novel Bacterial Queuine Salvage Enzymes and Pathways in Human Pathogens
    Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens a,1 b,1 c,1 b d a Yifeng Yuan , Rémi Zallot , Tyler L. Grove , Daniel J. Payan , Isabelle Martin-Verstraete , Sara Sepic´ , Seetharamsingh Balamkundue, Ramesh Neelakandane, Vinod K. Gadie, Chuan-Fa Liue, Manal A. Swairjof,g, Peter C. Dedone,h,i, Steven C. Almoc, John A. Gerltb,j,k, and Valérie de Crécy-Lagarda,l,2 aDepartment of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611; bInstitute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; cDepartment of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461; dLaboratoire de Pathogénèse des Bactéries Anaérobies, Institut Pasteur et Université de Paris, F-75015 Paris, France; eSingapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, 138602 Singapore, Singapore; fDepartment of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182; gThe Viral Information Institute, San Diego State University, San Diego, CA 92182; hDepartment of Biological Engineering and Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; iCenter for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; jDepartment of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801; kDepartment of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and lUniversity of Florida Genetics Institute, Gainesville, FL 32610 Edited by Tina M. Henkin, The Ohio State University, Columbus, OH, and approved August 1, 2019 (received for review June 16, 2019) Queuosine (Q) is a complex tRNA modification widespread in 1A. The TGT enzyme, which is responsible for the base ex- eukaryotes and bacteria that contributes to the efficiency and accuracy change, is the signature enzyme in the Q biosynthesis pathway.
    [Show full text]
  • Us 2018 / 0353618 A1
    US 20180353618A1 ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 /0353618 A1 Burkhardt et al. (43 ) Pub . Date : Dec . 13 , 2018 (54 ) HETEROLOGOUS UTR SEQUENCES FOR Publication Classification ENHANCED MRNA EXPRESSION (51 ) Int. Cl. A61K 48 / 00 ( 2006 .01 ) (71 ) Applicant : Moderna TX , Inc ., Cambridge , MA C12N 15 / 10 (2006 .01 ) (US ) C12N 15 /67 ( 2006 .01 ) (72 ) Inventors : David H . Burkhardt , Somerville , MA A61K 31 / 7115 ( 2006 .01 ) (US ) ; Romesh R . Subramanian , A61K 31 /712 ( 2006 .01 ) A61K 31 / 7125 (2006 . 01 ) Framingham , MA (US ) ; Christian A61P 1 / 16 ( 2006 .01 ) Cobaugh , Newton Highlands , MA (US ) A61P 31/ 14 (2006 .01 ) (52 ) U . S . CI. (73 ) Assignee : Moderna TX , Inc. , Cambridge , MA CPC . .. A61K 48 /0058 ( 2013 .01 ) ; C12N 15 / 1086 (US ) ( 2013 . 01 ) ; A61K 48 / 0066 ( 2013 .01 ) ; C12N 15 /67 ( 2013 .01 ) ; A61P 31 / 14 ( 2018 . 01 ) ; A61K ( 21 ) Appl . No . : 15 / 781, 827 31/ 712 (2013 .01 ) ; A61K 31/ 7125 ( 2013 .01 ) ; A61P 1 / 16 ( 2018 .01 ) ; A61K 31/ 7115 ( 22 ) PCT Filed : Dec . 9 , 2016 ( 2013 .01 ) ( 86 ) PCT No. : PCT/ US2016 / 065796 (57 ) ABSTRACT $ 371 ( c ) ( 1 ) , mRNAs containing an exogenous open reading frame (ORF ) ( 2 ) Date : flanked by a 5 ' untranslated region (UTR ) and a 3 ' UTR is Jun . 6 , 2018 provided , wherein the 5 ' and 3 ' UTRs are derived from a naturally abundant mRNA in a tissue . Also provided are Related U . S . Application Data methods for identifying the 5 ' and 3 ' UTRs, and methods for (60 ) Provisional application No . 62 / 265 , 233 , filed on Dec. making and using the mRNAs .
