Nasonia Wasp Behavior Genetics

Total Page:16

File Type:pdf, Size:1020Kb

Nasonia Wasp Behavior Genetics This article was originally published in the Encyclopedia of Animal Behavior published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Watt R. and Shuker D.M. (2010) Nasonia Wasp Behavior Genetics. In: Breed M.D. and Moore J., (eds.) Encyclopedia of Animal Behavior, volume 2, pp. 513- 519 Oxford: Academic Press. © 2010 Elsevier Ltd. All rights reserved. Author's personal copy Nasonia Wasp Behavior Genetics R. Watt, University of Edinburgh, Edinburgh, Scotland, UK D. M. Shuker, University of St. Andrews, St. Andrews, Fife, Scotland, UK ã 2010 Elsevier Ltd. All rights reserved. Introduction organism with complex behavior and ecology. Moreover, haplodiploidy facilitates powerful quantitative genetic and Nasonia is a genus of parasitoid wasp that attacks the crossing designs (Figure 2), which can be important given pupae of many large fly species (across families such the low heritability of many behavioral traits. as the Muscidae, Sarcophagidae, and Calliphoridae; The study of the behavior and genetics of Nasonia Figure 1(a) and 1(b)). As a parasitoid, Nasonia kill the wasps has a long history. As a genetic study organism, pupae they attack, being as much predatory as they are Nasonia played an important role in early studies of muta- parasitic (Godfray, 1994). In common with many other tion (Figure 1(d)), but it is perhaps best known for its parasitoids, Nasonia can influence the population density behavior, in particular its sex ratio behavior and for the of the host species they parasitize and may act as presence of sex ratio distorting endosymbionts. More biological control agents. Also known as ‘jewel wasps,’ generally though, as a parasitoid wasp, Nasonia displays a there are four species in the Nasonia genus. By far the broad array of behaviors, spanning host location and host best known is Nasonia vitripennis, which is distributed choice, through to the reproductive allocation decisions across the whole of the northern Palearctic region, being that females need to make, and their elaborate courtship the only Nasonia species so far found in Europe and Asia. behavior. Our understanding of the genetic basis of many N. vitripennis co-occurs with the other three species in of these behaviors is only just beginning to take shape, but North America. N. longicornis is found predominantly in thanks to the Nasonia Genome Project the arrival of the the west of North America, with N. giraulti and N. oneida full genome sequences of three of the four Nasonia species occurring in the eastern United States. Recent data sug- (vitripennis, giraulti, and longicornis) has resulted in a rich gest that range margins may be changing however, and the new source of genetic and genomic information. We will very recent discovery of N. oneida suggests that further begin with an introduction to the field of insect behavior species may await discovery in both America and across genetics and then review the behavior genetics of Nasonia, Europe and Asia. The four species are reproductively taking the life cycle of the wasp as our guide. isolated from each other both prezygotically by various behaviors associated with mating (discussed later) and also postzygotically due to nuclear–cytoplasmic incom- Insect Behavior Genetics patibilities associated with the endosymbiotic bacteria Wolbachia . Bidirectional cytoplasmic incompatibilities Behavior genetics seeks to characterize the genes and between different Wolbachia strains mean that F1 hybrids genetic networks that control or influence an animal’s usually fail to develop, although antibiotic curing of the behavior. As such, behavior geneticists have to integrate different wasp species of Wolbachia facilitates hybrid for- whole organism phenotypes (the behavior or behaviors mation (albeit with some more ‘conventional’ loss of of interest) with increasing levels of genotypic detail, hybrid fitness). The ability to make these crosses has including the action of individual molecules. Since behav- played an important role in the success of many Nasonia ior is, at its most basic, a motor response to some aspect of genetics projects, as differences between the species are the environment, behavioral genes include those asso- usually more pronounced (and so easier to resolve) than ciated with the development and action of the nervous differences among individuals within a species. system, including the associated sensory systems, as well Another factor in the success of Nasonia genetic studies aspects of physiology and cellular metabolism. Moreover, is haplodiploidy (Figure 1(c)). As with all Hymenoptera since behavior is a key intermediary between an organism (bees, ants, and wasps), Nasonia are haplodiploid. This and its environment, the ecological context of behavior is means that females are diploid with both maternal and also crucial for understanding how genetics shapes behav- paternal chromosomes, developing conventionally from ioral variation and therefore influences evolution. All fertilized eggs. Males on the other hand are haploid, devel- this means that behavior genetics is at the center of an oping parthenogenetically from unfertilized eggs. Males integrated approach to understanding animal behavior, as therefore only contain maternal chromosomes. Haplodi- envisaged by Tinbergen in his ‘four questions.’ Most ploidy combines many of the advantages of haploid genetic obviously, genetics can tell us a lot about the mechanistic analysis (no effects of dominance for example), with an basis of behavior (what neural and physiological systems 513 Encyclopedia of Animal Behavior (2010), vol. 2, pp. 513-519 Author's personal copy 514 Nasonia Wasp Behavior Genetics (a) (b) ϫ (d) (c) Diploid (2n) Haploid (n) Figure 1 Some aspects of Nasonia biology. (a) Blowfly pupae are the host for this parasitoid wasp. (b) A female Nasonia laying eggs on a host: females choose hosts depending on the host species, its size, and whether or not other females have already parasitized the host. (c) As with all Hymenoptera, Nasonia are haplodiploid, with females being diploid (2n), carrying chromosomes from both their mother (pink arrow) and father (blue arrow), while males are haploid (n), carrying chromosomes only from their mother (pink arrow). Inset: Nasonia are gregarious, with multiple wasp pupae developing on one fly pupa, within the host puparium. (d) There are a number of visible mutant markers available, derived from early studies of mutation in Nasonia; shown here is the red-eye mutant STDR, often used in studies of sex ratio in Nasonia. Photographs by David Shuker and Stuart West. Line drawings from Whiting AR (1967) The biology of the parasitic wasp Mormoniella vitripennis. Quarterly Review of Biology 42: 333–406, used with permission from the University of Chicago Press. geneticists tend to either focus on mechanistic, ‘bottom- P L X H up’ approaches to behavior, or on describing patterns of behavioral variation in populations, and from that infer- F1 ring something about the genetics of behavior using quantitative genetic techniques in a more ‘top-down’ approach. F2 Insect behavior genetics, at least from a bottom-up 1 2 N perspective, has been dominated by study of the fruitfly Drosophila melanogaster. Considerable progress has been Backcrosses X X made in indentifying and characterizing the genetic path- 2 H L ways influencing neural patterning (including famous Clonal sibships genes such as fruitless), neurohormones and their recep- n = 10 n = 10 tors, neurotransmitters, and other important cellular sig- Figure 2 Haplodiploid genetics allow powerful breeding naling cascades. In terms of top-down approaches, while designs for genetic analysis. Here is illustrated a ‘clonal-sibship’ Drosophila has again been popular, many more species design for a QTL study. Parents from a ‘high’ and ‘low’ line (for a have been studied, not least because of the array of beha- theoretical trait, such as body size) are first crossed. F1 viors available across species and the evolutionary (as daughters are collected as virgins and given hosts to parasitize, with the (all) male recombinant F2 offspring collected. These F2 opposed to mechanistic) puzzles they represent. However, males can then be backcrossed to high and low parental line most species are without the access to the molecular females for the screening of the phenotypes of the recombinant resources available in Drosophila necessary to link molec- male genotypes in both high and low genetic backgrounds (see ular processes with the biological variation that evolution Velthuis et al., 2005, for an example of this approach). acts upon. One of the major challenges currently facing insect behavior genetics is to link bottom-up and top- influence behavior), but genes can also tell us about how down approaches, and species with both rich behavioral behavior develops, its evolutionary past
Recommended publications
  • Associative Learning in Response to Color in the Parasitoid Wasp Nasonia Vitripennis (Hymenoptera: Pteromalidae)
    Journal of Insect Behavior, Vol. 13, No. 1, 2000 Associative Learning in Response to Color in the Parasitoid Wasp Nasonia vitripennis (Hymenoptera: Pteromalidae) S. E. Oliai1 and B. H. King1,2 Accepted July 1, 1999; revised August 2, 1999 A parasitoid that can learn cues associated with the host microenvironment should have an increased chance of future host location and thereby increase its reproductive success. This study examines associative learning in response to simultaneous exposure to the colors yellow and blue in mated females of the parasitoid wasp Nasonia vitripennis. Preference was measured as the proportion of time spent on a color. When trained with one color rewarded with hosts and honey and the other unrewarded, females showed an increase in preference for the rewarded color with increasing number of training days (1, 3, and 7 days). Hosts and honey together produced a slightly greater preference toward the rewarded color than just hosts, which produced a greater preference than just honey. When trained with a variable reward on one color and a constant reward on the other, females preferred the color associated with the variable reward when it was yellow, but not when it was blue. Thus, relative to no reward, the presence of a variable reward decreased the strength of preference toward the constantly rewarded color. Finally, females trained with regular hosts on one color and used hosts on the other preferred the color associated with the regular hosts when that color was blue but showed no preference in the reverse situation. The presence of used hosts instead of no reward did not increase the strength of preference for the color associated with the regular hosts.
