JENS MEILER Die Struktur Von Proteinen Und Baut Am Computer Neue Antibiotika VON FREDERIK JÖTTEN

Total Page:16

File Type:pdf, Size:1020Kb

JENS MEILER Die Struktur Von Proteinen Und Baut Am Computer Neue Antibiotika VON FREDERIK JÖTTEN Nr. 41 DIE ZEIT S. 42 SCHWARZ cyan magenta yellow 42 WISSEN 4. Oktober 2007 DIE ZEIT Nr. 41 Mit 29 Jahren war er bereits Professor – in Nashville, Tennessee. Dort erforscht der Bioinformatiker JENS MEILER die Struktur von Proteinen und baut am Computer neue Antibiotika VON FREDERIK JÖTTEN Ich, der Roboter (u.) Physiologie für molekulare Max-Planck-Institut für DIE Nadine Bracht ZEIT; Fotos: ie anderen, die nach Nashville kommen, Bedingungen geboten – da hatte Meiler allerdings weiß man noch wenig darüber, wie das Leben funkti- Programm. Mit den klassischen Verfahren der mir Basic beigebracht.« Das war 1987, und in der um ihr Glück zu machen, tragen Cow- schon in Nashville zugesagt. Als Assistant Professor oniert – denn das wird von Proteinen bestimmt. Meist Röntgenstrukturanalyse oder der Kernresonanz- DDR war es kaum möglich, einen Computer zu boyhut, Lederstiefel und unter dem Arm leitet er inzwischen eine Gruppe von 20 Wissenschaft- ist bekannt, wie diese aufgebaut sind, aus welchen spektroskopie dauert es Jahre, bis man die Struktur bekommen. Der Vater besorgte am Rand einer Ta- eine Gitarre. Sie singen in den Straßen lern. Das ist vergleichbar mit einem C4-Lehrstuhl, der Aminosäuren sie bestehen. Unbekannt ist aber fast eines Proteins ermittelt hat. Computerprogramme gung in Österreich einen portablen Sinclair ZX Dund Bars für den Durchbruch. Die Hauptstadt von am besten ausgestatteten Professur in Deutschland. immer die 3-D-Struktur der Eiweiße, also wie sich die schaffen das binnen Stunden. Sie sind jedoch umso Spectrum mit der Leistung eines heutigen Taschen- Tennessee ist die Metropole der Country-Musik. Jens Aminosäureketten falten, um in der Zelle ihre Funk- ungenauer, je mehr die Abfolge der Aminosäuren rechners, Datenträger Musikkassette, 3,5 Kilo- Meiler trägt Sandalen, dunkelblaue Socken, Igelhaar- Was mit klassischen Methoden Jahre tion zu erfüllen. Nur von 0,7 Prozent der bekannten von bekannten Proteinen abweicht. »Auch bei gramm schwer. Auf ihm schrieb Jens seine ersten schnitt – er ist nach Nashville gekommen, um zu dauert, schafft der Rechner in Stunden Proteine kennt man die Struktur. Noch drastischer ist einem völlig unbekannten Protein können wir vor- Programme, eine grafische Aufbereitung des ma- forschen. Den ersten Durchbruch hat er hinter sich. die Situation bei Membran proteinen, die in der Me- hersagen, wie sich die Kette im Raum anordnet«, thematischen Beweises für den Innenwinkelsatz. Mit 29 ist er hier zum Professor berufen worden. Mittwochnachmittag, 15 Uhr. Die Sonne brennt dizin große Bedeutung haben: 50 Prozent aller Arz- sagt Meiler, »aber um die Position der chemischen Seine Begabung fiel auf. Wie Nachwuchssport- Vor zweieinhalb Jahren trat er die Stelle an. Sechs auf den als Botanischen Garten angelegten Cam- neien binden an Membranproteine, doch nur von 0,04 Seitengruppen zu bestimmen, reicht die Genauig- ler wurden in der DDR auch mathematisch-natur- Angebote hatte er von deutschen Hochschulen: Ju nior- pus. 11 600 Studenten sind an der Vanderbilt Uni- Prozent dieser Eiweiße kennt man die Struktur. keit noch nicht.