    [Show full text]
  • Synthesis of Tritium Labeled Queuine, Preq1 and Related Azide Probes Toward Examining the Prevalence of Queuine
    Synthesis of Tritium Labeled Queuine, PreQ1 and Related Azide Probes Toward Examining the Prevalence of Queuine by Allen F. Brooks A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Medicinal Chemistry) in the University of Michigan 2012 Doctoral Committee: Research Professor Hollis D. Showalter, Co-Chair Associate Professor George A. Garcia, Co-Chair Professor Hashim M. Al-Hashimi Assistant Professor Garry D. Dotson Assistant Professor Matthew B. Soellner © Allen F. Brooks 2012 In memory of Edward and Lillian Pederson ii Acknowledgements With my remaining time short, it is appropriate to look back and thank those that supported me in my dissertation work either professionally or as a friend. First and foremost, I have to acknowledge my best friend from the program, Adam Lee. If it was not for the trip to the ACS meeting in Chicago, Adam and I likely would have never got to know each other. Luckily, fate arranged such an occurrence. If not for Adam’s friendship and the support of some others, I likely would have left the program in my second year. I also have to thank Jason Witek, an undergraduate who worked in the Showalter lab. We actually met during the Organic Mechanisms course, as he was in an academic program of his own design. The time we worked together in the lab was a productive one, and interestingly an amusing time as well. I also have to thank several other associates for their help in progressing my research as well as making time here more pleasant, those individuals being: Dr.
    [Show full text]
  • Queuine, a Bacterial Derived Hypermodified Nucleobase, Shows Protection in in Vitro Models of Neurodegeneration
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427538; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Queuine, a bacterial derived hypermodified nucleobase, shows protection in in vitro models of neurodegeneration Patricia Richard1*, Xavier Manière2*, Lucie Kozlowski2, Hélène Guillorit2,3, Patrice Garnier2, Antoine Danchin4, Nicole C. McKnight1** 1 Stellate Therapeutics Inc., 101 Avenue of the Americas, JLABS @ NYC, New York, NY 10013 2 Stellate Therapeutics SAS, 47 rue de Montmorency, 75003, Paris, France 3 Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier, France 4 Kodikos Labs, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France ** corresponding author Email: [email protected] * These authors contributed equally to this work 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427538; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Growing evidence suggests that human gut bacteria, comprising the microbiome that communicates with the brain through the so-called ‘gut-brain-axis’, are linked to neurodegener- ative disorders. Imbalances in the microbiome of Parkinson’s disease (PD) and Alzheimer’s dis- ease (AD) patients have been detected in several studies. Queuine is a hypermodified nucleobase enriched in the brain and exclusively produced by bacteria and salvaged by humans through their gut epithelium. Queuine replaces guanine at the wobble position of tRNAs with GUN anticodons and promotes efficient cytoplasmic and mitochondrial mRNA translation.
    [Show full text]
  • Deficiency of Queuine, a Highly Modified Furine Base, in Transfer Rnas from Primary and Metastatic Ovarian Malignant Tumors in Women1
    [CANCER RESEARCH 54, 446X-4471. August 15, 19<M| Deficiency of Queuine, a Highly Modified Furine Base, in Transfer RNAs from Primary and Metastatic Ovarian Malignant Tumors in Women1 Wlodzimierz Baranowski,2 Guy Dirheimer, Jerzy Andrzej Jakowicki, and GérardKeith Second Clinic of Gynecological Surgery, Academy of Medicine, 8 Jaczewski Street, Lublin 20849. Poland fW. B., J. A. J.J, and Unité"Structure des Macromolécules Biologiques et Mécanismesde Reconnaissance, " Institut de Biologie Moléculaireet Cellulaire du CNRS, 15 rue RenéDescartes, Strasbourg 67084, France [G. D., G. K.] ABSTRACT queuine on their own despite its presence in their queuine family tRNAs. In mammals, queuine is provided by the intestinal flora or as The IUN As from rapidly growing tissues, particularly from neoplasia, a diet factor. Furthermore, in embryonic tissues and regenerating rat often exhibit queuine deficiency. In order to check whether different kinds liver (i.e., in rapidly growing tissues), the queuine family tRNAs are of ovarian tumors display queuine deficiencies we have analyzed tRNA partially queuine deficient (6, 9). Similar observations of queuine samples from 16 ovarian malignancies. The tRNAs from histologically normal myometrium (4 samples) and myoma (6 samples) were taken as deficiency have been made in queuine family tRNAs from placenta healthy tissue and benign tumor references. Queuine deficiency was de tissue despite the presence of a large amount of free queuine in the termined by an exchange assay using (8-'H]guanine and tRNA:guanine amniotic fluid (8, 10). It has in addition been observed that neoplastic transglycosylase from Escherìchiacoli. tissues very often exhibit significant deficiencies in the queuine con The mean values of queuine deficiencies in tRNAs were: 10.95 ±2.21 tent of queuine family tRNAs (9).
