Computational Design of Protein-Ligand Interfaces Using Rosettaligand

Total Page:16

File Type:pdf, Size:1020Kb

Computational Design of Protein-Ligand Interfaces Using Rosettaligand Computational Design of Protein-Ligand Interfaces Using RosettaLigand By Brittany Ann Allison Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry May, 2016 Nashville, Tennessee Approved: Jens Meiler, Ph.D. Brian O. Bachmann, Ph.D. John A. Capra, Ph.D. Michael P. Stone, Ph.D. To my parents, Warren and Talita Allison, and my sister Kelly Thank you for always believing in me iii ACKNOWLEDGEMENTS To Vanderbilt University and especially the Department of Chemistry, thank you for the opportunity and supporting me in my time as a doctoral student. To earn a PhD in chemistry is no small feat, and I am thankful for all the resources and continued support from faculty and staff in the department who have helped me along the way. Vanderbilt is an outstanding research institution, and I am grateful to have completed my doctoral studies here. To Jens Meiler, my PhD advisor, thank you for everything. Thank you for not only the opportunity to be a research student in your lab, but for actually supporting and guiding me for the past 6 years. This experience would not be the same without you. Since the day we met at the CSB gathering in November/December 2009, one of my favorite memories during my time here, thank you for always inspiring me and being committed to my success as a phD student. Thank you for pushing me outside of my comfort zone. Thank you for recognizing my talents and helping me to develop them. When I needed to push harder you always let me know, but it was in an energizing way, which left me excited to keep going. Thank you for developing my career interests and allowing me to pursue avenues to enhance these, such as teaching opportunities on campus and attending conferences. Traveling together to my undergrad institution for my research presentation, another one of my favorite memories, was a two-fold amazing experience as an alum and also as a PhD student. I am grateful to be in a lab where we share scientific knowledge as well as fun times, and I enjoyed the lab outings, retreats, holiday socials, and lab gatherings at your house. Thank iv you for the fun stories you share and for the random chit-chats. Thank you for always reminding me to “push forward” towards the goal. Jens, your continued insight and encouragement have left a lasting imprint on me, and I will always appreciate having such a great PhD advisor. To my committee members, Brian Bachmann, Tony Capra, and Mike Stone, thank you for guidance and input in my research as I matriculated through the years. Your help in scheduling meetings and presence at my exams has been greatly appreciated. Thank you for being on board to support my doctoral studies. I look forward to keeping you updated as I progress in my career. I would like to thank my past committee members Richard Armstrong (deceased) and Laura Mizoue for their investment in me as well. Thank you to the Director of Graduate Studies, Carmelo Rizzo, for readily proving information about the PhD journey. To my parents, Warren and Talita Allison, and my sister Kelly, you are the reason I never gave up. I could not have done this without you and God in my corner on a daily basis. All my life you have been my number one supporters, and because of you I have been able to achieve every time. Thank you for instilling confidence in me from a young age. I always remember being told, from very young up to just a few hours ago, “You can do this Britt!”, and you have always being right. Your love, encouragement, support, insight, phone calls, guidance, and prayers have allowed me to overcome every challenge I encountered in my PhD journey. From the moment I was accepted to Vanderbilt, you continuously told me I would make it to the end, and I have. Along the way, you have provided unwavering support as I made it through difficult graduate classes, my pre-qualifying exam, my qualifying exam, stressful poster presentations and oral presentations in the department and at conferences, my independent research proposal exam, and now in defending my dissertation. And I know v this support will continue as I begin my journey as a post-doc, and then on to career positions. Thank you for always being invested in my dreams, and encouraging me to do whatever it takes to achieve them. I am who I am, because of who you are. Daddy, thank you for reminding me to keep “Faith, family, and focus” near to me, no matter what else is going on, and that with faith and God by my side, I