    [Show full text]
  • Recent Advances and Perspectives in Nasonia Wasps
    Disentangling a Holobiont – Recent Advances and Perspectives in Nasonia Wasps The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Dittmer, Jessica, Edward J. van Opstal, J. Dylan Shropshire, Seth R. Bordenstein, Gregory D. D. Hurst, and Robert M. Brucker. 2016. “Disentangling a Holobiont – Recent Advances and Perspectives in Nasonia Wasps.” Frontiers in Microbiology 7 (1): 1478. doi:10.3389/ fmicb.2016.01478. http://dx.doi.org/10.3389/fmicb.2016.01478. Published Version doi:10.3389/fmicb.2016.01478 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29408381 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA fmicb-07-01478 September 21, 2016 Time: 14:13 # 1 REVIEW published: 23 September 2016 doi: 10.3389/fmicb.2016.01478 Disentangling a Holobiont – Recent Advances and Perspectives in Nasonia Wasps Jessica Dittmer1, Edward J. van Opstal2, J. Dylan Shropshire2, Seth R. Bordenstein2,3, Gregory D. D. Hurst4 and Robert M. Brucker1* 1 Rowland Institute at Harvard, Harvard University, Cambridge, MA, USA, 2 Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA, 3 Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA, 4 Institute of Integrative Biology, University of Liverpool, Liverpool, UK The parasitoid wasp genus Nasonia (Hymenoptera: Chalcidoidea) is a well-established model organism for insect development, evolutionary genetics, speciation, and symbiosis.
    [Show full text]
  • IVO MOES Unraveling the Genetics of Lifespan in Nasonia Using GWAS in an Inbred Line Panel
    UNRAVELING THE GENETICS OF LIFESPAN IN NASONIA USING GENOME WIDE ASSOCIATION ANALYSIS IN AN INBRED LINE PANEL IVO MOES Unraveling the genetics of lifespan in Nasonia using GWAS in an inbred line panel MSc Thesis Report By Ivo V. Moes Registration number: 910306576010 Chair group: Laboratory of Genetics Course code: GEN-70424 Supervisor: Bart Pannebakker, Laboratory of Genetics, Wageningen UR Examiner: Bas Zwaan, Laboratory of Genetics, Wageningen UR Date: 4-9-2015 Wageningen UR Ivo Moes | Laboratory of Genetics | Wageningen UR 2015 Abstract An important part of our understanding of the genetics underlying lifespan and ageing is generated through research in model organisms. The parasitoid wasp Nasonia vitripennis has been subject of research for decades. This model organism possesses many favorable characteristics, such as a short generation time and a haplodipolid sex determination system. This, and the increasing availability of next generation sequencing techniques, has made Nasonia re-emerge as a model organism in the field of genetics. In this study, a sequenced line panel of 34 inbred lines of Nasonia is used to identify genes associated with lifespan. A genome wide association study (GWAS) has been performed, which led to the selection of two candidate genes: beta-syntrophin 1 and neurogenic locus protein delta. In addition to the GWAS, a linkage analysis of the single nucleotide polymorphisms (SNPs) has been used to define haplotype blocks. These blocks have also been subjected to an association analysis, in order to support the GWAS results. Relative expression levels of the candidate genes have been measured with quantitative PCR, which showed a trend, but yielded no significant results.
