Marrion, Neil V
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fructose Diet-Induced Hypertension
Possible Involvement of Up-regulated Salt Dependent Glucose Transporter-5 (SGLT5) in High- fructose Diet-induced Hypertension Hiroaki Hara Saitama Medical Center, Saitama Medical University Kaori Takayanagi Saitama Medical Center, Saitama Medical University Taisuke Shimizu Saitama Medical Center, Saitama Medical University Takatsugu Iwashita Saitama Medical Center, Saitama Medical University Akira Ikari Gifu Pharmaceutical University Hajime Hasegawa ( [email protected] ) Dept. of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kamoda 1981, Kawagoe, Saitama 350-8550, Japan. Research Article Keywords: salt sensitive hypertension, salt reabsorption, extracellular volume, glucose Posted Date: January 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-122315/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/21 Abstract Excessive fructose intake causes a variety of adverse conditions (e.g., obesity, hepatic steatosis, insulin resistance and uric acid overproduction). Particularly, high fructose-induced hypertension is the most common and signicant pathological setting, however, its underlying mechanisms are not established. We investigated these mechanisms in 7-week-old male SD rats fed a diet containing 60% glucose (GLU) or 60% fructose (FRU) for 3, 6, or 12 weeks. Daily food consumption was measured to avoid between- group discrepancies in caloric/salt intake, adjusting for feeding amounts. The FRU rats' mean blood pressure was signicantly higher and fractional sodium excretion (FENa) was signicantly lower, indicating that the high-fructose diet caused salt retention. The FRU rats' kidney weight and glomerular surface area were greater, suggesting that the high-fructose diet induced an increase in extracellular uid volume. -
Small-Molecule Inhibitors of Pendrin Potentiate the Diuretic Action of Furosemide
BASIC RESEARCH www.jasn.org Small-Molecule Inhibitors of Pendrin Potentiate the Diuretic Action of Furosemide Onur Cil, Peter M. Haggie, Puay-wah Phuan, Joseph-Anthony Tan, and Alan S. Verkman Departments of Medicine and Physiology, University of California San Francisco, San Francisco, California ABSTRACT 2 2 Pendrin is a Cl /HCO3 exchanger expressed in type B and non-A, non-B intercalated cells in the distal 2 nephron, where it facilitates Cl absorption and is involved in Na+ absorption and acid-base balance. Pendrin-knockout mice show no fluid-electrolyte abnormalities under baseline conditions, although mice 2 with double knockout of pendrin and the Na+/Cl cotransporter (NCC) manifest profound salt wasting. Thus, pendrin may attenuate diuretic-induced salt loss, but this function remains unconfirmed. To clarify the physiologic role of pendrin under conditions not confounded by gene knockout, and to test the potential utility of pendrin inhibitors for diuretic therapy, we tested in mice a small-molecule pendrin inhibitor identified from a high-throughput screen. In vitro, a pyrazole-thiophenesulfonamide, PDSinh- 2 C01, inhibited Cl /anion exchange mediated by mouse pendrin with a 50% inhibitory concentration of 1–3 mM, without affecting other major kidney tubule transporters. Administration of PDSinh-C01 to mice at predicted therapeutic doses, determined from serum and urine pharmacokinetics, did not affect urine output, osmolality, salt excretion, or acid-base balance. However, in mice treated acutely with furosemide, + 2 administration of PDSinh-C01 produced a 30% increase in urine output, with increased Na and Cl ex- cretion. In mice treated long term with furosemide, in which renal pendrin is upregulated, PDSinh-C01 produced a 60% increase in urine output. -
Supplemental Material Table of Contents
Supplemental material Table of Contents Detailed Materials and Methods ......................................................................................................... 2 Perioperative period ........................................................................................................................... 2 Ethical aspects ................................................................................................................................... 4 Evaluation of heart failure ................................................................................................................. 4 Sample preparation for ANP mRNA expression .................................................................................. 5 Sample preparation for validative qRT-PCR (Postn, Myh7, Gpx3, Tgm2) ............................................ 6 Tissue fibrosis .................................................................................................................................... 7 Ventricular remodeling and histological tissue preservation ................................................................ 8 Evaluation of the histological preservation of cardiac tissue ................................................................ 9 Sample preparation and quantitative label-free proteomics analyses .................................................. 10 Statistical methods ........................................................................................................................... 12 References ........................................................................................................................................ -
