<<

SSoollaarr mmiissssiioonn ““CCOORROONNAASS--PPHHOOTTOONN””

SScciieennttiiffiicc oobbjjeeccttiivveess aanndd ffiirrsstt oobbsseerrvvaattiioonnaall rreessuullttss

YYuu..DD..KKoottoovv PPrriinncciippaall iinnvveessttiiggaattoorr ooff tthhee PPrroojjeecctt ««CCOORROONNAASS -- PPHHOOTTOONN»» oonn bbeehhaallff ooff pprroojjeecctt tteeaamm

52-ed session of COPUOS 33--1122 JJuunnee 22000099

1 RRuussssiiaann pprrooggrraamm CCOORROONNAASS

CORONAS ‰ Complex ORbital ObservatioN of Activity of Sun

Sponsored by FEDERAL SPACE AGENCY (of ) and RUSSIAN ACADEMY OF SCIENCE

CCOORROONNAASS--II ffrroomm 0033..11999944 ttoo 1122..22000000 ((IIZZMMIIRRAANN,, CCBB ““YYuuzznnooee””)) CCOORROONNAASS--FF 0077..22000011 ttoo 1122..22000055 ------||||------

CCOORROONNAASS--PPHHOOTTOONN 3300..0011..22000099 ‰‰ ((MMEEPPhhII,, NNIIIIEEMM,, VVNNIIIIEEMM ) 2 SSoollaarr aaccttiivviittyy pprroobblleemmss

û 1. Lack of agreed model of solar activity prediction. As a result ‰ high risk in the final determination of the target date for the manned mission flight out of Earth magnitosphere .

û 2. How much input of Total Solar Irradiance variation in global climate warming?

û 3. Lack of reliable prediction of solar event with intense flux of energetic particles.

3 23 and 24 solar cycles

4

Temperature variation during last 400 year

Upper panel Black line - average number of solar spots

Bottom panel Comparison of surface temperature (blue line) with Total solar irradiation (orange line)

6 The main goal of CORONAS-PHOTON mission is

Detailed study of the high energy processes in solar flare on basis of electromagnetic hard radiation monitoring in the wide energy range from EUV up to high energy - radiation (~2000MeV)

7 EElleeccttrroommaaggnneettiicc rraaddiiaattiioonn ffrroomm iinntteennssee ssoollaarr ffllaarree

8 Main objectives of the mission EElleeccttrroommaaggnneettiicc ssoollaarr ffllaarree rraaddiiaattiioonn aanndd nneeuuttrroonnss SSttuuddyy ooff tthhee tteemmppoorraall ddyynnaammiicc ooff hhaarrdd eelleeccttrroommaaggnneettiicc rraaddiiaattiioonn ffrroomm ffuullll ddiisskk iinn aa wwiiddee eenneerrggyy rraannggee ffrroomm EEUUVV ttoo 22000000MMeeVV;; NNuucclleeaarr ggaammmmaa--lliinneess ssppeeccttrroossccooppyy ooff SSoollaarr ffllaarree rraaddiiaattiioonn;; MMeeaassuurreemmeenntt ooff lliinneeaarr ppoollaarriizzaattiioonn aanndd rraappiidd vvaarriiaabbiilliittyy ooff hhaarrdd XX--rraayy eemmiissssiioonn dduurriinngg tthhee ffllaarreess;; DDeetteeccttiioonn ooff ssoollaarr nneeuuttrroonnss wwiitthh eenneerrggiieess hhiigghheerr 2200MMeeVV;; SSttuuddyy ooff ssppaattiiaall aanndd tteemmppoorraall ddyynnaammiiccss ooff hhoott ppllaassmmaa rreeggiioonnss iinn SSoollaarr aattmmoosspphheerree bbyy oobbsseerrvvaattiioonn ooff XX-- lliinnee aanndd ccoonnttiinnuuuumm rraaddiiaattiioonn;; MMoonniittoorriinngg ooff tthhee SSoollaarr eexxttrreemmee uullttrraa--vviioolleett ((EEUUVV))

9 Additional scientific objectives

ûAstrophysics óHard X-rays and gamma-rays of GRB

ûCosmic rays óEnergy spectra and pitch angle distributions of protons, electrons, α-particles and light ions.

ûEarth upper atmosphere óMonitoring of upper Earth atmosphere by absorption of EUV solar radiation.