    [Show full text]
  • Nasonia Vitripennis Is a Deep Reddish-Brown
    Biology 322 Fall 10 Wasp Genetics This experiment will explore the genetic principles of complementation. You will set up various crosses, and manage the life cycles of the model organism Nasonia vitripenni in order to address the following questions: Wild-type eye color in Nasonia vitripennis is a deep reddish-brown. You have isolated two new mutations that result in scarlet eyes, stM and st N. Is either mutant strain a new allele of the stDR gene, previously mapped to chromosome I? Or a mutation at another genetic locus that results in the same phenotype? Determine the set of crosses that would best address these questions. You will be required to show meaningful results in the F1 and F2 generations. Be sure to read about sex determination and life cycles in wasps (below) before you design your experiments. Phenotypes Wild-type eye color: dark reddish-brown Mutant eye color: scarlet (st) Strains that we will be working with: • stDR stDR is located on chromosome I • st M scarlet eyes • st N scarlet eyes • st + wildtype eyes Introduction to the wasp Nasonia vitripennis Nasonia vitripennis is a solitary wasp which parasitizes dipteran pupae. This species is easily reared in the laboratory on Sarcophaga pupae at temperatures ranging from 15oC to 30oC. The generation time is similar to that of Drosophila melanogaster: ~ 10 days at 28oC and one month at 18oC . Male and female pupae can be held at 4o (no meaningful development). Eclosed males can be held at 4o if they have been fed honey water for 24h. The adult female drills into the host puparium, feeds on host fluids and deposits her eggs.
    [Show full text]
  • Nasonia Biology - Werren Lab, University of Rochester, Department of Biology
    Nasonia Biology - Werren Lab, University of Rochester, Department of Biology Nasonia Biology Introduction Nasonia are excellent organisms for research and teaching. These parasitoid wasps have been the subject of genetic, eco- logical, evolutionary and developmental research for over 50 years. Two general features that make these insects such excel- lent study organisms are (a) ease of handling and rearing, and (b) interesting and diverse biology. Nasonia are readily reared on commercially available fly pupae (the hosts). Virgin females and males are easily collected in the pupal stage (there is a 3 day time window for virgin collection). Adults are "user friendly" and can be handled without the need for anaesthetization. Na- sonia has a short generation time (two weeks), but can be stored under refrigeration for periods of time, allowing for flexi- bility in experimental timing. A diapausing larval stage allows storage of strains for up to two years without maintenance. Both visible mutants and molecular markers are available for genetic mapping and instruction in genetics. The system is excellent for basic studies in genetics, ecol- ogy, behavior, development and evolution. Four closely related species of Nasonia are present. The species are interfertile, al- lowing movement of chromosomal regions (and phenotypes) between the species for genetic and molecular genetic analyses of species differences in behavior, development, morphology and physiology. Nasonia is an excellent candidate for compara- tive genomic studies, as well. A key feature of Nasonia is haplo- diploid sex determination; males are haploid and develop from unfertilized eggs and females are diploid and develop from fertil- ized eggs. This feature makes Nasonia a very useful organism for genetic research (advantages of this feature are described further below).