Structural Comparison of GLUT1 to GLUT3 Reveal Transport Regulation Mechanism in Sugar Porter Family
Published Online: 3 February, 2021 | Supp Info: http://doi.org/10.26508/lsa.202000858 Downloaded from life-science-alliance.org on 24 September, 2021 Research Article Structural comparison of GLUT1 to GLUT3 reveal transport regulation mechanism in sugar porter family Taniaˆ Filipa Custódio1,*, Peter Aasted Paulsen1,*, Kelly May Frain1, Bjørn Panyella Pedersen1,2 The human glucose transporters GLUT1 and GLUT3 have a central (M7-12). They are also defined by a signature motif, the “Amotif,” with a role in glucose uptake as canonical members of the Sugar Porter consensus sequence of Gx3[D/E][R/K]xGx[R/K][K/R] (Nishimura et al, (SP) family. GLUT1 and GLUT3 share a fully conserved substrate- 1993). Due to the pseudo-symmetry, the A motif is found twice, located binding site with identical substrate coordination, but differ in the cytosolic loop connecting M2 and M3 of the N-domain and in significantly in transport affinity in line with their physiological the cytosolic loop connecting M8 and M9 of the C-domain. In GLUT1 the ˚ function. Here, we present a 2.4 A crystal structure of GLUT1 in an AmotiftakestheformG84LFVNRFGRR93 and L325FVVERAGRR334.The inward open conformation and compare it with GLUT3 using both A motif is believed to be a key determinant of transport kinetics (Cain structural and functional data. Our work shows that interactions et al, 2000; Jiang et al, 2013; Nomura et al, 2015; Zhang et al, 2015), and it between a cytosolic “SP motif” and a conserved “A motif” sta- may also modulate transport by direct lipid interactions (Martens et al, bilize the outward conformational state and increases substrate 2018).WithintheMFSsuperfamily,theSPfamilyhaveafamily-defining apparent affinity. -
Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training
nutrients Review Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training Parker L. Evans 1,2,3, Shawna L. McMillin 1,2,3 , Luke A. Weyrauch 1,2,3 and Carol A. Witczak 1,2,3,4,* 1 Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA; [email protected] (P.L.E.); [email protected] (S.L.M.); [email protected] (L.A.W.) 2 Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA 3 East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27834, USA 4 Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA * Correspondence: [email protected]; Tel.: +1-252-744-1224 Received: 8 September 2019; Accepted: 8 October 2019; Published: 12 October 2019 Abstract: Aerobic exercise training and resistance exercise training are both well-known for their ability to improve human health; especially in individuals with type 2 diabetes. However, there are critical differences between these two main forms of exercise training and the adaptations that they induce in the body that may account for their beneficial effects. This article reviews the literature and highlights key gaps in our current understanding of the effects of aerobic and resistance exercise training on the regulation of systemic glucose homeostasis, skeletal muscle glucose transport and skeletal muscle glucose metabolism. Keywords: aerobic exercise; blood glucose; functional overload; GLUT; hexokinase; insulin resistance; resistance exercise; SGLT; type 2 diabetes; weightlifting 1. Introduction Exercise training is defined as planned bouts of physical activity which repeatedly occur over a duration of time lasting from weeks to years. -
Supplementary Table 3 Complete List of RNA-Sequencing Analysis of Gene Expression Changed by ≥ Tenfold Between Xenograft and Cells Cultured in 10%O2