have what it takes to press forward. Thank you reminding me to recognize all the family members who are invested in my success, especially my grandparents who send love and prayers my way daily. And thank you for always being a source of wisdom and kindness, whenever I need to refocus my balance and get back on track. Momma, thank you continuously telling me “You are closer than you think”. Often times, the goal seemed so far away, but you always readjusted my thinking into positive thoughts so that I could see my little milestones along the way. Thank you for reminding me that our family background is strong, therefore I am strong too. And thank you for the long phone conversations about life, which I always needed as a good distraction. Kelly, my sister and best friend, thank you for always telling me to “Stop stressing you want to be the best, but KNOW you will do your best, and it will be great”. This has often carried me as I strive to be the best graduate student I can be. Thank you for always loving and supporting me and listening to my random stories and offering thoughtful advice, even when you have a lot on your plate too. It means so much. And thank you for all the fun we have and inside jokes we share, whether at home or on the phone or via text message, these get me through on a daily basis. My family, I love you three very much and I am so thankful, and so blessed, to always have you in my corner and in my life. It makes me proud to know that you are proud of me. On campus, I have received tremendous support from various people and institutes. Thank you to the Meiler Lab, my lab home since March 2010, for amazing science, valuable vi research insight, and awkward science humor. A special thanks to Amanda Duran and Steffen Lindert for being supportive lab members as well as friends, and for the walks outside. Thank you to Heather Darling, Caitlin Harrison, and Xuan Zhang for being a great help in the wet lab. Thank you to the Vanderbilt Institute of Chemical Biology (VICB) for awarding me my first year fellowship and the training grant for my second and third years. I participated in many VICB events over the years, which were beneficial and enjoyable. Amanda Renick and Michelle Sulikowski provided much encouragement, help, and mentorship during these years. Thank you to the Center for Structural Biology (CSB) for providing many CSB associated resources that I use for my research and the administrative support team, especially Karen Davis. Thanks to the Biomolecular NMR facility and Markus Voehler for assistance in my research. Thank you to Sandra Ford in the chemistry department, for answering my questions and for always being a friendly face. Thank you to Dean Ruth Schemmer for the amazing career development workshops, which I often attend. Thank you to Dean Elizabeth Rapisarda for being the point of contact for my NSF-GRFP fellowship. Thank you to Dean Don Brunson for connecting me with many great minority graduate students on campus and for your work in recruiting minority students to pursue a PhD at Vanderbilt. Thank you to the Center for Teaching for hosting teaching workshops and for the college teaching course. Thank you to the Programs for Talented Youth for allowing me the opportunity to teach and share my research with 7th and 8th graders. Thank you to the Graduate Student Council for the fun social events. Thank you to the Office of Black Graduate and Professional Students (OBGAPS), Alliance for Cultural Diversity in Research, and Black Cultural Center, for all providing support and friendships in various ways as a black woman vii pursuing a PhD. I am thankful to be on a campus where I could connect with people who share experiences similar to myself. Off campus, I have received great support as well. Thank you to the National Science Foundation Graduate Research Fellowship Program for awarding me their prestigious fellowship, which supported me in my last three years and allowed me the opportunity to present my research at many conferences. Thank you to the Rosetta Commons for being a community of scientists to engage with and gain valuable insight on the computational side of my project. Thank you to the National Organization of Black Chemists and Chemical Engineers (NOBCChE), for being not only a scientific community but a community to share experiences. I am very thankful for all the connections and guidance I receive from being a part of NOBCChE. Thank you to my undergraduate institution, Xavier University of Louisiana, especially the chemistry department, for showing me continued encouragement in my time here at Vanderbilt.