    [Show full text]
  • Expanding the Toolkit of Protein Engineering: Towards Multiple Simultaneous in Vivo Incorporation of Noncanonical Amino Acids
    TECHNISCHE UNIVERSITÄT MÜNCHEN Max-Planck-Institut für Biochemie Expanding the Toolkit of Protein Engineering: Towards Multiple Simultaneous In Vivo Incorporation of Noncanonical Amino Acids Michael G. Hösl Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Michael Groll Prüfer der Dissertation: 1. Univ.-Prof. Dr. Nediljko Budisa, Technische Universität Berlin 2. Univ.-Prof. Dr. Thomas Kiefhaber 3. Univ.-Prof. Dr. Johannes Buchner Die Dissertation wurde am 01.02.11 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 03.03.11 angenommen. To Teresa Ariadna García-Grajalva Lucas who influenced the idea of TAG → AGG switch just by the existence of her name Sleeping is giving in, no matter what the time is. Sleeping is giving in, so lift those heavy eyelids. People say that you'll die faster than without water. But we know it's just a lie, scare your son, scare your daughter. People say that your dreams are the only things that save ya. Come on baby in our dreams, we can live on misbehavior. The Arcade Fire Parts of this work were published as listed below: Hoesl, MG, Budisa, N. Expanding and engineering the genetic code in a single expression experiment. ChemBioChem 2011, 12, 552-555. Further publications: Hoesl, MG*, Staudt, H*, Dreuw, A, Budisa, N, Grininger, M, Oesterhelt, D, Wachtveitl, J. Manipulating the eletron transfer in Dodecin by isostructual noncanonical Trp analogs. 2011, [in preparation]. *authors contributed equally to this work Nehring, S*, Hoesl, MG*, Acevedo-Rocha, CG*, Royter, M, Wolschner, C, Wiltschi, B, Budisa, N, Antranikian, G.
    [Show full text]
  • Broad and Adaptable RNA Structure Recognition by the Human Interferon-Induced Tetratricopeptide Repeat Protein IFIT5
    Broad and adaptable RNA structure recognition by the human interferon-induced tetratricopeptide repeat protein IFIT5 George E. Katibaha, Yidan Qinb, David J. Sidoteb, Jun Yaob, Alan M. Lambowitzb,1, and Kathleen Collinsa,1 aDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; and bInstitute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712 Contributed by Alan M. Lambowitz, July 8, 2014 (sent for review April 29, 2014; reviewed by Sandra L. Wolin, Eric Phizicky, and Michael Gale, Jr.) Interferon (IFN) responses play key roles in cellular defense against copy numbers and combinations of four distinct IFIT proteins pathogens. Highly expressed IFN-induced proteins with tetratrico- (IFIT1, 2, 3, and 5) even within mammals, generated by paralog peptide repeats (IFITs) are proposed to function as RNA binding expansions and/or gene deletions, including the loss of IFIT5 in proteins, but the RNA binding and discrimination specificities of IFIT mice and rats (14). Human IFIT1, IFIT2, and IFIT3 coassemble proteins remain unclear. Here we show that human IFIT5 has in cells into poorly characterized multimeric complexes that ex- comparable affinity for RNAs with diverse phosphate-containing 5′- clude IFIT5 (15, 16). Recombinant IFIT family proteins range ends, excluding the higher eukaryotic mRNA cap. Systematic muta- from monomer to multimer, with crystal structures solved for genesis revealed that sequence substitutions in IFIT5 can alternatively a human IFIT2 homodimer (17), the human IFIT5 monomer expand or introduce bias in protein binding to RNAs with 5′ mono- (16, 18, 19), and an N-terminal fragment of human IFIT1 (18).