Supplementary Table 3 Complete list of RNA-Sequencing analysis of gene expression changed by ≥ tenfold between xenograft and cells cultured in 10%O2 Expr Log2 Ratio Symbol Entrez Gene Name (culture/xenograft) -7.182 PGM5 phosphoglucomutase 5 -6.883 GPBAR1 G protein-coupled bile acid receptor 1 -6.683 CPVL carboxypeptidase, vitellogenic like -6.398 MTMR9LP myotubularin related protein 9-like, pseudogene -6.131 SCN7A sodium voltage-gated channel alpha subunit 7 -6.115 POPDC2 popeye domain containing 2 -6.014 LGI1 leucine rich glioma inactivated 1 -5.86 SCN1A sodium voltage-gated channel alpha subunit 1 -5.713 C6 complement C6 -5.365 ANGPTL1 angiopoietin like 1 -5.327 TNN tenascin N -5.228 DHRS2 dehydrogenase/reductase 2 leucine rich repeat and fibronectin type III domain -5.115 LRFN2 containing 2 -5.076 FOXO6 forkhead box O6 -5.035 ETNPPL ethanolamine-phosphate phospho-lyase -4.993 MYO15A myosin XVA -4.972 IGF1 insulin like growth factor 1 -4.956 DLG2 discs large MAGUK scaffold protein 2 -4.86 SCML4 sex comb on midleg like 4 (Drosophila) Src homology 2 domain containing transforming -4.816 SHD protein D -4.764 PLP1 proteolipid protein 1 -4.764 TSPAN32 tetraspanin 32 -4.713 N4BP3 NEDD4 binding protein 3 -4.705 MYOC myocilin -4.646 CLEC3B C-type lectin domain family 3 member B -4.646 C7 complement C7 -4.62 TGM2 transglutaminase 2 -4.562 COL9A1 collagen type IX alpha 1 chain -4.55 SOSTDC1 sclerostin domain containing 1 -4.55 OGN osteoglycin -4.505 DAPL1 death associated protein like 1 -4.491 C10orf105 chromosome 10 open reading frame 105 -4.491 -
Activity-Dependent Regulation of Prestin Expression in Mouse Outer Hair Cells
J Neurophysiol 113: 3531–3542, 2015. First published March 25, 2015; doi:10.1152/jn.00869.2014. Activity-dependent regulation of prestin expression in mouse outer hair cells Yohan Song, Anping Xia, Hee Yoon Lee, Rosalie Wang, Anthony J. Ricci, and John S. Oghalai Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California Submitted 4 November 2014; accepted in final form 19 March 2015 Song Y, Xia A, Lee HY, Wang R, Ricci AJ, Oghalai JS. patch-clamp recording conditions (Kakehata and Santos-Sac- Activity-dependent regulation of prestin expression in mouse outer chi, 1995 and 1996; Santos-Sacchi 1991; Santos-Sacchi et al. hair cells. J Neurophysiol 113: 3531–3542, 2015. First published 1998a). Thus, measuring the NLC is a common way of assess- March 25, 2015; doi:10.1152/jn.00869.2014.—Prestin is a membrane protein necessary for outer hair cell (OHC) electromotility and normal ing the amount of functional prestin within an OHC (Abe et al. 2007; Oliver and Fakler 1999;). hearing. Its regulatory mechanisms are unknown. Several mouse Downloaded from models of hearing loss demonstrate increased prestin, inspiring us to There are many ways to modulate the voltage dependence of investigate how hearing loss might feedback onto OHCs. To test force production by prestin protein within the plasma mem- whether centrally mediated feedback regulates prestin, we developed brane, such as changing the surrounding lipid environment, a novel model of inner hair cell loss. Injection of diphtheria toxin (DT) intracellular Ca2ϩ level, membrane tension, membrane poten- into adult CBA mice produced significant loss of inner hair cells tial, and ionic composition of the intracellular and extracellular without affecting OHCs. -
The Concise Guide to Pharmacology 2019/20
Edinburgh Research Explorer THE CONCISE GUIDE TO PHARMACOLOGY 2019/20 Citation for published version: Cgtp Collaborators 2019, 'THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters', British Journal of Pharmacology, vol. 176 Suppl 1, pp. S397-S493. https://doi.org/10.1111/bph.14753 Digital Object Identifier (DOI): 10.1111/bph.14753 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: British Journal of Pharmacology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology (2019) 176, S397–S493 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters Stephen PH Alexander1 , Eamonn Kelly2, Alistair Mathie3 ,JohnAPeters4 , Emma L Veale3 , Jane F Armstrong5 , Elena Faccenda5 ,SimonDHarding5 ,AdamJPawson5 , Joanna L -
A SARS-Cov-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing
A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing Supplementary Information Supplementary Discussion All SARS-CoV-2 protein and gene functions described in the subnetwork appendices, including the text below and the text found in the individual bait subnetworks, are based on the functions of homologous genes from other coronavirus species. These are mainly from SARS-CoV and MERS-CoV, but when available and applicable other related viruses were used to provide insight into function. The SARS-CoV-2 proteins and genes listed here were designed and researched based on the gene alignments provided by Chan et. al. 1 2020 . Though we are reasonably sure the genes here are well annotated, we want to note that not every protein has been verified to be expressed or functional during SARS-CoV-2 infections, either in vitro or in vivo. In an effort to be as comprehensive and transparent as possible, we are reporting the sub-networks of these functionally unverified proteins along with the other SARS-CoV-2 proteins. In such cases, we have made notes within the text below, and on the corresponding subnetwork figures, and would advise that more caution be taken when examining these proteins and their molecular interactions. Due to practical limits in our sample preparation and data collection process, we were unable to generate data for proteins corresponding to Nsp3, Orf7b, and Nsp16. Therefore these three genes have been left out of the following literature review of the SARS-CoV-2 proteins and the protein-protein interactions (PPIs) identified in this study. -