Recommended publications
  • Guide to Publication Policies of the Nature Journals
    GUIDE TO PUBLICATION POLICIES OF THE NATURE JOURNALS Last updated on 30 April 2009. Editorial Policies NATURE JOURNALS' POLICIES ON PUBLICATION ETHICS Nature journals' authorship policy Being an author The Nature journals do not require all authors of a research paper to sign the letter of submission, nor do they impose an order on the list of authors. Submission to a Nature journal is taken by the journal to mean that all the listed authors have agreed all of the contents. The corresponding (submitting) author is responsible for having ensured that this agreement has been reached, and for managing all communication between the journal and all co-authors, before and after publication. Any changes to the author list after submission, such as a change in the order of the authors, or the deletion or addition of authors, needs to be approved by a signed letter from every author. Responsibilities of senior team members on multi-group collaborations The editors at the Nature journals assume that at least one member of each collaboration, usually the most senior member of each submitting group or team, has accepted responsibility for the contributions to the manuscript from that team. This responsibility includes, but is not limited to: (1) ensuring that original data upon which the submission is based is preserved and retrievable for reanalysis; (2) approving data presentation as representative of the original data; and (3) foreseeing and minimizing obstacles to the sharing of data, materials, algorithms or reagents described in the work. Author contributions statementsAuthors are required to include a statement of responsibility in the manuscript that specifies the contribution of every author.
    [Show full text]
  • The Nature Index Journals
    The Nature Index journals The current 12-month window on natureindex.com includes data from 57,681 primary research articles from the following science journals: Advanced Materials (1028 articles) American Journal of Human Genetics (173 articles) Analytical Chemistry (1633 articles) Angewandte Chemie International Edition (2709 articles) Applied Physics Letters (3609 articles) Astronomy & Astrophysics (1780 articles) Cancer Cell (109 articles) Cell (380 articles) Cell Host & Microbe (95 articles) Cell Metabolism (137 articles) Cell Stem Cell (100 articles) Chemical Communications (4389 articles) Chemical Science (995 articles) Current Biology (440 articles) Developmental Cell (204 articles) Earth and Planetary Science Letters (608 articles) Ecology (259 articles) Ecology Letters (120 articles) European Physical Journal C (588 articles) Genes & Development (193 articles) Genome Research (184 articles) Geology (270 articles) Immunity (159 articles) Inorganic Chemistry (1345 articles) Journal of Biological Chemistry (2639 articles) Journal of Cell Biology (229 articles) Journal of Clinical Investigation (298 articles) Journal of Geophysical Research: Atmospheres (829 articles) Journal of Geophysical Research: Oceans (493 articles) Journal of Geophysical Research: Solid Earth (520 articles) Journal of High Energy Physics (2142 articles) Journal of Neuroscience (1337 articles) Journal of the American Chemical Society (2384 articles) Molecular Cell (302 articles) Monthly Notices of the Royal Astronomical Society (2946 articles) Nano Letters
    [Show full text]
  • Alberto Cisneros, Amanda M. Duran, Jessica A. Finn, Darwin
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Current Topic pubs.acs.org/biochemistry Protocols for Molecular Modeling with Rosetta3 and RosettaScripts † ‡ ‡ § ‡ ∥ ‡ ⊥ ‡ ∥ Brian J. Bender, , Alberto Cisneros, III, , Amanda M. Duran, , Jessica A. Finn, , Darwin Fu, , ‡ # ‡ ∥ ‡ ∥ ‡ § Alyssa D. Lokits, , Benjamin K. Mueller, , Amandeep K. Sangha, , Marion F. Sauer, , ‡ § ‡ ∥ ‡ † ‡ § ∥ ⊥ # Alexander M. Sevy, , Gregory Sliwoski, , Jonathan H. Sheehan, Frank DiMaio,@ Jens Meiler, , , , , , ‡ ∥ and Rocco Moretti*, , † Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States ‡ Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States § Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee 37232-0301, United States ∥ Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States ⊥ Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee 37232-2561, United States # Neuroscience Program, Vanderbilt University, Nashville, Tennessee 37235, United States @Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States *S Supporting Information ABSTRACT: Previously, we published an article providing an overview of the Rosetta suite of biomacromolecular modeling software and a series of step-by-step tutorials [Kaufmann, K. W., et al. (2010) Biochemistry 49, 2987−2998]. The overwhelming positive response to this publication we received motivates us to here share the next iteration of these tutorials that feature de novo folding, comparative modeling, loop construction, protein docking, small molecule docking, and protein design. This updated and expanded set of tutorials is needed, as since 2010 Rosetta has been fully redesigned into an object-oriented protein modeling program Rosetta3.
