Is the ZIKV Congenital Syndrome and Microcephaly Due to Syndemism with Latent Virus Coinfection?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Novel 2-Herpesvirus of the Rhadinovirus 2 Lineage In
Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Letter A Novel ␥2-Herpesvirus of the Rhadinovirus 2 Lineage in Chimpanzees Vincent Lacoste,1 Philippe Mauclère,1,2 Guy Dubreuil,3 John Lewis,4 Marie-Claude Georges-Courbot,3 andAntoine Gessain 1,5 1Unite´d’Epide´miologie et Physiopathologie des Virus Oncoge`nes, De´partement du SIDA et des Re´trovirus, Institut Pasteur, 75724 Paris Cedex 15, France; 2Centre Pasteur du Cameroun, BP 1274, Yaounde´, Cameroon; 3Centre International de Recherches Me´dicales, Franceville, Gabon; 4International Zoo Veterinary Group, Keighley, West Yorkshire BD21 1AG, UK Old World monkeys and, recently, African great apes have been shown, by serology and polymerase chain reaction (PCR), to harbor different ␥2-herpesviruses closely related to Kaposi’s sarcoma-associated Herpesvirus (KSHV). Although the presence of two distinct lineages of KSHV-like rhadinoviruses, RV1 and RV2, has been revealed in Old World primates (including African green monkeys, macaques, and, recently, mandrills), viruses belonging to the RV2 genogroup have not yet been identified from great apes. Indeed, the three yet known ␥2-herpesviruses in chimpanzees (PanRHV1a/PtRV1, PanRHV1b) and gorillas (GorRHV1) belong to the RV1 group. To investigate the putative existence of a new RV2 Rhadinovirus in chimpanzees and gorillas we have used the degenerate consensus primer PCR strategy for the Herpesviral DNA polymerase gene on 40 wild-caught animals. This study led to the discovery, in common chimpanzees, of a novel ␥2-herpesvirus belonging to the RV2 genogroup, termed Pan Rhadino-herpesvirus 2 (PanRHV2). Use of specific primers and internal oligonucleotide probes demonstrated the presence of this novel ␥2-herpesvirus in three wild-caught animals. -
Changes to Virus Taxonomy 2004
Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales -
Guide for Common Viral Diseases of Animals in Louisiana
Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. -
Seroprevalence of Antibodies to Primate Erythroparvovirus 1 (B19V) in Australia Helen M
Faddy et al. BMC Infectious Diseases (2018) 18:631 https://doi.org/10.1186/s12879-018-3525-7 RESEARCHARTICLE Open Access Seroprevalence of antibodies to primate erythroparvovirus 1 (B19V) in Australia Helen M. Faddy1,2* , Elise C. Gorman1,2, Veronica C. Hoad3, Francesca D. Frentiu2, Sarah Tozer4 and R. L. P. Flower1,2 Abstract Backgroud: Primate erythroparvovirus 1 (B19V) is a globally ubiquitous DNA virus. Infection results in a variety of clinical presentations including erythema infectiosum in children and arthralgia in adults. There is limited understanding of the seroprevalence of B19V antibodies in the Australian population and therefore of population- wide immunity. This study aimed to investigate the seroprevalence of B19V antibodies in an Australian blood donor cohort, along with a cohort from a paediatric population. Methods: Age/sex/geographical location stratified plasma samples (n = 2221) were collected from Australian blood donors. Samples were also sourced from paediatric patients (n = 223) in Queensland. All samples were screened for B19V IgG using an indirect- enzyme-linked immunosorbent assay. Results: Overall, 57.90% (95% CI: 55.94%–59.85%) of samples tested positive for B19V IgG, with the national age- standardized seroprevalence of B19V exposure in Australians aged 0 to 79 years estimated to be 54.41%. Increasing age (p < 0.001) and state of residence (p < 0.001) were independently associated with B19V exposure in blood donors, with the highest rates in donors from Tasmania (71.88%, 95% CI: 66.95%–76.80%) and donors aged 65–80 years (78.41%, 95% CI: 74.11%–82.71%). A seroprevalence of 52.04% (95% CI: 47.92%–56.15%) was reported in women of child-bearing age (16 to 44 years). -
Microtubule-Dependent Trafficking of Alphaherpesviruses in the Nervous