10 Scientific organization û 1Moscow Engineering Physics Institute, Moscow, Russia (MEPhI) û 2Indian Centre for Space Physics, Kolkata, India (ICSP) û 3Ioffe Physical Technical Institute, St. Petersburg, Russia (Ioffe PhTI) û 4Karazin Kharkiv National University, Kharkiv, Ukraine (Karasin KNU) û 5Lebedev Physical Institute, Moscow, Russia (Lebedev FIAN) û 6NPP “Geologorazvedka”, St. Petersburg, Russia (GeoPhysic) û 7Pushkov Institute of terrestrial Magnetizm, Ionosphere and Radiovawe Propagation, Troitsk, Moscow region, Russia (IZMIRAN) û 8Research Institute for Electromechanics, Istra, Moscow region, Russia (NIIEM) û 9Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia (Skobeltsyn INPh) û 10Space Research Institute, Moscow, Russia (SRI) û 11Space Research Centre, Wroclaw, Poland (SRC) û 12Tata Institute of Fundamental Research, Mumbai, India (TIFR) û 13Vikram Sarabhai Space Centre, Thiruvanthapuram, India (VSSC) û 14Research Center for Earth Operative Monitoring, Moscow, Russia (NC EOM)

11 Yu.D.Kotov1, Yu.I.Alikin8, R.L.Aptekar3, A.I.Arkhangelski1, K.V.Anufreichik10, M.V.Bessonov1, S.I.Boldyrev7, S.A.Bogachev5, M.V.Buntov10, A.S.Buslov1, K.F.Vlasik1, A.K.Goncharov14, Yu.I.Denisov9, V.A.Dergachev3, A.V.Dudnik4, M.P.Gassieva8, A.S.Glyanenko1, V.V.Kadilin1, P.A.Kalmykov1, I.V.Kozlov10, A.V.Kochemasov1, E.M.Kruglov3, S.V.Kuzin5, V.D.Kuznetsov7, N.Lebedev7, E.E.Lupar1, G.A.Matveev3, E.P.Mazets3, A.Nandi2, N.N.Novikova14, A.A.Pertsov5, A.R.Rao12, I.V.Rubsov1, A.D.Ryabova10, M.I.Savchenko3, R.S.Salikhov8, B.Sylvester11, J.Sylvester11, Yu.A.Trofimov1, V.G.Tyshkevich1, M.K.Hingar12, V.V.Khmylko3, S.K.Chakrabarti2, S.Sankarattil13, Y.Chichikaljuk3, I.V.Chulkov10, V.N.Yurov1

12 Solar radiation monitoring

Instrument Parameters, registered radiation Developing organization High energy spectrometer • Gamma-ray spectroscopy 0.2 – 2000MeV MEPhI, Moscow, Russia NATALYA-2M • Solar neutrons 20 – 300MeV Low energy gamma-ray • Hard X-ray spectroscopy 15 – 150keV TIFR, Mumbai & ICSP, telescope RT-2 • Spectrometric mode 0.10 – 1MeV Kolkata, India • Hard X-ray solar flares image. Hard X-ray polarimeter- • Hard X-ray polarization 20 – 150keV MEPhI, Moscow, Russia; spectrometer PENGUIN-M • Soft X-ray monitoring 2 – 20keV Ioffe PhTI, St-Petersburg • X-ray, γ-ray spectroscopy 0.015 – 5MeV Russia X-ray and gamma-ray Solar flares and gamma-ray bursts hard X-ray Ioffe PhTI, St- spectrometer KONUS-RF & gamma-ray spectroscopy in the energy Petersburg, Russia range of 10keV – 12MeV Fast X-ray monitor BRM Hard X-ray monitoring 20 – 600keV in six MEPhI, Moscow, Russia channels with time resolution 2 – 3ms Fast Solar Photometer in Measurements with high time resolution (0.01s) SRC, Wroclaw, Poland X-rays SphinX of quiet and active corona spectra in the range 0.5 – 15KeV Multi-channel ultraviolet • Full disk EUV radiation in three pair MEPhI, Moscow, Russia monitor PHOKA spectral windows 1–11nm, 27–37nm, 121,6nm • Occultation measurements of UV absorption in Earth atmosphere 150–350km

Scientific payload (continue)