    [Show full text]
  • Jonathan Sheehan
    1 Jonathan H. Sheehan, Ph.D. Director, Program in Personalized Structural Biology / Precision Medicine Research Associate Professor Phone (W): 615-936-2516 Center for Structural Biology and Dept. of Biochemistry Phone (H): 615-673-9457 Vanderbilt University PMB 407917 Fax: 615-936-2211 5137 BIOSCI/MRB III [email protected] 465 21st Ave. South http://structbio.vanderbilt.edu/~sheehajh/ Nashville, TN 37232-8725 DOB: 1/29/1966, New Haven, CT Education 1984 - 1988 Harvard College (Cambridge, MA), A.B. with honors, Classics Summer 1987 Aegean Institute (Galatas, Greece) with honors in Greek and classical drama 2000 - 2006 Ph.D. Biochemistry, Vanderbilt University. Mentor: Walter Chazin Dissertation Title: Probing functional diversity of EF-hand calcium-binding proteins through mutant design and structural analysis 2006 - 2008 Postdoctoral Training: Vanderbilt University. Mentor: Jens Meiler Academic Appointments 1990 - 1995 Research Asst. in Jim Forman©s lab, Immunology at UTSW Med. Ctr., Dallas, TX 1995 - 1996 Research Asst. in the Embryonic Stem Cell Core Lab at VUMC 1996 - 1997 Research Asst. in Mark Magnuson©s lab, Molecular Physiol. and Biophys., VUMC 1997 - 2000 Manager of Dave Piston©s Cell Imaging Core Lab at VUMC 2009 - 2011 Research Instructor, Dept. of Biochemistry and V.U. Center for Structural Biology 2011 - 2016 Research Assistant Professor, Dept. of Biochemistry and Ctr. for Structural Biology 2016 - present Research Associate Professor, Dept. of Biochemistry and Ctr. for Structural Biology 2016 - present Program Director in Personalized Structural Biology / Precision Medicine Employment (other than academic appointments) 1989 - 1990 Peace Corps Volunteer, building potable water systems in Cañar, Ecuador Teaching June 2007 Vanderbilt University Center for Structural Biology Workshop: Molecular Visualization Tools and Analysis (with Eric Dawson) Aug.
    [Show full text]
  • List Stranica 1 Od
    list product_i ISSN Primary Scheduled Vol Single Issues Title Format ISSN print Imprint Vols Qty Open Access Option Comment d electronic Language Nos per volume Available in electronic format 3 Biotech E OA C 13205 2190-5738 Springer English 1 7 3 Fully Open Access only. Open Access. Available in electronic format 3D Printing in Medicine E OA C 41205 2365-6271 Springer English 1 3 1 Fully Open Access only. Open Access. 3D Display Research Center, Available in electronic format 3D Research E C 13319 2092-6731 English 1 8 4 Hybrid (Open Choice) co-published only. with Springer New Start, content expected in 3D-Printed Materials and Systems E OA C 40861 2363-8389 Springer English 1 2 1 Fully Open Access 2016. Available in electronic format only. Open Access. 4OR PE OF 10288 1619-4500 1614-2411 Springer English 1 15 4 Hybrid (Open Choice) Available in electronic format The AAPS Journal E OF S 12248 1550-7416 Springer English 1 19 6 Hybrid (Open Choice) only. Available in electronic format AAPS Open E OA S C 41120 2364-9534 Springer English 1 3 1 Fully Open Access only. Open Access. Available in electronic format AAPS PharmSciTech E OF S 12249 1530-9932 Springer English 1 18 8 Hybrid (Open Choice) only. Abdominal Radiology PE OF S 261 2366-004X 2366-0058 Springer English 1 42 12 Hybrid (Open Choice) Abhandlungen aus dem Mathematischen Seminar der PE OF S 12188 0025-5858 1865-8784 Springer English 1 87 2 Universität Hamburg Academic Psychiatry PE OF S 40596 1042-9670 1545-7230 Springer English 1 41 6 Hybrid (Open Choice) Academic Questions PE OF 12129 0895-4852 1936-4709 Springer English 1 30 4 Hybrid (Open Choice) Accreditation and Quality PE OF S 769 0949-1775 1432-0517 Springer English 1 22 6 Hybrid (Open Choice) Assurance MAIK Acoustical Physics PE 11441 1063-7710 1562-6865 English 1 63 6 Russian Library of Science.