Towards the Elucidation of Orphan Lysosomal Transporters Quentin Verdon
Towards the Elucidation of Orphan Lysosomal Transporters Quentin Verdon To cite this version: Quentin Verdon. Towards the Elucidation of Orphan Lysosomal Transporters. Cancer. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS144. tel-01827233 HAL Id: tel-01827233 https://tel.archives-ouvertes.fr/tel-01827233 Submitted on 2 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS144 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY PREPAREE A L’UNIVERSITE PARIS-SUD ECOLE DOCTORALE N°568 BIOSIGNE | Signalisations et réseaux intégratifs en biologie Spécialité de doctorat : aspects moléculaires et cellulaires de la biologie Par Mr Quentin Verdon Towards the elucidation of orphan lysosomal transporters: several shots on target and one goal Thèse présentée et soutenue à Paris le 29/06/2016 » : Composition du Jury : Mr Le Maire Marc Professeur, Université Paris-Sud Président Mr Birman Serge Directeur de recherche, CNRS Rapporteur Mr Murray James Assistant professor, Trinity college Dublin Rapporteur Mr Goud Bruno Directeur de recherche, CNRS Examinateur Mr Gasnier Bruno Directeur de recherche, CNRS Directeur de thèse Mme Sagné Corinne Chargée de recherche, INSERM Co-directeur de thèse Table of contents Remerciements (acknowledgements) 6 Abbreviations 7 Abstracts 10 Introduction 12 1 Physiology of lysosomes 12 1.1 Discovery and generalities 12 1.2 Degradative function 13 1.3. -
Expression of SLC2A9 Isoforms in the Kidney and Their Localization in Polarized Epithelial Cells
Expression of SLC2A9 Isoforms in the Kidney and Their Localization in Polarized Epithelial Cells Toru Kimura1, Michi Takahashi1, Kunimasa Yan2, Hiroyuki Sakurai1* 1 Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan, 2 Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo, Japan Abstract Background: Many genome-wide association studies pointed out that SLC2A9 gene, which encodes a voltage-driven urate transporter, SLC2A9/GLUT9 (a.k.a. URATv1), as one of the most influential genes for serum urate levels. SLC2A9 is reported to encode two splice variants: SLC2A9-S (512 amino acids) and SLC2A9-L (540 amino acids), only difference being at their N- termini. We investigated isoform-specific localization of SLC2A9 in the human kidney and role of N-terminal amino acids in differential sorting in vitro. Methodology/Principal Findings: Isoform specific antibodies against SLC2A9 were developed and human kidney sections were stained. SLC2A9-S was expressed in the apical side of the collecting duct while SLC2A9-L was expressed in the basolateral side of the proximal tubule. GFP fused SLC2A9s were expressed in MDCK cells and intracellular localization was observed. SLC2A9-S was expressed at both apical and basolateral membranes, whereas SLC2A9-L was expressed only at the basolateral membrane. Although SLC2A9-L has a putative di-leucine motif at 33th and 34th leucine, deletion of the motif or replacement of leucine did not affect its subcellular localization. When up to 16 amino acids were removed from the N- terminal of SLC2A9-S or when up to 25 amino acids were removed from the N-terminal of SLC2A9-L, there was no change in their sorting. -
2.1 Drosophila Melanogaster
Overend, Gayle (2010) Drosophila as a model for the Anopheles Malpighian tubule. PhD thesis, University of Glasgow. http://theses.gla.ac.uk/1604/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Drosophila as a model for the Anopheles Malpighian tubule A thesis submitted for the degree of Doctor of Philosophy at the University of Glasgow Gayle Overend Integrative and Systems Biology Faculty of Biomedical and Life Sciences University of Glasgow Glasgow G11 6NU UK August 2009 2 The research reported within this thesis is my own work except where otherwise stated, and has not been submitted for any other degree. Gayle Overend 3 Abstract The insect Malpighian tubule is involved in osmoregulation, detoxification and immune function, physiological processes which are essential for insect development and survival. As the Malpighian tubules contain many ion channels and transporters, they could be an effective tissue for targeting with novel pesticides to control populations of Diptera. Many of the insecticide compounds used to control insect pest species are no longer suited to their task, and so new means of control must be found.