« Die Bioinformatik kann die Rönt- wissenschaftliche Talente in Eliteeinrichtungen pro fes sor hätte er werden können, Nachwuchsgrup- versity eingeschrieben, sie bezahlen 35 000 Dollar Früher lernten Biologen und Chemiker im Stu- genstrukturanalyse also nicht ersetzen, aber sie ist gefördert. Die Erfahrung, nicht mehr überall der penleiter, Young Investigator. Doch er entschied sich Gebüh ren im Jahr. Einige sitzen unter den Sonnen- dium: Aus der Aminosäuresequenz könne man nicht manchmal der einzige Weg, sich der Struktur eines Beste zu sein, »hat mich zusätzlich motiviert«, sagt für die USA. »In Deutschland hätte ich mir erst Geld schirmen von Starbucks, arbeiten an Laptops. Ge- ableiten, wie das funktionstüchtige Protein gefaltet sei, Proteins anzunähern. Alle zwei Jahre gibt es einen er. In der neunten Klasse studierte er parallel das besorgen müssen, um mit dem Forschen anfangen zu genüber in Jens Meilers klimagekühltem Büro klin- zu komplex seien die Moleküle mit bis zu 100 000 weltweiten Wettbewerb der Vorhersager – Meilers erste Semester Chemie – das Fach, das er auch nach können«, sagt er. »In Nashville konnte ich ab dem gelt das Telefon, er hebt den Hörer ab. Atomen, zu uneinheitlich ihre Struktur. Heute ist die Prognosen gehören immer zu den besten. seinem Einser-Abitur wählte. Er stand in den Labors ersten Tag Personal einstellen.« Wenn er bei den Eva- »Hi, how are you doin’?« Meilers Englisch klingt Wissenschaft weiter – dank Computermodellen. Aus Die Computerprogramme können aber mehr der Uni Leipzig, machte Analysen, aber seine Lei- luierungen gut abschneidet, gibt es an der Vanderbilt sehr amerikanisch. Am Draht ein Forscher, mit dem den bekannten Strukturen errechnen Programme, wie als Vorhersagen. Mit ihnen lassen sich Proteine für denschaft blieb das Programmieren. »Das Faszinie- University, der Elitehochschule im Westen der Stadt, er kooperiert. Meiler klickt am Computer ein Fenster das unbekannte Molekül aussehen könnte. medizinische Anwendungen designen: Meiler ver- rende daran ist, dass ich den Computer dazu brin- eine lebenslange Stelle für ihn. »In Deutschland läuft auf und diskutiert mit dem Anrufer das bunte Knäu- Jens Meiler und sein Team entwickeln solche Pro- sucht gerade ein Eiweiß zu entwickeln, das als An- gen kann, meine Idee auszuführen«, sagt er. »Und eine Nachwuchswissenschaftler-Stelle fünf Jahre – und el, das am Bildschirm erschienen ist – die schematische gramme. Die Kunst ist dabei, Regeln zu erkennen, tibiotikum gegen multiresistente Bakterien wirkt. wenn etwas nicht funktioniert, ist es immer mein wenn man dann nicht in kurzer Zeit eine Professur Abbildung eines Eiweiß. nach denen ein Protein aufgebaut ist. Wie groß ist der Einen neuen Wirkstoff hat er noch nicht gefunden, Fehler, den ich beheben kann. Bei experimentellen bekommt, ist die Forscherkarriere beendet.« Seine Gruppe arbeitet im zurzeit spannendsten Abstand zwischen zwei Aminosäuren, welcher Winkel »aber wir machen Fortschritte«. Arbeiten ist das nicht so.« In seiner Doktorarbeit Einzig das Max-Planck-Institut für biophysika- Gebiet der Lebenswissenschaften: Proteomics, Pro tein- besteht zwischen zwei chemischen Gruppen? Nach »Nuh«, sagt Meiler auf dem Rundgang, mit an der Universität in Frankfurt am Main stand das lische Chemie in Göttingen hatte ihm vergleichbare for schung. Viele Genome sind entschlüsselt. Trotzdem und nach integrieren die Forscher neues Wissen in ihr deutlich sächsischem Akzent, »dann göht das hier Programmieren im Vordergrund. Genauso bei sei- weida.« Seine Mitarbeiter forschen in einem La- ner Postdoc-Stelle in Seattle bei David Baker, dem bor und vier Computer-Räumen, die durch Glas- Pionier der Proteinstrukturvorhersage. scheiben voneinander getrennt sind. In einem Seit sechs Jahren wohnt Meiler in den USA, mit unterhalten sich zwei Wissenschaftler, wieder seiner ebenfalls aus Leipzig stammenden Frau und Deutsch mit sächsischem Einschlag. Sechs aus dem 15 Monate alten Sohn Jonas. Die Konsum- Meilers Gruppe kommen aus Leipzig. »Ich nehme kultur ist ihm fremd geblieben. Er geht zu Fuß zur gerne deutsche Studenten, weil ich die Kultur Arbeit oder fährt mit dem Bus. Einen Fernseher hat kenne – da arbeitet es sich dann gut zusammen«, er nicht, die Abende verbringt er mit Brettspielen sagt Meiler. »Und sie sind sehr gut ausgebildet.