    [Show full text]
  • Genome-Wide Investigation of Cellular Functions for Trna Nucleus
    Genome-wide Investigation of Cellular Functions for tRNA Nucleus- Cytoplasm Trafficking in the Yeast Saccharomyces cerevisiae DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hui-Yi Chu Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2012 Dissertation Committee: Anita K. Hopper, Advisor Stephen Osmani Kurt Fredrick Jane Jackman Copyright by Hui-Yi Chu 2012 Abstract In eukaryotic cells tRNAs are transcribed in the nucleus and exported to the cytoplasm for their essential role in protein synthesis. This export event was thought to be unidirectional. Surprisingly, several lines of evidence showed that mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm and their distribution is nutrient-dependent. This newly discovered tRNA retrograde process is conserved from yeast to vertebrates. Although how exactly the tRNA nuclear-cytoplasmic trafficking is regulated is still under investigation, previous studies identified several transporters involved in tRNA subcellular dynamics. At least three members of the β-importin family function in tRNA nuclear-cytoplasmic intracellular movement: (1) Los1 functions in both the tRNA primary export and re-export processes; (2) Mtr10, directly or indirectly, is responsible for the constitutive retrograde import of cytoplasmic tRNA to the nucleus; (3) Msn5 functions solely in the re-export process. In this thesis I focus on the physiological role(s) of the tRNA nuclear retrograde pathway. One possibility is that nuclear accumulation of cytoplasmic tRNA serves to modulate translation of particular transcripts. To test this hypothesis, I compared expression profiles from non-translating mRNAs and polyribosome-bound translating mRNAs collected from msn5Δ and mtr10Δ mutants and wild-type cells, in fed or acute amino acid starvation conditions.
    [Show full text]
  • FUNCTIONAL and MECHANISTIC CHARACTERIZATION of TWO TRNA MODIFYING ENZYMES LAURA CAROLE KEFFER-WILKES Master of Science, Universi
    FUNCTIONAL AND MECHANISTIC CHARACTERIZATION OF TWO TRNA MODIFYING ENZYMES LAURA CAROLE KEFFER-WILKES Master of Science, University of Lethbridge, 2012 A Thesis Submitted to the School of Graduate Studies Of the University of Lethbridge In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY Department of Chemistry and Biochemistry University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Laura Keffer-Wilkes, 2016 FUNCTIONAL AND MECHANISTIC CHARACTERIZATION OF TWO TRNA MODIFYING ENZYMES LAURA CAROLE KEFFER-WILKES Date of Defence: June 28, 2016 Dr. Ute Wieden-Kothe Associate Professor Ph.D. Supervisor Dr. Tony Russell Assistant Professor Ph.D. Thesis Examination Committee Member Dr. Stacey Wetmore Professor Ph.D. Thesis Examination Committee Member Dr. Hans-Joachim Wieden Professor Ph.D. Thesis Examination Committee Member Dr. Eugene Mueller Professor Ph.D. External Examiner University of Louisville Louisville, Kentucky Dr. Elizabeth Schultz Associate Professor Ph.D. Internal External Examiner University of Lethbridge Dr. Michael Gerken Professor Ph.D. Chair, Thesis Examination Committee Abstract The formation of pseudouridine (Ѱ) and 5-methyluridine (m5U) in the T-arm of transfer RNAs (tRNAs) is near-universally conserved. These two modifications are formed in Escherichia coli by the pseudouridine synthase TruB and the S-adenosylmethionine- dependent methyltransferase TrmA, respectively. In this thesis, I investigate the function and mechanisms of these two tRNA modifying enzymes. First, in vitro and in vivo analysis of TruB reveals that this enzyme is acting as a tRNA chaperone which proves a long outstanding hypothesis. Secondly, characterization of ligand binding by TrmA shows that binding is cooperative and disruption of tRNA elbow region tertiary interactions by TrmA is essential for efficient tRNA binding and catalysis, leading to future analysis.
    [Show full text]