Histone H3Q5 Serotonylation Stabilizes H3K4 Methylation and Potentiates Its Readout

Total Page:16

File Type:pdf, Size:1020Kb

Histone H3Q5 Serotonylation Stabilizes H3K4 Methylation and Potentiates Its Readout Histone H3Q5 serotonylation stabilizes H3K4 methylation and potentiates its readout Shuai Zhaoa,1, Kelly N. Chuhb,1, Baichao Zhanga,1, Barbara E. Dulb, Robert E. Thompsonb, Lorna A. Farrellyc,d, Xiaohui Liue, Ning Xue, Yi Xuee, Robert G. Roederf, Ian Mazec,d,2, Tom W. Muirb,2, and Haitao Lia,g,2 aMinistry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; bDepartment of Chemistry, Princeton University, Princeton, NJ 08540; cNash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; dDepartment of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; eNational Protein Science Technology Center, School of Life Sciences, Tsinghua University, Beijing 100084, China; fLaboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065; and gTsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China Edited by Peter Cheung, York University, Toronto, ON, Canada, and accepted by Editorial Board Member Karolin Luger November 12, 2020 (received for review August 7, 2020) Serotonylation of glutamine 5 on histone H3 (H3Q5ser) was recently established that H3K4me3 regulates gene expression through re- identified as a permissive posttranslational modification that coexists cruitment of nuclear factors that contain reader domains specific with adjacent lysine 4 trimethylation (H3K4me3). While the resulting for the mark. These include ATP-dependent chromatin remod- dual modification, H3K4me3Q5ser, is enriched at regions of active eling enzymes, as well as several transcription factors (13). The gene expression in serotonergic neurons, the molecular outcome latter include the general transcription factor complex, TFIID, underlying H3K4me3–H3Q5ser crosstalk remains largely unexplored. which engages the mark through its plant homeodomain (PHD) Herein, we examine the impact of H3Q5ser on the readers, writers, finger domain-containing TAF3 subunit, thereby stimulating and erasers of H3K4me3. All tested H3K4me3 readers retain binding preinitiation complex formation (14, 15). to the H3K4me3Q5ser dual modification. Of note, the PHD finger of Recently, we uncovered a PTM on the histone H3 tail whereby TAF3 favors H3K4me3Q5ser, and this binding preference is depen- the monoamine serotonin (5-hydroxytryptamine, 5-HT) is cova- dent on the Q5ser modification regardless of H3K4 methylation lently added to the side-chain of glutamine-5 by the writer enzyme, states. While the activity of the H3K4 methyltransferase, MLL1, Transglutaminase 2 (TGM2) (16) (Fig. 1A). Notably, the H3Q5ser BIOCHEMISTRY is unaffected by H3Q5ser, the corresponding H3K4me3/2 erasers, markwasfoundtocooccurwithneighboringH3K4me3onthe KDM5B/C and LSD1, are profoundly inhibited by the presence of B the mark. Collectively, this work suggests that adjacent H3Q5ser same histone tail (Fig. 1 ). This dual mark (i.e., H3K4me3Q5ser) is potentiates H3K4me3 function by either stabilizing H3K4me3 from enriched in euchromatin and correlates strongly with permissive dynamic turnover or enhancing its physical readout by down- gene expression during neuronal differentiation. Moreover, the stream effectors, thereby potentially providing a mechanism for dual mark was found to potentiate the interaction with TFIID fine-tuning critical gene expression programs. compared to H3Kme3 alone, offering a potential mechanistic link to active transcription. histone modification | H3Q5 serotonylation | H3K4me3 | modification crosstalk | designer chromatin Significance he eukaryotic genome is packaged in the form of chromatin Histone H3Q5ser and H3K4me3 can coexist as a dual modifi- T(1). The basic repeating unit of this nucleoprotein complex is cation pattern to regulate active gene transcription. However, the nucleosome, which is comprised of an octameric core of the molecular impact of H3Q5ser