    [Show full text]
  • Curriculum Vitae – WENJUN ZHANG
    Curriculum Vitae – WENJUN ZHANG Department of Chemical and Biomolecular Engineering, University of California, Berkeley 201 Gilman Hall, Berkeley, CA 94720 http://www.cchem.berkeley.edu/wzgrp Tel: (510)643-8682, [email protected] https://scholar.google.com/citations?hl=en&user=NUYglIoAAAAJ&view_op=list_works&sortby=pubdate PROFESSIONAL EXPERIENCE Co-director, Agilent/UC Berkeley Synthetic Biology Institute (SBI) 2019 to current Associate Professor, Dept. of Chemical and Biomolecular Engineering, UC Berkeley 2018 to current Biologist Faculty Sci/Engr, Lawrence Berkeley National Laboratory 2014 to current Assistant Professor, Dept. of Chemical and Biomolecular Engineering, UC Berkeley 2011-2018 EDUCATION Research Fellow, Harvard Medical School (adviser: Christopher T. Walsh) 2009-2011 Ph.D., Chemical Engineering, University of California, Los Angeles (adviser: Yi Tang) 2004-2009 M.S., Biochemistry and Molecular Biology, Nanjing University, China (adviser: Genxi Li) 2002-2004 B.S., Biochemistry, DII, Nanjing University, China 1998-2002 AWARDS AND HONORS Presidential Early Career Award for Scientists and Engineers (PECASE) (2019) Scialog Fellow, Research Corporation and the Gordon and Betty Moore Foundation (2018) American Cancer Society Research Scholar (2017) Chau Hoi Shuen Foundation Women in Science Program New Research Grant Award (2017) Chan Zuckerberg Biohub Investigator (2017) Alfred P . Sloan Research Fellow (2016) Paul Saltman Memorial Award in Bioinorganic Chemistry (2016) NIH Director's New Innovator Award (2015) Hellman Fellow (2015) F1000Prime Faculty (Chemical Biology, Small Molecule Chemistry section) (2015) The Charles R. Wilke Endowed Chair in Chemical Engineering, UC Berkeley (2014) University of California Cancer Research Coordinating Committee Research Award (2013) Pew Scholar (2012) Energy Biosciences Institute Proposal Award (2011, 2014) Outstanding Ph.D.