    [Show full text]
  • Chalcid Forum Chalcid Forum
    ChalcidChalcid ForumForum A Forum to Promote Communication Among Chalcid Workers Volume 23. February 2001 Edited by: Michael E. Schauff, E. E. Grissell, Tami Carlow, & Michael Gates Systematic Entomology Lab., USDA, c/o National Museum of Natural History Washington, D.C. 20560-0168 http://www.sel.barc.usda.gov (see Research and Documents) minutes as she paced up and down B. sarothroides stems Editor's Notes (both living and partially dead) antennating as she pro- gressed. Every 20-30 seconds, she would briefly pause to Welcome to the 23rd edition of Chalcid Forum. raise then lower her body, the chalcidoid analog of a push- This issue's masthead is Perissocentrus striatululus up. Upon approaching the branch tips, 1-2 resident males would approach and hover in the vicinity of the female. created by Natalia Florenskaya. This issue is also Unfortunately, no pre-copulatory or copulatory behaviors available on the Systematic Ent. Lab. web site at: were observed. Naturally, the female wound up leaving http://www.sel.barc.usda.gov. We also now have with me. available all the past issues of Chalcid Forum avail- The second behavior observed took place at Harshaw able as PDF documents. Check it out!! Creek, ~7 miles southeast of Patagonia in 1999. Jeremiah George (a lepidopterist, but don't hold that against him) and I pulled off in our favorite camping site near the Research News intersection of FR 139 and FR 58 and began sweeping. I knew that this area was productive for the large and Michael W. Gates brilliant green-blue O. tolteca, a parasitoid of Pheidole vasleti Wheeler (Formicidae) brood.
    [Show full text]
  • The Genome Sequence of the Cereal Pest Sitophilus Oryzae: an Unprecedented Transposable Element Content
    The genome sequence of the cereal pest Sitophilus oryzae: an unprecedented transposable element content PARISOT Nicolas1,$, VARGAS-CHAVEZ Carlos1,2,†,$, GOUBERT Clément3,4,‡,$, BAA-PUYOULET Patrice1, BALMAND Séverine1, BERANGER Louis1, BLANC Caroline1, BONNAMOUR Aymeric1, BOULESTEIX Matthieu3, BURLET Nelly3, CALEVRO Federica1, CALLAERTS PatricK5, CHANCY THéo1, CHARLES Hubert1,6, COLELLA Stefano1,§, DA SILVA BARBOSA André7, DELL’AGLIO Elisa1, DI GENOVA Alex3,6,8, FEBVAY Gérard1, GABALDON Toni9,10,11, GALVÃO FERRARINI Mariana1, GERBER Alexandra12, GILLET Benjamin13, HUBLEY Robert14, HUGHES Sandrine13, JACQUIN-JOLY Emmanuelle7, MAIRE Justin1,‖, MARCET-HOUBEN Marina9, MASSON Florent1,£, MESLIN Camille7, MONTAGNE Nicolas7, MOYA Andrés2,15, RIBEIRO DE VASCONCELOS Ana Tereza12, RICHARD Gautier16, ROSEN Jeb14, SAGOT Marie- France3,6, SMIT Arian F.A.14, STORER Jessica M.14, VINCENT-MONEGAT Carole1, VALLIER Agnès1, VIGNERON Aurélien1,#, ZAIDMAN-REMY Anna1, ZAMOUM Waël1, VIEIRA Cristina3,6,*, REBOLLO Rita1,*, LATORRE Amparo2,15,* and HEDDI Abdelaziz1,* 1 Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France. 2 Institute for Integrative Systems Biology (I2SySBio), Universitat de València and SpanisH ResearcH Council (CSIC), València, Spain. 3 Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France. 4 Department of Molecular Biology and Genetics, 526 Campus Rd, Cornell University, ItHaca, New YorK 14853, USA. 5 KU Leuven, University of Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, B-3000, Leuven, Belgium. 6 ERABLE European Team, INRIA, Rhône-Alpes, France. 7 INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France. 8 Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, CHile.
    [Show full text]
  • Studies of the Spread and Diversity of the Insect Symbiont Arsenophonus Nasoniae
    Studies of the Spread and Diversity of the Insect Symbiont Arsenophonus nasoniae Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy By Steven R. Parratt September 2013 Abstract: Heritable bacterial endosymbionts are a diverse group of microbes, widespread across insect taxa. They have evolved numerous phenotypes that promote their own persistence through host generations, ranging from beneficial mutualisms to manipulations of their host’s reproduction. These phenotypes are often highly diverse within closely related groups of symbionts and can have profound effects upon their host’s biology. However, the impact of their phenotype on host populations is dependent upon their prevalence, a trait that is highly variable between symbiont strains and the causative factors of which remain enigmatic. In this thesis I address the factors affecting spread and persistence of the male-Killing endosymbiont Arsenophonus nasoniae in populations of its host Nasonia vitripennis. I present a model of A. nasoniae dynamics in which I incorporate the capacity to infectiously transmit as well as direct costs of infection – factors often ignored in treaties on symbiont dynamics. I show that infectious transmission may play a vital role in the epidemiology of otherwise heritable microbes and allows costly symbionts to invade host populations. I then support these conclusions empirically by showing that: a) A. nasoniae exerts a tangible cost to female N. vitripennis it infects, b) it only invades, spreads and persists in populations that allow for both infectious and heritable transmission. I also show that, when allowed to reach high prevalence, male-Killers can have terminal effects upon their host population.