viruses Review Microtubule-Dependent Trafficking of Alphaherpesviruses in the Nervous System: The Ins and Outs Drishya Diwaker 1 and Duncan W. Wilson 1,2,* 1 Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; [email protected] 2 Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA * Correspondence: [email protected]; Tel.: +1-(718)-430-2305 Received: 29 November 2019; Accepted: 15 December 2019; Published: 17 December 2019 Abstract: The Alphaherpesvirinae include the neurotropic pathogens herpes simplex virus and varicella zoster virus of humans and pseudorabies virus of swine. These viruses establish lifelong latency in the nuclei of peripheral ganglia, but utilize the peripheral tissues those neurons innervate for productive replication, spread, and transmission. Delivery of virions from replicative pools to the sites of latency requires microtubule-directed retrograde axonal transport from the nerve terminus to the cell body of the sensory neuron. As a corollary, during reactivation newly assembled virions must travel along axonal microtubules in the anterograde direction to return to the nerve terminus and infect peripheral tissues, completing the cycle. Neurotropic alphaherpesviruses can therefore exploit neuronal microtubules and motors for long distance axonal transport, and alternate between periods of sustained plus end- and minus end-directed motion at different stages of their infectious cycle. This review summarizes our current understanding of the molecular details by which this is achieved. Keywords: herpes simplex virus; pseudorabies virus; neurons; anterograde axonal transport; retrograde axonal transport; microtubules; motors 1. -
Where Do We Stand After Decades of Studying Human Cytomegalovirus?
microorganisms Review Where do we Stand after Decades of Studying Human Cytomegalovirus? 1, 2, 1 1 Francesca Gugliesi y, Alessandra Coscia y, Gloria Griffante , Ganna Galitska , Selina Pasquero 1, Camilla Albano 1 and Matteo Biolatti 1,* 1 Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; [email protected] (F.G.); gloria.griff[email protected] (G.G.); [email protected] (G.G.); [email protected] (S.P.); [email protected] (C.A.) 2 Complex Structure Neonatology Unit, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 19 March 2020; Accepted: 5 May 2020; Published: 8 May 2020 Abstract: Human cytomegalovirus (HCMV), a linear double-stranded DNA betaherpesvirus belonging to the family of Herpesviridae, is characterized by widespread seroprevalence, ranging between 56% and 94%, strictly dependent on the socioeconomic background of the country being considered. Typically, HCMV causes asymptomatic infection in the immunocompetent population, while in immunocompromised individuals or when transmitted vertically from the mother to the fetus it leads to systemic disease with severe complications and high mortality rate. Following primary infection, HCMV establishes a state of latency primarily in myeloid cells, from which it can be reactivated by various inflammatory stimuli. Several studies have shown that HCMV, despite being a DNA virus, is highly prone to genetic variability that strongly influences its replication and dissemination rates as well as cellular tropism. In this scenario, the few currently available drugs for the treatment of HCMV infections are characterized by high toxicity, poor oral bioavailability, and emerging resistance. -
ICTV Virus Taxonomy Profile: Parvoviridae
ICTV VIRUS TAXONOMY PROFILES Cotmore et al., Journal of General Virology 2019;100:367–368 DOI 10.1099/jgv.0.001212 ICTV ICTV Virus Taxonomy Profile: Parvoviridae Susan F. Cotmore,1,* Mavis Agbandje-McKenna,2 Marta Canuti,3 John A. Chiorini,4 Anna-Maria Eis-Hubinger,5 Joseph Hughes,6 Mario Mietzsch,2 Sejal Modha,6 Mylene Ogliastro,7 Judit J. Penzes, 2 David J. Pintel,8 Jianming Qiu,9 Maria Soderlund-Venermo,10 Peter Tattersall,1,11 Peter Tijssen12 and ICTV Report Consortium Abstract Members of the family Parvoviridae are small, resilient, non-enveloped viruses with linear, single-stranded DNA genomes of 4–6 kb. Viruses in two subfamilies, the Parvovirinae and Densovirinae, are distinguished primarily by their respective ability to infect vertebrates (including humans) versus invertebrates. Being genetically limited, most parvoviruses require actively dividing host cells and are host and/or tissue specific. Some cause diseases, which range from subclinical to lethal. A few require co-infection with helper viruses from other families. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the Parvoviridae, which is available at www.ictv.global/report/parvoviridae. Table 1. Characteristics of the family Parvoviridae Typical member: human parvovirus B19-J35 G1 (AY386330), species Primate erythroparvovirus 1, genus Erythroparvovirus, subfamily Parvovirinae Virion Small, non-enveloped, T=1 icosahedra, 23–28 nm in diameter Genome Linear, single-stranded DNA of 4–6 kb with short terminal hairpins Replication Rolling hairpin replication, a linear adaptation of rolling circle replication. Dynamic hairpin telomeres prime complementary strand and duplex strand-displacement synthesis; high mutation and recombination rates Translation Capped mRNAs; co-linear ORFs accessed by alternative splicing, non-consensus initiation or leaky scanning Host range Parvovirinae: mammals, birds, reptiles. -
Topics in Viral Immunology Bruce Campell Supervisory Patent Examiner Art Unit 1648 IS THIS METHOD OBVIOUS?