« oder der Lektüre von Büchern. Den idealistischen Forscher nimmt man ihm ab. Der reine Kapitalis- Als Schüler unterrichtete er Schüler. mus bleibt ihm suspekt. »Ich könnte mir nicht Sie sind ihm nach Nashville gefolgt vorstellen, mein Leben nur dem Anhäufen von Materiellem zu widmen.« Als er selbst noch Schüler An der Vanderbilt University hat sich seine Grup- war, unterrichtete er Fünftklässler in Chemie. Wäh- pe den Ruf erarbeitet, hochbegabt, wissenschafts- rend des Studiums stand er morgens um sechs Uhr fixiert und ungemein fleißig zu sein. »Jens’ Ro- auf, um sie weiter zu betreuen. Sie gewannen erste bots – Jens’ Roboter«, spotten Doktoranden aus Plätze bei der Chemie-Olympiade und bei Jugend anderen Gruppen. Meiler lebt den Fleiß vor, ar- forscht; zwei seiner Zöglinge von damals sind ihm beitet jeden Tag zwölf Stunden, am Wochenende bis nach Nashville gefolgt und arbeiten heute in sechs. »Die meisten Arbeitsgruppen hier sind dy- seiner Gruppe. »Ich selbst habe sehr davon profi- namischer als in Deutschland«, sagt er. »Da muss tiert, früh gefördert worden zu sein«, sagt Meiler. man sich schon anstrengen, um zu bestehen.« »Das versuche ich zurückzugeben.« Meiler besteht nicht nur, er ist erfolgreich. Ge- Es ist 18 Uhr geworden. Jens Meiler hat vier rade hat er ein Stipendium über eine Million Dol- Besprechungen hinter sich. Der 25-jährige Dokto- lar von den National Institutes of Health der USA rand Nils Wötzel, der Meiler seit seinem fünften bekommen. Sein Antrag gehörte, nach dem Ran- Schuljahr kennt, kommt herein. »Lust auf eine king der Behörde, zu den besten 150 von 14 500 Partie Schach?«, fragt er. Meiler schiebt das Spiel- eingereichten Anträgen. »Das ist außergewöhnlich«, brett vom Rand des Schreibtischs ins Zentrum. sagt sein Doktorvater Christian Griesinger, heute »Klar – drei Minuten?« fragt er. In wüstem Tempo MPI-Direktor in Göttingen. schieben die beiden ihre Figuren über das Spielbrett, Jens Meilers Weg in die Wissenschaft war, wie hauen auf die Schachuhr. 50 Züge in drei Minuten. er sagt, »vorprogrammiert«. Er wuchs in der DDR »Mist«, ruft Meiler. Verloren. Eine zweite Partie; sie auf, sein Vater
Recommended publications
  • Alberto Cisneros, Amanda M. Duran, Jessica A. Finn, Darwin
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Current Topic pubs.acs.org/biochemistry Protocols for Molecular Modeling with Rosetta3 and RosettaScripts † ‡ ‡ § ‡ ∥ ‡ ⊥ ‡ ∥ Brian J. Bender, , Alberto Cisneros, III, , Amanda M. Duran, , Jessica A. Finn, , Darwin Fu, , ‡ # ‡ ∥ ‡ ∥ ‡ § Alyssa D. Lokits, , Benjamin K. Mueller, , Amandeep K. Sangha, , Marion F. Sauer, , ‡ § ‡ ∥ ‡ † ‡ § ∥ ⊥ # Alexander M. Sevy, , Gregory Sliwoski, , Jonathan H. Sheehan, Frank DiMaio,@ Jens Meiler, , , , , , ‡ ∥ and Rocco Moretti*, , † Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States ‡ Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States § Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee 37232-0301, United States ∥ Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States ⊥ Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee 37232-2561, United States # Neuroscience Program, Vanderbilt University, Nashville, Tennessee 37235, United States @Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States *S Supporting Information ABSTRACT: Previously, we published an article providing an overview of the Rosetta suite of biomacromolecular modeling software and a series of step-by-step tutorials [Kaufmann, K. W., et al. (2010) Biochemistry 49, 2987−2998]. The overwhelming positive response to this publication we received motivates us to here share the next iteration of these tutorials that feature de novo folding, comparative modeling, loop construction, protein docking, small molecule docking, and protein design. This updated and expanded set of tutorials is needed, as since 2010 Rosetta has been fully redesigned into an object-oriented protein modeling program Rosetta3.