on H3K4me3 recognition and histone proteins, two copies each of H2A, H2B, H3, and H4, catalysis remains largely unexplored. Here, we profile the in- around which 146 base pair (bp) of double-stranded DNA is fluence of H3Q5ser on H3K4 methylation readers, writers, and wrapped. Histones are elaborated by numerous posttranslational erasers. Interestingly, all tested H3K4me3 readers bind H3K4me3Q5ser. modifications (PTMs, or marks), which are installed and re- Furthermore, while the activity of the H3K4 methyltransferase, moved by chromatin-modifying enzymes, commonly referred to MLL1, is unaffected by H3Q5ser, corresponding H3K4 methyl- as writers and erasers (2). Histone PTMs, alone or in combina- ation erasers are profoundly inhibited by the presence of the tion, can alter the local activity of chromatin, either by affecting mark. Collectively, this work suggests that H3Q5ser plays an the intrinsic structure and/or stability of the nucleoprotein augmenting role when coupled with the installation of H3K4 complex, or by acting as targeting vectors for nuclear factors that methylation so as to potentiate downstream outputs via chro- contain so-called reader domains that bind to marks in specific matin readers and erasers. The present work exemplifies the sequence contexts (3). Thus, by acting as dynamic signaling hubs, importance of modification crosstalk in gene regulation. histone marks play an essential role in epigenetic regulation, and, not surprisingly, dysregulation of these modifications by abnor- Author contributions: I.M., T.W.M., and H.L. conceived research; S.Z., K.N.C., and B.Z. – designed research; S.Z., K.N.C., and B.Z. performed research; B.E.D., R.E.T., L.A.F., X.L., mal inputs or outputs is frequently associated with disease (4 6). N.X., Y.X., and R.G.R. contributed new reagents/analytic tools; S.Z., K.N.C., B.Z., T.W.M., One of the most studied epigenetic marks is trimethylation of and H.L. analyzed data; and S.Z., K.N.C., B.Z., I.M., T.W.M., and H.L. wrote the paper. lysine 4 on histone H3 (H3K4me3). This evolutionarily conserved The authors declare no competing interest. PTM is associated with active transcription and is highly enriched at This article is a PNAS Direct Submission. P.C. is a guest editor invited by the promoter regions and transcription start sites (7–9). The H3K4me3 Editorial Board. mark is installed by a group of dedicated writer enzymes that in- Published under the PNAS license. clude the mixed-lineage leukemia (MLL) family of S-adenosyl 1S.Z., K.N.C., and B.Z. contributed equally to this work. methionine (SAM)-dependent protein lysine methyltransferases 2To whom correspondence may be addressed. Email: [email protected], muir@ (10). H3K4me2/3 is known to be dynamic, and its removal is princeton.edu, or [email protected]. catalyzed by lysine histone demethylases, of which there are This article contains supporting information online at https://www.pnas.org/lookup/suppl/ several subfamilies (11), including the Jumonji C (JmjC) domain- doi:10.1073/pnas.2016742118/-/DCSupplemental. containing proteins KDM5A/B/C/D and LSD1/2 (12). It is well Published February 1, 2021. PNAS 2021 Vol. 118 No. 6 e2016742118 https://doi.org/10.1073/pnas.2016742118 | 1of7 Downloaded by guest on September 30, 2021 Fig. 1. Profiling of H3K4me3 readers in response to H3K4me3Q5ser dual modification. (A) Structure of the Q5ser modification. Carbon atoms are shown in yellow; nitrogen atoms are shown in blue; oxygen atoms are shown in red. (B) The coexistence mode of the H3K4me3Q5ser dual modification. (C) SPRi signal of H3(1–15)K4me3 and H3(1–15)K4me3Q5ser peptides toward H3K4me3 readers. The values of SPRi signals are the blanked average signal during 250–300 s of the association curve in SI Appendix, Fig. S1A.(D) Titration curves and fitting curves of H3(1–15)K4me3 and H3(1–15)K4me3Q5ser peptides titrated into H3K4me3 readers. KD values are provided (see SI Appendix, Table. S1 for fitting parameters and error). (E) Summary of binding affinities determined in D.