Topics in Viral Immunology Bruce Campell Supervisory Patent Examiner Art Unit 1648 IS THIS METHOD OBVIOUS? Claim: A method of vaccinating against CPV-1 by… Prior art: A method of vaccinating against CPV-2 by [same method as claimed]. 2 HOW ARE VIRUSES CLASSIFIED? Source: Seventh Report of the International Committee on Taxonomy of Viruses (2000) Edited By M.H.V. van Regenmortel, C.M. Fauquet, D.H.L. Bishop, E.B. Carstens, M.K. Estes, S.M. Lemon, J. Maniloff, M.A. Mayo, D. J. McGeoch, C.R. Pringle, R.B. Wickner Virology Division International Union of Microbiological Sciences 3 TAXONOMY - HOW ARE VIRUSES CLASSIFIED? Example: Potyvirus family (Potyviridae) Example: Herpesvirus family (Herpesviridae) 4 Potyviruses Plant viruses Filamentous particles, 650-900 nm + sense, linear ssRNA genome Genome expressed as polyprotein 5 Potyvirus Taxonomy - Traditional Host range Transmission (fungi, aphids, mites, etc.) Symptoms Particle morphology Serology (antibody cross reactivity) 6 Potyviridae Genera Bymovirus – bipartite genome, fungi Rymovirus – monopartite genome, mites Tritimovirus – monopartite genome, mites, wheat Potyvirus – monopartite genome, aphids Ipomovirus – monopartite genome, whiteflies Macluravirus – monopartite genome, aphids, bulbs 7 Potyvirus Taxonomy - Molecular Polyprotein cleavage sites % similarity of coat protein sequences Genomic sequences – many complete genomic sequences, >200 coat protein sequences now available for comparison 8 Coat Protein Sequence Comparison (RNA) 9 Potyviridae Species Bymovirus – 6 species Rymovirus – 4-5 species Tritimovirus – 2 species Potyvirus – 85 – 173 species Ipomovirus – 1-2 species Macluravirus – 2 species 10 Higher Order Virus Taxonomy Nature of genome: RNA or DNA; ds or ss (+/-); linear, circular (supercoiled?) or segmented (number of segments?) Genome size – 11-383 kb Presence of envelope Morphology: spherical, filamentous, isometric, rod, bacilliform, etc. -
Modeling Infectious Disease in Mice: Co-Adaptation and the Role of Host-Specific Ifnc Responses
Opinion Modeling Infectious Disease in Mice: Co-Adaptation and the Role of Host-Specific IFNc Responses Jo¨ rn Coers1*, Michael N. Starnbach1, Jonathan C. Howard2 1 Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Institute for Genetics, University of Cologne, Cologne, Germany The advantages of the mouse as a inability of a pathogen to colonize the and rodents, binds complement inhibitory model organism in biomedical research non-typical host effectively. Colonization molecules of either host species and evades are many. The molecular and genetic often relies on species-specific interactions both human and rodent serum-mediated toolbox developed for the mouse over the of microbial ligands with host cell recep- killing [4]. This example illustrates a last 100 years enables researchers to tors. For example, the bacterial effector general principle: a pathogen must be able manipulate and study gene function in internalin A expressed by Listeria monocyto- to endure or overcome innate immune vivo almost at will. Time and time again, genes binds to the host E-cadherin receptor responses that drastically interfere with its scientific findings obtained through the use to mediate bacterial internalization, an survival and/or transmission to another of mouse models have proven to be essential step for the microbe to breach the suitable host. Pathogens must, therefore, relevant to human health. The field of intestinal epithelial barrier after oral have evolved subversion strategies for all immunology in particular has profited ingestion [2]. A single amino acid change the innate immune mechanisms that, if tremendously from the powers of the in the mouse ortholog of E-cadherin unrestricted, would result in their demise. -
Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission. -
Human Herpesvirus-6 and -7 in the Brain Microenvironment of Persons with Neurological Pathology and Healthy People
International Journal of Molecular Sciences Article Human Herpesvirus-6 and -7 in the Brain Microenvironment of Persons with Neurological Pathology and Healthy People Sandra Skuja 1,* , Simons Svirskis 2 and Modra Murovska 2 1 Institute of Anatomy and Anthropology, R¯ıga Stradin, š University, Kronvalda blvd 9, LV-1010 R¯ıga, Latvia 2 Institute of Microbiology and Virology, R¯ıga Stradin, š University, Ratsup¯ ¯ıtes str. 5, LV-1067 R¯ıga, Latvia; [email protected] (S.S.); [email protected] (M.M.) * Correspondence: [email protected]; Tel.: +371-673-20421 Abstract: During persistent human beta-herpesvirus (HHV) infection, clinical manifestations may not appear. However, the lifelong influence of HHV is often associated with pathological changes in the central nervous system. Herein, we evaluated possible associations between immunoexpression of HHV-6, -7, and cellular immune response across different brain regions. The study aimed to explore HHV-6, -7 infection within the cortical lobes in cases of unspecified encephalopathy (UEP) and nonpathological conditions. We confirmed the presence of viral DNA by nPCR and viral antigens by immunohistochemistry. Overall, we have shown a significant increase (p < 0.001) of HHV antigen expression, especially HHV-7 in the temporal gray matter. Although HHV-infected neurons were found notably in the case of HHV-7, our observations suggest that higher (p < 0.001) cell tropism is associated with glial and endothelial cells in both UEP group and controls. HHV-6, predominantly detected in oligodendrocytes (p < 0.001), and HHV-7, predominantly detected in both astrocytes and oligodendrocytes (p < 0.001), exhibit varying effects on neural homeostasis. -
Improved Bacterial Recombineering by Parallelized Protein Discovery
Improved bacterial recombineering by parallelized protein discovery Timothy M. Wanniera,1, Akos Nyergesa,b, Helene M. Kuchwaraa, Márton Czikkelyb, Dávid Baloghb, Gabriel T. Filsingera, Nathaniel C. Bordersa, Christopher J. Gregga, Marc J. Lajoiea, Xavier Riosa, Csaba Pálb, and George M. Churcha,1 aDepartment of Genetics, Harvard Medical School, Boston, MA 02115; and bSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged HU-6726, Hungary Edited by Susan Gottesman, National Institutes of Health, Bethesda, MD, and approved April 17, 2020 (received for review January 30, 2020) Exploiting bacteriophage-derived homologous recombination pro- recombineering, is the molecular mechanism that drives MAGE cesses has enabled precise, multiplex editing of microbial genomes and DIvERGE (4, 32, 33). This method was first described in and the construction of billions of customized genetic variants in a E. coli, and is most commonly promoted by the expression of bet single day. The techniques that enable this, multiplex automated ge- (here referred to as Redβ) from the Red operon of Escherichia nome engineering (MAGE) and directed evolution with random ge- phage λ (5, 6, 34). Redβ is an ssDNA-annealing protein (SSAP) nomic mutations (DIvERGE), are however, currently limited to a whose role in recombineering is to anneal ssDNA to compli- handful of microorganisms for which single-stranded DNA-annealing mentary genomic DNA at the replication fork. Although im- proteins (SSAPs) that promote efficient recombineering have been provements to recombineering efficiency have been made (7–9), identified. Thus, to enable genome-scale engineering in new hosts, the core protein machinery has remained constant, with Redβ efficient SSAPs must first be found.