    [Show full text]
  • Cheminfo - Qualitative Analysis of Machine Learning Models for Activation of HSD Involved in Alzheimer’S Disease
    Bcl::ChemInfo - Qualitative Analysis Of Machine Learning Models For Activation Of HSD Involved In Alzheimer’s Disease Mariusz Butkiewicz, Edward W. Lowe, Jr., Jens Meiler Abstract— In this case study, a ligand-based virtual high type 10 (HSD) has been found in elevated concentrations in throughput screening suite, bcl::ChemInfo, was applied to the hippocampi of Alzheimer’s disease patients. HSD may screen for activation of the protein target 17-beta play a role in the degradation of neuroprotective agents. The hydroxysteroid dehydrogenase type 10 (HSD) involved in inhibition of HSD has been indicated as a possible mean’s of Alzheimer’s Disease. bcl::ChemInfo implements a diverse set treating Alzheimer's disease. Dysfunctions in human 17 beta- of machine learning techniques such as artificial neural hydroxysteroid dehydrogenases result in disorders of biology networks (ANN), support vector machines (SVM) with the of reproduction and neuronal diseases, the enzymes are also extension for regression, kappa nearest neighbor (KNN), and involved in the pathogenesis of various cancers. HSD has a decision trees (DT). Molecular structures were converted into high affinity for amyloid proteins. Thus, it has been proposed a distinct collection of descriptor groups involving 2D- and 3D- that HSD may contribute to the amyloid plaques found in autocorrelation, and radial distribution functions. A confirmatory high-throughput screening data set contained Alzheimer's patients [2]. Furthermore, HSD degrades over 72,000 experimentally validated compounds, available neuroprotective agents like allopregnanolone which may lead through PubChem. Here, the systematical model development to memory loss. Therefore, it has been postulated that was achieved through optimization of feature sets and inhibition of HSD may help lessen the symptoms associated algorithmic parameters resulting in a theoretical enrichment of with Alzheimer's.
    [Show full text]
  • Guide to Authors and Referees
    Guide to Authors and Referees • Single molecule chemistry of small molecules and biomolecules ABOUT THE JOURNAL • Theoretical simulations and modelling of biomolecules • Molecular recognition AIMS AND SCOPE OF THE JOURNAL • Small molecular model systems for metalloenzymes Nature Chemical Biology is a multidisciplinary journal that publishes • Molecular machines papers of the highest quality and significance in all areas of chemical • Pharmacologically active natural products biology. The journal is particularly interested in contributions from • Biosynthetic pathway elucidation chemists who are applying the principles, language and tools of • Chemical approaches to protein interaction networks chemistry to the understanding of biological problems and from biol- • Chemical ecology ogists who are interested in understanding biological processes at the molecular level. Priority is given to work that reports fundamental Expanding Biology through Chemistry new advances in biology or chemistry. Research areas at the interface • Chemical genetics and High Throughput Screening of chemistry and biology covered in the journal include, but are not • Biomolecular and small molecular array fabrication and valida- limited to: tion • Chemical insights into drug design and development Chemical Synthesis • Synthetic biology • Diversity-oriented synthesis • Unnatural biomolecular analogs in biological systems • Nucleic acid templated synthesis • Chemical genomics • Biomolecular modification and labelling chemistry • Chemical regulation of biosynthetic pathways