    [Show full text]
  • Jonathan Sheehan
    1 Jonathan H. Sheehan, Ph.D. Director, Program in Personalized Structural Biology / Precision Medicine Research Associate Professor Phone (W): 615-936-2516 Center for Structural Biology and Dept. of Biochemistry Phone (H): 615-673-9457 Vanderbilt University PMB 407917 Fax: 615-936-2211 5137 BIOSCI/MRB III [email protected] 465 21st Ave. South http://structbio.vanderbilt.edu/~sheehajh/ Nashville, TN 37232-8725 DOB: 1/29/1966, New Haven, CT Education 1984 - 1988 Harvard College (Cambridge, MA), A.B. with honors, Classics Summer 1987 Aegean Institute (Galatas, Greece) with honors in Greek and classical drama 2000 - 2006 Ph.D. Biochemistry, Vanderbilt University. Mentor: Walter Chazin Dissertation Title: Probing functional diversity of EF-hand calcium-binding proteins through mutant design and structural analysis 2006 - 2008 Postdoctoral Training: Vanderbilt University. Mentor: Jens Meiler Academic Appointments 1990 - 1995 Research Asst. in Jim Forman©s lab, Immunology at UTSW Med. Ctr., Dallas, TX 1995 - 1996 Research Asst. in the Embryonic Stem Cell Core Lab at VUMC 1996 - 1997 Research Asst. in Mark Magnuson©s lab, Molecular Physiol. and Biophys., VUMC 1997 - 2000 Manager of Dave Piston©s Cell Imaging Core Lab at VUMC 2009 - 2011 Research Instructor, Dept. of Biochemistry and V.U. Center for Structural Biology 2011 - 2016 Research Assistant Professor, Dept. of Biochemistry and Ctr. for Structural Biology 2016 - present Research Associate Professor, Dept. of Biochemistry and Ctr. for Structural Biology 2016 - present Program Director in Personalized Structural Biology / Precision Medicine Employment (other than academic appointments) 1989 - 1990 Peace Corps Volunteer, building potable water systems in Cañar, Ecuador Teaching June 2007 Vanderbilt University Center for Structural Biology Workshop: Molecular Visualization Tools and Analysis (with Eric Dawson) Aug.