(F) ITC curves of TAF3PHD binding to histone H3 unmodified vs. Q5ser, K4me1 vs. K4me1Q5ser, K4me2 vs. K4me2Q5ser, and K4me3 vs. K4me3Q5ser peptides. KD values are provided (see SI Appendix, Table S1 for fitting parameters and error). (G) ITC curves of TAF3PHD binding to histone H3K4me3Q5(ser-analog) peptides. KD values are provided (see SI Appendix, Table S1 for fitting parameters and error). While the discovery of H3Q5ser represented an example of spatial and temporal changes in gene expression are achieved monoaminylation of a histone target, the intricacies of H3K4me3– (17). In this study, we profiled H3K4me3 readers in the context Q5ser biochemical crosstalk (i.e., how each mark influences the of adjacent H3Q5ser. All tested H3K4me3 readers tolerate the others installation and/or removal) and its epigenetic consequences H3K4me3Q5ser dual modification. Of note, the PHD finger of remain largely unexplored. Elucidating the role of local epigenetic TAF3 favors H3K4me3Q5ser, and this binding preference relies environments in regulating the communication between histone on the Q5ser modification regardless of H3K4 methylation states. readers, writers, and erasers is critical to understanding how Additionally, and perhaps most strikingly, we provide evidence 2of7 | PNAS Zhao et al. https://doi.org/10.1073/pnas.2016742118 Histone H3Q5 serotonylation stabilizes H3K4 methylation and potentiates
Recommended publications
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • DNA Methylation Regulates Discrimination of Enhancers From
    Sharifi-Zarchi et al. BMC Genomics (2017) 18:964 DOI 10.1186/s12864-017-4353-7 RESEARCHARTICLE Open Access DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism Ali Sharifi-Zarchi1,2,3,4†, Daniela Gerovska5†, Kenjiro Adachi6, Mehdi Totonchi3, Hamid Pezeshk7,8, Ryan J. Taft9, Hans R. Schöler6,10, Hamidreza Chitsaz2, Mehdi Sadeghi8,11, Hossein Baharvand3,12* and Marcos J. Araúzo-Bravo5,13,14* Abstract Background: DNA methylation at promoters is largely correlated with inhibition of gene expression. However, the role of DNA methylation at enhancers is not fully understood, although a crosstalk with chromatin marks is expected. Actually, there exist contradictory reports about positive and negative correlations between DNA methylation and H3K4me1, a chromatin hallmark of enhancers. Results: We investigated the relationship between DNA methylation and active chromatin marks through genome- wide correlations, and found anti-correlation between H3K4me1 and H3K4me3 enrichment at low and intermediate DNA methylation loci. We hypothesized “seesaw” dynamics between H3K4me1 and H3K4me3 in the low and intermediate DNA methylation range, in which DNA methylation discriminates between enhancers and promoters, marked by H3K4me1 and H3K4me3, respectively. Low methylated regions are H3K4me3 enriched, while those with intermediate DNA methylation levels are progressively H3K4me1 enriched. Additionally, the enrichment of H3K27ac, distinguishing active from primed enhancers, follows a plateau in the lower range of the intermediate DNA methylation level, corresponding to active enhancers, and decreases linearly in the higher range of the intermediate DNA methylation. Thus, the decrease of the DNA methylation switches smoothly the state of the enhancers from a primed to an active state.
    [Show full text]
  • Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin
    cells Review Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin Agnieszka Bochy ´nska,Juliane Lüscher-Firzlaff and Bernhard Lüscher * ID Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany; [email protected] (A.B.); jluescher-fi[email protected] (J.L.-F.) * Correspondence: [email protected]; Tel.: +49-241-8088850; Fax: +49-241-8082427 Received: 18 January 2018; Accepted: 27 February 2018; Published: 2 March 2018 Abstract: Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex.