    [Show full text]
  • Arsenophonus Nasoniae Gen. Nov., Sp. Nov. the Causative Agent of the Son-Killer Trait in the Parasitic Wasp Nasonia Vitripennis ROBERT L
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Oct. 1991, p. 563-565 Vol. 41, No. 4 0020-77~3~9~~040563-03$02.0010 Copyright 0 1991, International Union of Microbiological Societies NOTES Arsenophonus nasoniae gen. nov., sp. nov. the Causative Agent of the Son-Killer Trait in the Parasitic Wasp Nasonia vitripennis ROBERT L. GHERNA,l* JOHN H. WERREN,, WILLIAM WEISBURG,3t ROSE COTE,l CARL R. WOESE,3 LINDA MANDELC0,3 AND DONALD J. BRENNER4 Department of Bacteriology, American Type Culture Collection, Rockville, Maryland 20852'; Department of Biology, University of Rochester, Rochester, New York 14627,; Department of Genetics and Development, University of Illinois, Urbana, Illinois 618013; and Meningitis and Special Pathogens Branch, Divisian of Bacterial Diseases, Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia 303334 A bacterial strain was previously isolated from a parasitic wasp, Nasonia vitripennis, and shown to cause the son-killer trait in wasps. The 16s rRNA sequence, DNA probes, and whole-cell fatty acid profiles suggest that it belongs to the family Enterobacteriaceae. The strain's properties indicate a closer relationship to the genus Proteus than to the genus Escherichia, Citrobacter, or Salmonella, We propose the name Arsenophonus nasoniae gen. nov., sp. nov., for this bacterium. Strain SKI4 (ATCC 49151) is the type strain. A variety of cytoplasmically inherited microorganisms of members of the family Enterobacteriaceae. Supplemen- that distort the sex ratio of their host species are known. tation of these formulations with 1% proteose peptone (Difco Some of these organisms, such as microsporidia and the no. 0120) improved growth; however, results were negative "sex ratio" spiroplasma, distort the sex ratio by causing the for most tests.
    [Show full text]
  • The Induction and Termination of Facultative Diapause in the Chalcid Wasps Mormoniella Vitripennis (Walker) and Tritneptis Klugii (Ratzeburg)*
    [ 520 J THE INDUCTION AND TERMINATION OF FACULTATIVE DIAPAUSE IN THE CHALCID WASPS MORMONIELLA VITRIPENNIS (WALKER) AND TRITNEPTIS KLUGII (RATZEBURG)* BY HOWARD A. SCHNEIDERMAN AND JUDITH HORWITZf Department of Zoology, Cornell University, Ithaca, New York (Received 19 November 1957) Many insects exhibit a facultative diapause which is under the control of specific environmental factors. When the insect enters diapause growth and development cease. The end of diapause is signalled by the resumption of development. In most instances the environmental agencies that cause diapause affect the generation that will enter diapause, but occasionally a stimulus applied to the maternal genera- tion affects the post-embryonic stages of the progeny. Commonly in facultative diapause, normal growth proceeds for several moults after the application of the stimulus, and development ceases only at a later stage. Whatever the mechanism which finally prevents moulting and produces diapause, it does not interfere with intermediate moults. The present report defines the extrinsic factors that cause facultative diapause in the last larval instar of two parasitic wasps and analyses in detail the mechanism of diapause termination. MATERIALS AND METHOD (1) Experimental animals MormonieUa vitripennis (Walker) (—Nasonia brevicornis Ashmead) and Tritneptis klugii (Ratzeburg) (= Caelopisthia nematicidd) are closely related chalcid wasps in the family Pteromalidae. Both have a facultative larval diapause (Girault & Saunders, 1909; Graham-Smith, 1919; Altson, 1920; Cousin, 1932; Evans, 1933; Roberts, 1935; Van der Merwe, 1945; Moursi, 19466 (MormonieUa); Hewitt, 1912 (Tritneptis)). Mormoniella has been the subject of considerable genetic (e.g. Whiting, 1949, 1955 a-d) and some physiological study (e.g. Jacobi, 1939; Moursi, 1946a, b; Schneiderman & Williams, 1952; Schneiderman, Horwitz & Kurland, 1956; Schneiderman, Kuten & Horwitz, 1956; Ray, Hunter & Stephens, 1954; Ferschl & Wolsky, 1956).