    [Show full text]
  • Cheminfo - Qualitative Analysis of Machine Learning Models for Activation of HSD Involved in Alzheimer’S Disease
    Bcl::ChemInfo - Qualitative Analysis Of Machine Learning Models For Activation Of HSD Involved In Alzheimer’s Disease Mariusz Butkiewicz, Edward W. Lowe, Jr., Jens Meiler Abstract— In this case study, a ligand-based virtual high type 10 (HSD) has been found in elevated concentrations in throughput screening suite, bcl::ChemInfo, was applied to the hippocampi of Alzheimer’s disease patients. HSD may screen for activation of the protein target 17-beta play a role in the degradation of neuroprotective agents. The hydroxysteroid dehydrogenase type 10 (HSD) involved in inhibition of HSD has been indicated as a possible mean’s of Alzheimer’s Disease. bcl::ChemInfo implements a diverse set treating Alzheimer's disease. Dysfunctions in human 17 beta- of machine learning techniques such as artificial neural hydroxysteroid dehydrogenases result in disorders of biology networks (ANN), support vector machines (SVM) with the of reproduction and neuronal diseases, the enzymes are also extension for regression, kappa nearest neighbor (KNN), and involved in the pathogenesis of various cancers. HSD has a decision trees (DT). Molecular structures were converted into high affinity for amyloid proteins. Thus, it has been proposed a distinct collection of descriptor groups involving 2D- and 3D- that HSD may contribute to the amyloid plaques found in autocorrelation, and radial distribution functions. A confirmatory high-throughput screening data set contained Alzheimer's patients [2]. Furthermore, HSD degrades over 72,000 experimentally validated compounds, available neuroprotective agents like allopregnanolone which may lead through PubChem. Here, the systematical model development to memory loss. Therefore, it has been postulated that was achieved through optimization of feature sets and inhibition of HSD may help lessen the symptoms associated algorithmic parameters resulting in a theoretical enrichment of with Alzheimer's.
    [Show full text]
  • Efforts to Establish a Federally Supported Rosetta Center
    Efforts to establish a federally supported Rosetta center Jens Meiler Associate Professor Vanderbilt University Departments of Chemistry, Pharmacology, and Biomedical Informatics Center for Structural Biology, Institute of Chemical Biology NIH Biomedical Technology Research Center (BTRC) . 12/02/2008 – 1st pre-proposal submission . 20 pages of scientific and organizational description . Scored well but not yet invited for full application . 10/08/2009 – 2nd pre-proposal submission . 23 pages of scientific and organizational description . Scored excellent and was invited for full application . 09/28/2010 – 1st full proposal submission . 176 pages of 357 pages of scientific and organizational description . 03/22/2011 – NIH site visit . Scored mediocre and was not yet funded . … more to come … 18 August 2011 RosettaBTRC Review 2 RosettaCommons Consortium of 16 Laboratories Maintains Rosetta Code . Maintains core code functionality of Rosetta . Releases software semi-annually . Basis the BTRC will build upon core Andrew Leaver- Fay UNC RosettaCon 2009, Leavenworth, WA, USA 8:20 am 8:40 am Andrew Leaver‐Fay: Rosetta software development 18 August 2011 RosettaBTRC Review 3 TR&D1: Develop, Integrate, and Test Rosetta Scoring and Sampling . Feature Database and Testing System . Comparative analysis of Sampling for Energy Function Improvement Efficiency core Phil Bradley, David Baker, Brian Kuhlman, Ora Furman, FHCRC UW UNC HUJ 8:40 am 9:10 am Phil Bradley: TR&D1 ‐Rosetta scoring and sampling 18 August 2011 RosettaBTRC Review 4 TR&D2: Integrate Novel Methods for Design of Biological Function . Robotics-Inspired Conformational . Problem-Targeted Refinement of Designs Sampling with High-Order Energy Functions c o r e . Scaffolding Epitopes core and Binding Sites Tanja Kortem- Bill Schief, Jim Havranek, Jeff Gray, me, UCSF SCRIPPS Wash U JHU 9:10 am 9:30 am Jim Havranek: TR&D2 ‐Design of Function 18 August 2011 RosettaBTRC Review 5 DBP1: HIV Host-Pathogen Interactions, Nevan Krogan, UCSF .