    [Show full text]
  • Modeling of Histone Modifications Reveals Formation Mechanism and Function of Bivalent Chromatin
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.03.429504; this version posted February 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Modeling of histone modifications reveals formation mechanism and function of bivalent chromatin Wei Zhao1,2, Lingxia Qiao1, Shiyu Yan2, Qing Nie3,*, Lei Zhang1,2,* 1 Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China 2 Center for Quantitative Biology, Peking University, Beijing 100871, China 3 Department of Mathematics and Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA. *Corresponding authors: Qing Nie, email: [email protected]; Lei Zhang, email: [email protected] Abstract Bivalent chromatin is characterized by occupation of both activating histone modifications and repressive histone modifications. While bivalent chromatin is known to link with many biological processes, the mechanisms responsible for its multiple functions remain unclear. Here, we develop a mathematical model that involves antagonistic histone modifications H3K4me3 and H3K27me3 to capture the key features of bivalent chromatin. Three necessary conditions for the emergence of bivalent chromatin are identified, including advantageous methylating activity over demethylating activity, frequent noise conversions of modifications, and sufficient nonlinearity. The first condition is further confirmed by analyzing the
    [Show full text]
  • Epigenetic Regulation of Promiscuous Gene Expression in Thymic Medullary Epithelial Cells
    Epigenetic regulation of promiscuous gene expression in thymic medullary epithelial cells Lars-Oliver Tykocinskia,1,2, Anna Sinemusa,1, Esmail Rezavandya, Yanina Weilandb, David Baddeleyb, Christoph Cremerb, Stephan Sonntagc, Klaus Willeckec, Jens Derbinskia, and Bruno Kyewskia,3 aDivision of Developmental Immunology, Tumor Immunology Program, German Cancer Research Center, D-69120 Heidelberg, Germany; bKirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg, Germany; and cInstitute for Genetics, University of Bonn, D-53117 Bonn, Germany Edited* by Philippa Marrack, National Jewish Health, Denver, CO, and approved September 28, 2010 (received for review July 2, 2010) Thymic central tolerance comprehensively imprints the T-cell re- ing of delimited regions allowing access of general and specific ceptor repertoire before T cells seed the periphery. Medullary transcriptional factors to act on gene-specific control elements thymic epithelial cells (mTECs) play a pivotal role in this process by (8). This scenario is clearly different from the intricate regulation virtue of promiscuous expression of tissue-restricted autoantigens. of functionally related gene families like the Hox gene locus or β The molecular regulation of this unusual gene expression, in the -globin gene locus (9). A similar phenomenon as observed in Drosophila particular the involvement of epigenetic mechanisms is only poorly has been reported for housekeeping genes but not for understood. By studying promiscuous expression of the mouse TRAs in vertebrates (10). casein locus, we report that transcription of this locus proceeds Here we analyzed the interrelationship between emerging gene expression patterns at the single cell level, promoter-associated from a delimited region (“entry site”) to increasingly complex pat- epigenetic marks, and the differentiation of mTECs in the murine terns along with mTEC maturation.
    [Show full text]
  • Genome-Wide Analysis of Transcriptional Bursting-Induced Noise in Mammalian Cells
    bioRxiv preprint doi: https://doi.org/10.1101/736207; this version posted August 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Genome-wide analysis of transcriptional bursting-induced noise in mammalian cells Authors: Hiroshi Ochiai1*, Tetsutaro Hayashi2, Mana Umeda2, Mika Yoshimura2, Akihito Harada3, Yukiko Shimizu4, Kenta Nakano4, Noriko Saitoh5, Hiroshi Kimura6, Zhe Liu7, Takashi Yamamoto1, Tadashi Okamura4,8, Yasuyuki Ohkawa3, Itoshi Nikaido2,9* Affiliations: 1Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-0046, Japan 2Laboratory for Bioinformatics Research, RIKEN BDR, Wako, Saitama, 351-0198, Japan 3Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-0054, Japan 4Department of Animal Medicine, National Center for Global Health and Medicine (NCGM), Tokyo, 812-0054, Japan 5Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, 135-8550, Japan 6Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan 7Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA 8Section of Animal Models, Department of Infectious Diseases, National Center for Global Health and Medicine (NCGM), Tokyo, 812-0054, Japan 9Bioinformatics Course, Master’s/Doctoral Program in Life Science Innovation (T-LSI), School of Integrative and Global Majors (SIGMA), University of Tsukuba, Wako, 351-0198, Japan *Corresponding authors Corresponding authors e-mail addresses Hiroshi Ochiai, [email protected] Itoshi Nikaido, [email protected] bioRxiv preprint doi: https://doi.org/10.1101/736207; this version posted August 15, 2019.