    [Show full text]
  • Martin D. Burke – Curriculum Vitae
    Martin D. Burke – Curriculum Vitae Professor of Chemistry phone: (217) 244-8726 University of Illinois at Urbana-Champaign email: [email protected] 454 Roger Adams Laboratory web: http://www.scs.illinois.edu/burke 600 South Mathews Ave. born: Feb. 5, 1976, Westminster, MD, USA Urbana, IL 61801 ________________________________________________________________________________________________________________________________________________________________________________________________________ Education 1998-2005 Harvard Medical School & Massachusetts Institute of Technology Division of Health Sciences and Technology National Institutes of Health Fellow in the Medical Scientist Training Program Boston, Massachusetts, Degree awarded: M.D. 1999-2003 Harvard University, Department of Chemistry and Chemical Biology Howard Hughes Medical Institutes Predoctoral Fellow Thesis advisor: Professor Stuart L. Schreiber Cambridge, Massachusetts, Degree Awarded: Ph.D. 1994-1998 Johns Hopkins University Howard Hughes Medical Institute Undergraduate Research Fellow Research advisors: Professors Henry Brem and Gary H. Posner Baltimore, Maryland, Degree Awarded: B.A. Chemistry Appointments 2018 Associate Dean of Research, Carle-Illinois College of Medicine 2014 Professor of Chemistry, University of Illinois at Urbana-Champaign 2011 Associate Professor of Chemistry, University of Illinois at Urbana-Champaign 2009-2015 Early Career Scientist, Howard Hughes Medical Institute 2009 Affiliate Faculty, Dept. of Biochemistry, University of Illinois at Urbana-Champaign
    [Show full text]
  • Springernature 助力您的科研事业
    Illustration inspired by the work of John Maynard Keynes Maynard John of work the by inspired Illustration SpringerNature 助力您的科研事业 崔丽丽 授权经理 2018年11月09日 1 大纲 1. SpringerNature 出版社介绍 2. Springer期刊介绍 3. Nature 期刊介绍 Springer Nature product overview 2 SpringerNature 出版社介绍 1.0 [Title for presentation / Date to go here] 3 施普林格·自然集团(Springer Nature)在2015年由自然出版集团、帕尔格雷 夫·麦克米伦、麦克米伦教育、施普林格科学与商业媒体合并而成。是一家全 球领先的从事科研、教育和专业出版的机构。集团旗下汇聚了一系列备受尊 敬和信赖的品牌,以各种创新的产品和服务,为客户提供优质的内容。 施普林格·自然集团是世界上最大的学术书籍出版公司,出版全球最具影响力 的期刊,也是开放研究领域的先行者。 集团在全球约有1.3万名员工,遍及50多个国家。 Springer Nature product overview 4 我们的领先品牌 施普林格(Springer)创立于1842年,是全球 《自然》杂志(Nature)创刊于1869年,是 麦克米伦教育(Macmillan Education)是全 领先的科学、技术和医学出版机构,公司以创 全球被引用最多的科学期刊,年引用量超过50 球第三大英语教材和课程资料出版机构,也是 新的信息产品和服务让学术界、科研机构和企 万次。作为全球首屈一指的多学科科学期刊, 本地K12基础教育出版商,此外还通过帕尔格 业研发部门的科研人员享有高品质的内容。施 其影响因子高达41.456。《自然》的读者包括 雷夫(Palgrave)出版和销售久负盛名的高等 普林格拥有世界上最重要的科学、技术和医学 了数百万科学家和学生,遍及世界各地4000余 教育图书。他们共同服务于50个市场的客户, 类电子图书数据库和回溯图书档案文库之一, 家机构,每月有350万名独立用户在其网站上 并为遍及全球120个国家的客户提供高质量的 以及种类全面的开放获取期刊。 阅览超过800万页的内容。 内容和创新的数字产品与服务。 BioMed Central是全球最大的开 Apress是一家致力于满足IT专业 《科学美国人》(Scientific 帕尔格雷夫·麦克米伦(Palgrave 放获取出版机构,出版超过286种 人士、软件开发者及程序员需求 American)创刊于1845年,是美 Macmillan)是一家面向人文及社 经同行评审的开放获取刊物,涉及 的技术出版机构。Apress以纸本 国持续出版历史最悠久的杂志,也 会科学(HSS)的全球性学术与商 生物学、生物医学和医学等领域。 和电子版形式出版1500余种图书,是大众读者获取科技信息及政策的 业出版机构。作为首家不设边界的 其注册用户超过180万,因而能够 是全球IT专业人士、软件开发者 重要权威来源。其纸本在全球有350 HSS出版机构,其出版篇幅不限, 有针对性地为各种专长、职称和学 和商业领袖的权威信息来源。 万读者,网站ScientificAmerican.com 覆盖各种业务模式,让读者和作者 科的人士带来机会。 月平均阅览量达550万人次。 从其一家出版机构就能获得最佳的 专业学习和学术资料。 Springer Nature product overview 追求卓越 5 Springer出版社与诺贝尔奖、费尔兹奖获得者
    [Show full text]
  • Efforts to Establish a Federally Supported Rosetta Center