Instrument Parameters, registered radiation Developing organization Cosmic rays Charged particle Flux and energy spectra registration: Skobeltsyn INPh, analyzer Protons 4 – 80 MeV Moscow, Russia ELECTRON-M- electrons 0.2 – 4 MeV PESCA nuclei (, N, O) 6 – 15 MeV/nucleon Satellite telescope of Flux and energy spectra registration: Karazin KNU, electrons and protons protons 9.8 – 61.0 MeV Kharkov, Ukraine STEP-F electrons 0.2 – 15 MeV α- particles 15,9 – 246.0 MeV with accuracy of particle direction (8 – 10)° Helioseismology Multichannel solar Continuous observations of solar IZMIRAN, Troitsk, photometer SOKOL optical radiation variations in seven Russia spectral channels at wavelength range of 280–1500nm

TESIS STEP-F

KONUS-RF-anti

pressure vessel

PHOKA

RT-2/GA

KONUS-RF RT-2/S

N-2M RT-2/G

PINGUIN

16 SScciieennttiiffiicc ppaayyllooaadd

17 CCOORROONNAASS--PPHHOOTTOONN SSppaacceeccrraafftt Satellite CORONAS – PHOTON (METEOR type) Total weight 1860kg, payload 600kg Launcher: Cyclon-3M Cosmodrome: Plesetsk Launching date 30 January 2009

Orbit: Circular 557 - 574 km. Inclination 82.5 deg Nominal mission lifetime 3 years extended 5 years Telemetry link down 8.2 GHz; Onboard memory 1.0Gbyte

18 CCOORROONNAASS--PPHHOOTTOONN SSppaacceeccrraafftt

Orientation of longitudinal axis to the Pointing Sun direction (daylight part of orbit) accuracy ±2'

Duration of orientation recovery after 1 min achieve day part of orbit

Destabilization of the longitudinal 7.2''/sec axis during the shadow part of the orbit Accuracy of time registration 1 msec

19 20 Russian North (Day temperature -300C)

21 22 23 Information exchange between Satellite and Ground infrastructure

CORONAS-PHOTON Command link up TIFR ()

VNIIEV

Commands Ioffe PhTI, St- Petergurg    

CFC

 Ground  » SRI, Moscow "  -

 command  !



segment   8.2 GHz     

  

«

.

   

 Ground

Antenna in Moscow         

-2 -7 segment of Lebedev PhI,      

 receiving and  Moscow   

     distribution of s

   r

 ,

. information e





s 

   MEPhI U IZMIRAN, Troitsk

Schedule of link down Leadership of the project Basic link down Reserve link Ballistic prognos down Primary MEPhI MSUniv, Moscow telemetry Schedule of prevention work r

informatio e Estimation of v r r e o s

communication quality t - a r P KhNU, Ukraine e T p Scientific information F O FTP-server Instrument Natalya-2M

P γ

25 «Natalya» 12 – 400MeV (protons)

3,0x10-2

M -     2,5x10-2

2,0x10-2    / 1

, N 1,5x10-2

1,0x10-2

5,0x10-3

0,0 0 50 100 150 200 250            (   )      M (12-400 )   -2,       10.03.2009. 26  

PHOKA PHHOKOA KA

27 Monitoring of upper Earth atmosphere parameters by observation of solar EUV occultation

Solar radiation Earth

Atmosphere

Orbit of satellite

28 Occultation observations

29 TESIS first images

171Å 304Å 30 TESIS/Coronas-Photon XRT/Hinode 7 April 2009

31 SphinX Coronas-Photon/Electron-M-Pesca

Automatic procession and storage of data: Space Monitoring Data Center (SMDC) on MSU/SINP: http://smdc.sinp.msu.ru

Visualisation

Access to database

The current measurements of the Electron- M-Pesca on SMDC web-portal 33 SSTTEEPP--FF –– MMaapp ooff rraaddiiaattiioonn lleevveell ffoorr 555500 kkmm oorrbbiitt ffiirrsstt rreessuullttss

Electrons with energy in the range =0,25 – 0,49 

Observation were performed in a quite interval 3 œ 13 March 2009 Processing was made with participants of personal from French Research

Aerospace Center ONERA 34 Konus-RF first observed cosmic gamma-burst

35 KONUS - RF Simultaneous observations by CORONAS-PHOTON/KONUS-RF and KONUS-VIND of very intense gamma-burst on 8 April 2009 Present instrument gives much more detailed information

36 Conclusion

Satellite injected to the right orbit (pre-valuated); All satellite systems and scientific instruments are working in according with requirement specifications; In orbit adjust settings and calibration of instruments are completion; All instrument are switched in the monitoring mode. The first scientific result are getting; Some observation are "on-the-flyª published on the site of the participated organization

37