    [Show full text]
  • Single-Molecule Biophysics of Dna Bending: Looping and Unlooping
    SINGLE-MOLECULE BIOPHYSICS OF DNA BENDING: LOOPING AND UNLOOPING A Dissertation Presented to The Academic Faculty by Tung T. Le In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in the School of Physics Georgia Institute of Technology August 2015 Copyright © Tung T. Le 2015 SINGLE-MOLECULE BIOPHYSICS OF DNA BENDING: LOOPING AND UNLOOPING Approved by: Professor Harold Kim, Advisor Professor James Gumbart School of Physics School of Physics Georgia Institute of Technology Georgia Institute of Technology Professor Daniel Goldman Professor Loren Williams School of Physics School of Chemistry and Biochemistry Georgia Institute of Technology Georgia Institute of Technology Professor Jennifer Curtis Date Approved: April 09, 2015 School of Physics Georgia Institute of Technology A dedication to my father, with love. ACKNOWLEDGEMENTS First, I would like to give my highest appreciation to my advisor, Dr. Harold D. Kim, for his enduring guidance and generous support to my research during the graduate years. He has given me a unique opportunity to work independently and judge things in a scientific manner. I would like to thank my previous advisor, Dr. Toan Nguyen, for his great mentor and support during my first year at Georgia Tech. I would also like to extend my appreciation to my committee members: Dr. Daniel Goldman, Dr. Jennifer Curtis, Dr. James Gumbart, and Dr. Loren Williams, for reading my thesis and giving me valuable comments. I want to thank Dr. Rasesh Parikh and other members of the Kim's lab for their kindness. Outside the lab, I would like to give thanks to many people, my dear friends (Phuong Doan, Tien Hoang, Phuong Hoang) and many others in the Vietnamese Student Associa- tions (VSA) in Atlanta, and my close friends at home (Vuong Linh Tran, Duy Nguyen) for their love and friendship.
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Investigations Into The
    UNIVERSITY OF CALIFORNIA RIVERSIDE Investigations into the Role of TAF1-mediated Phosphorylation in Gene Regulation A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Cell, Molecular and Developmental Biology by Brian James Gadd December 2012 Dissertation Committee: Dr. Xuan Liu, Chairperson Dr. Frank Sauer Dr. Frances M. Sladek Copyright by Brian James Gadd 2012 The Dissertation of Brian James Gadd is approved Committee Chairperson University of California, Riverside Acknowledgments I am thankful to Dr. Liu for her patience and support over the last eight years. I am deeply indebted to my committee members, Dr. Frank Sauer and Dr. Frances Sladek for the insightful comments on my research and this dissertation. Thanks goes out to CMDB, especially Dr. Bachant, Dr. Springer and Kathy Redd for their support. Thanks to all the members of the Liu lab both past and present. A very special thanks to the members of the Sauer lab, including Silvia, Stephane, David, Matt, Stephen, Ninuo, Toby, Josh, Alice, Alex and Flora. You have made all the years here fly by and made them so enjoyable. From the Sladek lab I want to thank Eugene, John, Linh and Karthi. Special thanks go out to all the friends I’ve made over the years here. Chris, Amber, Stephane and David, thank you so much for feeding me, encouraging me and keeping me sane. Thanks to the brothers for all your encouragement and prayers. To any I haven’t mentioned by name, I promise I haven’t forgotten all you’ve done for me during my graduate years.
    [Show full text]
  • H3k4me3 Is Neither Instructive For, Nor Informed By, Transcription
    bioRxiv preprint first posted online Jul. 19, 2019; doi: http://dx.doi.org/10.1101/709014. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. H3K4me3 is neither instructive for, nor informed by, transcription. Struan C Murray1, Philipp Lorenz1, Françoise S Howe1, Meredith Wouters1, Thomas Brown1, Shidong Xi1, Harry Fischl1, Walaa Khushaim1, Joseph Regish Rayappu1, Andrew Angel1 & Jane Mellor1* 1Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK. *Corresponding author. Tel: +44 1865 613241; E-mail: [email protected] Key words histone modification; gene regulation; H3K4me3; chromatin; RNA polymerase Abstract H3K4me3 is a near-universal histone modification found predominantly at the 5’ region of genes, with a well-documented association with gene activity. H3K4me3 has been ascribed roles as both an instructor of gene expression and also a downstream consequence of expression, yet neither has been convincingly proven on a genome-wide scale. Here we test these relationships using a combination of bioinformatics, modelling and experimental data from budding yeast in which the levels of H3K4me3 have been massively ablated. We find that loss of H3K4me3 has no effect on the levels of nascent transcription or transcript in the population. Moreover, we observe no change in the rates of transcription initiation, elongation, mRNA export or turnover, or in protein levels, or cell-to-cell variation of mRNA. Loss of H3K4me3 also has no effect on the large changes in gene expression patterns that follow galactose induction.