    [Show full text]
  • Jens Meiler Improving Quantitative Structure-Activity Relationship
    J Comput Aided Mol Des DOI 10.1007/s10822-016-9895-2 Improving quantitative structure–activity relationship models using Artificial Neural Networks trained with dropout 1 1 Jeffrey Mendenhall • Jens Meiler Received: 15 September 2015 / Accepted: 15 January 2016 Ó Springer International Publishing Switzerland 2016 Abstract Dropout is an Artificial Neural Network (ANN) Background and significance training technique that has been shown to improve ANN performance across canonical machine learning (ML) data- Quantitative Structure Activity Relationship (QSAR) sets. Quantitative Structure Activity Relationship (QSAR) models are an established means of Ligand-Based Com- datasets used to relate chemical structure to biological activity puter-Aided Drug Discovery (LB-CADD), i.e. finding in Ligand-Based Computer-Aided Drug Discovery pose novel compounds that bind to a particular protein target, unique challenges for ML techniques, such as heavily biased given a dataset of known binders and non-binders [1]. dataset composition, and relatively large number of descrip- Physicochemical properties are encoded using spatial and tors relative to the number of actives. To test the hypothesis topological representations (descriptors) of the local atomic that dropout also improves QSAR ANNs, we conduct a environments within the molecule. To model the non-linear benchmark on nine large QSAR datasets. Use of dropout relation between chemical structure and biological activity improved both enrichment false positive rate and log-scaled for a particular protein target, a machine learning method, area under the receiver-operating characteristic curve such as an ANN, is trained to predict binding or activity at (logAUC) by 22–46 % over conventional ANN implemen- a particular protein target.
    [Show full text]
  • By Submitted in Partial Satisfaction of the Requirements for Degree of in In
    New computational protein design methods for de novo small molecule binding sites by James Edward Lucas DISSERTATION Submitted in partial satisfaction of the requirements for degree of DOCTOR OF PHILOSOPHY in Bioengineering in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO AND UNIVERSITY OF CALIFORNIA, BERKELEY Approved: ______________________________________________________________________________Tanja Kortemme Chair ______________________________________________________________________________John Dueber ______________________________________________________________________________Michael J Keiser ______________________________________________________________________________Andrej Sali ______________________________________________________________________________ Committee Members Copyright 2020 James Edward Lucas ii Acknowledgements Upon reflection, I am incredibly grateful to have had the opportunity to complete a PhD in such an exciting field of study. This would not have been possible without the support of my friends, family, and mentors, each of whom contributed to the success of my PhD in their own way. I would like to thank my advisor, Tanja Kortemme, for taking me into her lab and allowing me to pursue ambitious research projects. I also want to thank the members of the Kortemme lab for sharing their expertise with me. Special thanks to Kale, Kyle, Xingjie, and Shane for answering my incessant questions; my dissertation ended up being purely computational and my research was only possible because of your help. I’m delighted that Kyle and I are still able to catch up over lunch every month and that Kale and I still talk science even now that he has moved across the country. I also want to thank Anum for providing me with much needed perspective and support during our ice cream and boba walks. A special thanks to John for investing so much of his time into me.
    [Show full text]
  • A Glance Into the Evolution of Template-Free Protein Structure Prediction Methodologies Arxiv:2002.06616V2 [Q-Bio.QM] 24 Apr 2
    A glance into the evolution of template-free protein structure prediction methodologies Surbhi Dhingra1, Ramanathan Sowdhamini2, Frédéric Cadet3,4,5, and Bernard Offmann∗1 1Université de Nantes, CNRS, UFIP, UMR6286, F-44000 Nantes, France 2Computational Approaches to Protein Science (CAPS), National Centre for Biological Sciences (NCBS), Tata Institute for Fundamental Research (TIFR), Bangalore 560-065, India 3University of Paris, BIGR—Biologie Intégrée du Globule Rouge, Inserm, UMR_S1134, Paris F-75015, France 4Laboratory of Excellence GR-Ex, Boulevard du Montparnasse, Paris F-75015, France 5DSIMB, UMR_S1134, BIGR, Inserm, Faculty of Sciences and Technology, University of La Reunion, Saint-Denis F-97715, France Abstract Prediction of protein structures using computational approaches has been explored for over two decades, paving a way for more focused research and development of algorithms in com- parative modelling, ab intio modelling and structure refinement protocols. A tremendous suc- cess has been witnessed in template-based modelling protocols, whereas strategies that involve template-free modelling still lag behind, specifically for larger proteins (> 150 a.a.). Various improvements have been observed in ab initio protein structure prediction methodologies over- time, with recent ones attributed to the usage of deep learning approaches to construct protein backbone structure from its amino acid sequence. This review highlights the major strategies undertaken for template-free modelling of protein structures while discussing few tools devel- arXiv:2002.06616v2 [q-bio.QM] 24 Apr 2020 oped under each strategy. It will also briefly comment on the progress observed in the field of ab initio modelling of proteins over the course of time as seen through the evolution of CASP platform.