    [Show full text]
  • The Host Range of the Male-Killing Symbiont Arsenophonus Nasoniae in Filth Fly Parasitioids
    Journal of Invertebrate Pathology 106 (2011) 371–379 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip The host range of the male-killing symbiont Arsenophonus nasoniae in filth fly parasitioids ⇑ Graeme P. Taylor a, , Paul C. Coghlin b, Kevin D. Floate b, Steve J. Perlman a a Dept. of Biology, U. Victoria, P.O. Box 3020, STN CSC, Victoria, British Columbia, Canada V8W3N5 b Agriculture and Agri-Food Canada, P.O. Box 3000, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1 article info abstract Article history: The Son-killer bacterium, Arsenophonus nasoniae, infects Nasonia vitripennis (Hymenoptera: Pteromali- Received 10 July 2010 dae), a parasitic wasp that attacks filth flies. This gammaproteobacterium kills a substantial amount of Accepted 4 December 2010 male embryos produced by an infected female. Aside from male death, the bacterium does not measur- Available online 13 December 2010 ably affect the host, and how it is maintained in the host population is unknown. Interestingly, this bac- terial symbiont can be transmitted both vertically (from mother to offspring) and horizontally (to Keywords: unrelated Nasonia wasps developing in the same fly host). This latter mode may allow the bacterium Arsenophonus to spread throughout the ecological community of filth flies and their parasitoids, and to colonize novel Nasonia species, as well as permit its long-term persistence. Male-killer Reproductive parasite We tested 11 species of filth flies and 25 species of their associated parasitoids (representing 28 pop- Wolbachia ulations from 16 countries) using diagnostic PCR to assess the bacterium’s actual host range.
    [Show full text]
  • Bioinformatic Analysis Reveals Mechanisms Underlying Parasitoid Venom Evolution and Function
    bioRxiv preprint doi: https://doi.org/10.1101/423343; this version posted September 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Bioinformatic analysis reveals mechanisms underlying parasitoid venom evolution and function Author names and affiliations: Gloria Alvarado, Sarah R. Holland, Jordan DePerez-Rasmussen, Brice A. Jarvis, Tyler Telander, Nicole Wagner, Ashley L. Waring, Anissa Anast, Bria Davis, Adam Frank, Katelyn Genenbacher, Josh Larson, Corey Mathis, A. Elizabeth Oates, Nicholas A. Rhoades, Liz Scott, Jamie Young, and Nathan T. Mortimer. School of Biological Sciences, Illinois State University, Normal, IL, USA Corresponding author: Nathan T. Mortimer Email: [email protected] Phone: (309) 438-8597 bioRxiv preprint doi: https://doi.org/10.1101/423343; this version posted September 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Introduction Parasitoid wasps are a numerous and diverse group of insects that obligately infect other arthropod species. These wasps lay their eggs either on the surface or within the body cavity of their hosts, and the resulting offspring exploit the hosts' resources to complete their development [1]. Many parasitoids also introduce venom gland derived proteins or polydnaviruses into the host during infection. These factors act through a variety of mechanisms to manipulate host biology in order to increase the fitness of the developing parasitoid offspring [2–4].
    [Show full text]