    [Show full text]
  • Watanabe S, Resch M, Lilyestrom W, Clark N
    NIH Public Access Author Manuscript Biochim Biophys Acta. Author manuscript; available in PMC 2010 November 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Biochim Biophys Acta. 2010 ; 1799(5-6): 480±486. doi:10.1016/j.bbagrm.2010.01.009. Structural characterization of H3K56Q nucleosomes and nucleosomal arrays Shinya Watanabe1,*, Michael Resch2,*, Wayne Lilyestrom2, Nicholas Clark2, Jeffrey C. Hansen2, Craig Peterson1, and Karolin Luger2,3 1 Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation St.; Worcester, Massachusetts 01605 2 Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870 3 Howard Hughes Medical Institute Abstract The posttranslational modification of histones is a key mechanism for the modulation of DNA accessibility. Acetylated lysine 56 in histone H3 is associated with nucleosome assembly during replication and DNA repair, and is thus likely to predominate in regions of chromatin containing nucleosome free regions. Here we show by x-ray crystallography that mutation of H3 lysine 56 to glutamine (to mimic acetylation) or glutamate (to cause a charge reversal) has no detectable effects on the structure of the nucleosome. At the level of higher order chromatin structure, the K to Q substitution has no effect on the folding of model nucleosomal arrays in cis, regardless of the degree of nucleosome density. In contrast, defects in array-array interactions in trans (‘oligomerization’) are selectively observed for mutant H3 lysine 56 arrays that contain nucleosome free regions. Our data suggests that H3K56 acetylation is one of the molecular mechanisms employed to keep chromatin with nucleosome free regions accessible to the DNA replication and repair machinery.
    [Show full text]
  • Dual Recognition of H3k4me3 and H3k27me3 by a Plant Histone Reader SHL
    ARTICLE DOI: 10.1038/s41467-018-04836-y OPEN Dual recognition of H3K4me3 and H3K27me3 by a plant histone reader SHL Shuiming Qian1,2, Xinchen Lv3,4, Ray N. Scheid1,2,LiLu1,2, Zhenlin Yang3,4, Wei Chen3, Rui Liu3, Melissa D. Boersma2, John M. Denu2,5,6, Xuehua Zhong 1,2 & Jiamu Du 3 The ability of a cell to dynamically switch its chromatin between different functional states constitutes a key mechanism regulating gene expression. Histone mark “readers” display 1234567890():,; distinct binding specificity to different histone modifications and play critical roles in reg- ulating chromatin states. Here, we show a plant-specific histone reader SHORT LIFE (SHL) capable of recognizing both H3K27me3 and H3K4me3 via its bromo-adjacent homology (BAH) and plant homeodomain (PHD) domains, respectively. Detailed biochemical and structural studies suggest a binding mechanism that is mutually exclusive for either H3K4me3 or H3K27me3. Furthermore, we show a genome-wide co-localization of SHL with H3K27me3 and H3K4me3, and that BAH-H3K27me3 and PHD-H3K4me3 interactions are important for SHL-mediated floral repression. Together, our study establishes BAH-PHD cassette as a dual histone methyl-lysine binding module that is distinct from others in recognizing both active and repressive histone marks. 1 Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA. 2 Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA. 3 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
    [Show full text]
  • Structure and Mechanism of the RNA Polymerase II Transcription Machinery
    Downloaded from genesdev.cshlp.org on October 9, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Structure and mechanism of the RNA polymerase II transcription machinery Allison C. Schier and Dylan J. Taatjes Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA RNA polymerase II (Pol II) transcribes all protein-coding ingly high resolution, which has rapidly advanced under- genes and many noncoding RNAs in eukaryotic genomes. standing of the molecular basis of Pol II transcription. Although Pol II is a complex, 12-subunit enzyme, it lacks Structural biology continues to transform our under- the ability to initiate transcription and cannot consistent- standing of complex biological processes because it allows ly transcribe through long DNA sequences. To execute visualization of proteins and protein complexes at or near these essential functions, an array of proteins and protein atomic-level resolution. Combined with mutagenesis and complexes interact with Pol II to regulate its activity. In functional assays, structural data can at once establish this review, we detail the structure and mechanism of how enzymes function, justify genetic links to human dis- over a dozen factors that govern Pol II initiation (e.g., ease, and drive drug discovery. In the past few decades, TFIID, TFIIH, and Mediator), pausing, and elongation workhorse techniques such as NMR and X-ray crystallog- (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis raphy have been complemented by cryoEM, cross-linking for Pol II transcription regulation has advanced rapidly mass spectrometry (CXMS), and other methods. Recent in the past decade, largely due to technological innova- improvements in data collection and imaging technolo- tions in cryoelectron microscopy.
    [Show full text]