    [Show full text]
  • Protein-Small Molecule Docking with Full Side-Chain Flexibility
    PROTEINS: Structure, Function, and Bioinformatics 65:538–548 (2006) ROSETTALIGAND: Protein–Small Molecule Docking with Full Side-Chain Flexibility Jens Meiler1* and David Baker2* 1Vanderbilt University, Department of Chemistry, Center for Structural Biology, Nashville, Tennessee 2University of Washington, Department of Biochemistry, Seattle, Washington ABSTRACT Protein–small molecule docking A large number of docking programs have been devel- algorithms provide a means to model the struc- oped in the last 20 years based on a variety of search ture of protein–small molecule complexes in struc- algorithms.1,2 The use of such programs in conjunction tural detail and play an important role in drug with one or more scoring functions to evaluate and rank development. In recent years the necessity of sim- potential ligands from chemical collections is a standard ulating protein side-chain flexibility for an accu- step in virtual drug screening. While several successful rate prediction of the protein–small molecule inter- applications of this methodology have been described in faces has become apparent, and an increasing recent publications,3,4 frequently protein flexibility is number of docking algorithms probe different ap- neglected.5 While this approach is suitable for rapid vir- proaches to include protein flexibility. Here we de- tual screening, inclusion of protein flexibility is needed if scribe a new method for docking small molecules the protein–ligand interface is to be modeled in atomic into protein binding sites employing a Monte detail. Side-chain conformational changes frequently Carlo minimization procedure in which the rigid occur upon ligand binding. Hence side-chain coordinates body position and orientation of the small mole- taken from a complex with a different ligand, an unbound cule and the protein side-chain conformations structure, or a homology model can be inaccurate.
    [Show full text]
  • Bild Der Wissenschaft 2010, 4, 18-23
    PROTEINS >>Life & Environment PERFECTLY STRUCTURED Proteins control the entire life – if they are folded properly. Incorrectly folded proteins are responsible for serious illnesses such as Alzheimer’s and Parkinson’s disease. Researchers are using supercomputers for the ever more accurate prediction of the spatial structure of key molecules. 18 bild der wissenschaft (picture of science) 4/2010 Amino acid chains have a tendency to form into spirals or “beta-pleated sheets” – symbolized with arrows here. However, this is only the secondary structure. How spirals and pleated sheets are winding around each other remains a mystery. IN A NUTSHELL Decoding the three-dimensional structure of proteins is so difficult that researchers have only identified the shape of 0.7 percent of known proteins. Therefore, biologists and computer scientists are using savvy and computers to shed light on more protein structures. They are pitting their strength against each other in N. Speicher/Laguna Design Design N. Speicher/Laguna an international prediction competition. bild der wissenschaft 4/2010 19 PROTEINS Professor Jens Meiler (left) and his ambitious team of PhD students in Nashville (right): in 2008, they entered an international competition with a new self-developed prediction program. by Frederik Jötten IT IS MAY 5, 2008, 02:30 pm in problem. But the three-dimensional stops the process and makes sure that the Nashville, Tennessee when the race structure is only known for 0.7 percent repair system is initiated. If the damages begins. Outside the window, the sun of of macromolecules – and this structure is involving the DNA are severe, it the southern state is scorching the the sole decisive factor for whether they activates the self-destruction of the cell.
    [Show full text]
  • Introducing Foldit Education Mode
    correspondence Introducing Foldit Education Mode To the Editor — In its twelve years online, scored using the Rosetta force field2, with that walk the student through a standard Foldit has become a frequently used the players collaborating and competing to set of topics in biochemistry education teaching tool for biochemistry at the attain the best-scoring protein structure. (Fig. 1a), including atomic interactions, the college level, despite not providing premade The concept is that, if hundreds or hydrophobic effect, amino acids, primary content specifically for education. Here thousands of players all work to create a structure, secondary structure, tertiary we introduce Foldit Education Mode, protein structure, there is a higher chance structure, protein folding pathways and in which students proceed through a that one of them may find the correct fold. ligand binding. Many of the puzzles start by self-guided tutorial of standard concepts The interactive nature of Foldit and its allowing the student to explore the puzzle in protein biochemistry via a series of accessibility to non-scientist audiences as a sandbox, thus becoming familiar interactive three-dimensional biochemistry quickly attracted the interest of educators3–6, with it before starting the tutorial. In each puzzles. Education Mode could be used despite Foldit not providing material that is puzzle, students click through a tutorial independently or as a central component explicitly tailored for science education. We on the topic that guides them through the of a science class. With many classrooms have recently introduced Custom Contests7, conceptual basis of the puzzle (Fig. 1b). staying in remote mode this autumn, Foldit a feature that allows educators to create, Then, students solve the puzzle by achieving Education Mode offers a unique and free administer and grade their own Foldit a prespecified Foldit score.