    Efforts to establish a federally supported Rosetta center Jens Meiler Associate Professor Vanderbilt University Departments of Chemistry, Pharmacology, and Biomedical Informatics Center for Structural Biology, Institute of Chemical Biology NIH Biomedical Technology Research Center (BTRC) . 12/02/2008 – 1st pre-proposal submission . 20 pages of scientific and organizational description . Scored well but not yet invited for full application . 10/08/2009 – 2nd pre-proposal submission . 23 pages of scientific and organizational description . Scored excellent and was invited for full application . 09/28/2010 – 1st full proposal submission . 176 pages of 357 pages of scientific and organizational description . 03/22/2011 – NIH site visit . Scored mediocre and was not yet funded . … more to come … 18 August 2011 RosettaBTRC Review 2 RosettaCommons Consortium of 16 Laboratories Maintains Rosetta Code . Maintains core code functionality of Rosetta . Releases software semi-annually . Basis the BTRC will build upon core Andrew Leaver- Fay UNC RosettaCon 2009, Leavenworth, WA, USA 8:20 am 8:40 am Andrew Leaver‐Fay: Rosetta software development 18 August 2011 RosettaBTRC Review 3 TR&D1: Develop, Integrate, and Test Rosetta Scoring and Sampling . Feature Database and Testing System . Comparative analysis of Sampling for Energy Function Improvement Efficiency core Phil Bradley, David Baker, Brian Kuhlman, Ora Furman, FHCRC UW UNC HUJ 8:40 am 9:10 am Phil Bradley: TR&D1 ‐Rosetta scoring and sampling 18 August 2011 RosettaBTRC Review 4 TR&D2: Integrate Novel Methods for Design of Biological Function . Robotics-Inspired Conformational . Problem-Targeted Refinement of Designs Sampling with High-Order Energy Functions c o r e . Scaffolding Epitopes core and Binding Sites Tanja Kortem- Bill Schief, Jim Havranek, Jeff Gray, me, UCSF SCRIPPS Wash U JHU 9:10 am 9:30 am Jim Havranek: TR&D2 ‐Design of Function 18 August 2011 RosettaBTRC Review 5 DBP1: HIV Host-Pathogen Interactions, Nevan Krogan, UCSF .
    [Show full text]
  • Covalent Targeting of the Vacuolar H+-Atpase Activates Autophagy Via Mtorc1 Inhibition
    ARTICLES https://doi.org/10.1038/s41589-019-0308-4 Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition Clive Yik-Sham Chung1,2,6, Hijai R. Shin3,4,6, Charles A. Berdan5, Breanna Ford 5, Carl C. Ward2,3, James A. Olzmann 5, Roberto Zoncu 3,4* and Daniel K. Nomura 1,2,3,5* Autophagy is a lysosomal degradation pathway that eliminates aggregated proteins and damaged organelles to maintain cellular homeostasis. A major route for activating autophagy involves inhibition of the mTORC1 kinase, but current mTORC1-targeting compounds do not allow complete and selective mTORC1 blockade. Here, we have coupled screening of a covalent ligand library with activity-based protein profiling to discover EN6, a small-molecule in vivo activator of autophagy that covalently targets cys- teine 277 in the ATP6V1A subunit of the lysosomal v-ATPase, which activates mTORC1 via the Rag guanosine triphosphatases. EN6-mediated ATP6V1A modification decouples the v-ATPase from the Rags, leading to inhibition of mTORC1 signaling, increased lysosomal acidification and activation of autophagy. Consistently, EN6 clears TDP-43 aggregates, a causative agent in frontotem- poral dementia, in a lysosome-dependent manner. Our results provide insight into how the v-ATPase regulates mTORC1, and reveal a unique approach for enhancing cellular clearance based on covalent inhibition of lysosomal mTORC1 signaling. utophagy is central to the maintenance of organismal activators of autophagy can be beneficial in both cell and animal homeostasis in both physiological and pathological situa- models of these diseases, by both degrading intracytoplasmic aggre- Ations. It is an essential, conserved lysosomal degradation gates and by preventing associated cell death9–11.
    [Show full text]