    [Show full text]
  • New Approaches for Practical and Time Efficient Cloning, Construct Design and the Strategic Selection of Protein-Protein Interaction Techniques
    Jens Meiler, Ph.D. Professor & Stevenson Chair Vanderbilt University Syllabus – CPBP 8330 – Special Topics in Protein Biochemistry NEW APPROACHES FOR PRACTICAL AND TIME EFFICIENT CLONING, CONSTRUCT DESIGN AND THE STRATEGIC SELECTION OF PROTEIN-PROTEIN INTERACTION TECHNIQUES. Course Description: Research techniques are always changing, they develop and improve and sometimes it is hard to stay fully informed. In this module we will talk about different methods and techniques you want to use to be most efficient in your project. In the first half of the module we will introduce you to the basics and the latest cloning techniques. First, we will talk about vector design and what to consider for your perfect plasmid for cell culture experiments or protein expression. Second, we will show you where to get your plasmids and how to modify them by e.g. introducing tags or mutations. This will be accompanied with a practical part where we will compare the different techniques and strategies in a lab setting. In the second half of the module we will talk about different techniques to study protein-protein interactions. These interactions can be very versatile and not every biophysical method can be applied for every system. Therefore, we will compare advantages and disadvantages of different techniques which are available at Vanderbilt like NMR spectroscopy, X-ray crystallography, MST (microscale thermophoresis), SPR (surface plasmon resonance), ITC (isothermal titration calorimetry) and fluorescence spectroscopy. We will address for example: which technique to use for a weak or strong interaction; what to do when you get different affinities with different techniques; what to do when you want to characterize a membrane protein or an unstable protein.
    [Show full text]
  • 201005 Aushang Guest Lecture Jens Meiler Ohne Zoomdaten
    Thursday, 15 October 2020, 14:00 hrs VIA ZOOM: please contact [email protected] for the Zoom details Guest Lecture Professor Dr Jens Meiler Alexander von Humboldt Professorship, Institute for Drug Discovery, Departments of Chemistry and Computer Science, Medical Faculty, Leipzig University, Germany Innovative Computational Methods for Protein Structure Prediction, Drug Discovery, and Therapeutic Design The Meiler laboratory is recognized for methods developed for the structure determination of proteins, in particular using sparse experimental data. The Meiler laboratory pioneers usage of EPR spectroscopic information (Alexander, N.; et al. "De Novo High-Resolution Protein Structure Determination from Sparse Spin-Labeling EPR Data" Structure 2008, 16, 181) and cryo Electron Microscopy (Lindert, S.; et al. "EM-Fold: De Novo Atomic-Detail Protein Structure Determination from Medium- Resolution Density Maps"; Structure, 2012, 20, 464). These methods enable structure-based drug design for proteins that cannot be analyzed using the traditional structure determination techniques NMR Spectroscopy and X-ray crystallography. Such methods are in particular crucial for determining the structure of membrane proteins which are targets for half of our therapeutics: Weiner, B. E.; et al. "BCL::MP-fold: folding membrane proteins through assembly of transmembrane helices" Structure, 2013, 27, 7. One particular focus in our work is structure, dynamics, and interactions of G-Protein Coupled Receptors (Wu, H.; et al. "Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator"; Science; 2014; 58 or Alexander, N.; et al. "Energetic analysis of the rhodopsin-G-protein complex links the alpha5 helix to GDP release"; Nat Struct Mol Biol; 2014; 56).
    [Show full text]