Misleading Leukocoria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pattern of Vitreo-Retinal Diseases at the National Referral Hospital in Bhutan: a Retrospective, Hospital-Based Study Bhim B
Rai et al. BMC Ophthalmology (2020) 20:51 https://doi.org/10.1186/s12886-020-01335-x RESEARCH ARTICLE Open Access Pattern of vitreo-retinal diseases at the national referral hospital in Bhutan: a retrospective, hospital-based study Bhim B. Rai1,2* , Michael G. Morley3, Paul S. Bernstein4 and Ted Maddess1 Abstract Background: Knowing the pattern and presentation of the diseases is critical for management strategies. To inform eye-care policy we quantified the pattern of vitreo-retinal (VR) diseases presenting at the national referral hospital in Bhutan. Methods: We reviewed all new patients over three years from the retinal clinic of the Jigme Dorji Wangchuck National Referral Hospital. Demographic data, presenting complaints and duration, treatment history, associated systemic diseases, diagnostic procedures performed, and final diagnoses were quantified. Comparisons of the expected and observed frequency of gender used Chi-squared tests. We applied a sampling with replacement based bootstrap analysis (10,000 cycles) to estimate the population means and the standard errors of the means and standard error of the 10th, 25th, 50th, 75th and 90th percentiles of the ages of the males and females within 20-year cohorts. We then applied t-tests employing the estimated means and standard errors. The 2913 subjects insured that the bootstrap estimates were statistically conservative. Results: The 2913 new cases were aged 47.2 ± 21.8 years. 1544 (53.0%) were males. Housewives (953, 32.7%) and farmers (648, 22.2%) were the commonest occupations. Poor vision (41.9%), screening for diabetic and hypertensive retinopathy (13.1%), referral (9.7%), sudden vision loss (9.3%), and trauma (8.0%) were the commonest presenting symptoms. -
Frequency of Common Factors Leading to Leukocoria in Pediatric Age Group at Tertiary Care Eye Hospital: an Observational Study
Biostatistics and Biometrics Open Access Journal ISSN: 2573-2633 Research Article Biostat Biometrics Open Acc J Faisal’s Issue - January 2018 Copyright © All rights are reserved by Muhammad Faisal Fahim DOI: 10.19080/BBOAJ.2018.04.555636 Frequency of Common Factors Leading to Leukocoria in Pediatric Age Group at Tertiary Care Eye Hospital: An Observational Study Rizwana Dargahi1, Abdul Haleem1, Darikta Dargahi S1 and Muhammad Faisal Fahim2* 1Department of Ophthalmology, Shaheed Mohtarma Benazir Bhutto Medical University, Pakistan 2Department of Research & Development, Al-Ibrahim Eye Hospital, Pakistan Submission: November 27, 2017; Published: January 19, 2018 *Corresponding author: Muhammad Faisal Fahim, M.Sc. (Statistics), Statistician, Department of Research & Development, Al-Ibrahim Eye Hospital, Isra postgraduate Institute of Ophthalmology, Karachi, Pakistan, Tel: ; Email: Abstract Objective: To know the frequency of common factors leading to leukocoria in pediatric age group at a tertiary care eye hospital. Materials & methods: This was across sectional observational study carried out at Pediatric department, Al-Ibrahim eye hospital Karachi from February to July 2016. All patients younger than 10 years who presented with leukocoria were included. The excluding criteria were previous history of trauma and ocular surgery. Systemic as well as ocular examination and relevant investigations was done to know cause of was used to analyzed data. leukocoria. B. Scan was done in all the cases. If needed X-ray chest, CT scan & MRI orbit was done for confirming diagnosis. SPSS version 20.0 Results: In our country congenital cataract is the most common cause of leukocoria which comprises about 77.3% (133/172) which is treatable. 2nd common cause was persistent fetal vasculature comprises 8.1% (14/172). -
Strabismus, Amblyopia & Leukocoria
Strabismus, Amblyopia & Leukocoria [ Color index: Important | Notes: F1, F2 | Extra ] EDITING FILE Objectives: ➢ Not given. Done by: Jwaher Alharbi, Farrah Mendoza. Revised by: Rawan Aldhuwayhi Resources: Slides + Notes + 434 team. NOTE: F1& F2 doctors are different, the doctor who gave F2 said she is in the exam committee so focus on her notes Amblyopia ● Definition Decrease in visual acuity of one eye without the presence of an organic cause that explains that decrease in visual acuity. He never complaints of anything and his family never noticed any abnormalities ● Incidence The most common cause of visual loss under 20 years of life (2-4% of the general population) ● How? Cortical ignorance of one eye. This will end up having a lazy eye ● binocular vision It is achieved by the use of the two eyes together so that separate and slightly dissimilar images arising in each eye are appreciated as a single image by the process of fusion. It’s importance 1. Stereopsis 2. Larger field If there is no coordination between the two eyes the person will have double vision and confusion so as a compensatory mechanism for double vision the brain will cause suppression. The visual pathway is a plastic system that continues to develop during childhood until around 6-9 years of age. During this time, the wiring between the retina and visual cortex is still developing. Any visual problem during this critical period, such as a refractive error or strabismus can mess up this developmental wiring, resulting in permanent visual loss that can't be fixed by any corrective means when they are older Why fusion may fail ? 1. -
Commentary on the Masquerades of A
perim Ex en l & ta a l ic O p in l h t C h f Journal of Clinical & Experimental a o l m l a o n l r o Chua, J Clin Exp Ophthalmol 2016, 7:2 g u y o J Ophthalmology 10.4172/2155-9570.1000543 ISSN: 2155-9570 DOI: Commentary Open Access Commentary on the Masquerades of a Childhood Ciliary Body Medulloepithelioma: A Case of Chronic Uveitis, Cataract, and Secondary Glaucoma Jocelyn Chua* Eye Specialist Clinic, 290 Orchard Road, Singapore *Corresponding author: Dr Jocelyn Chua, Eye Specialist Clinic, 290 Orchard Road, #06-01 to 05, 238859, Singapore; Tel: +65 96897919; Email: [email protected], [email protected] Received date: February 09, 2016; Accepted date: April 20, 2016; Published date: April 25, 2016 Copyright: © 2016 Chua J. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Commentary Ciliary body medulloepithelioma is the commonest ciliary body tumor in childhood. The term “medulloepithelioma”, coined by "The masquerades of a childhood ciliary body medulloepithelioma: Grinker in 1931, best describes the origin of the tumor from the A case of chronic uveitis, cataract and secondary glaucoma" by Chua et primitive medullary epithelium located along the inner layer of the al. [1] is a case report of a healthy two year old boy who presented with optic cup. This undifferentiated medullary epithelium forms the non- a unilateral cataract, anterior uveitis and glaucoma after an innocuous pigmented ciliary body epithelium in the later years of development. -
(Diktyoma) Presenting As a Perforated, Infected Eye
Br J Ophthalmol: first published as 10.1136/bjo.61.3.229 on 1 March 1977. Downloaded from British Journal of Ophthalmology, 1977, 61, 229-232 Medulloepithelioma (diktyoma) presenting as a perforated, infected eye MOHAMED A. VIRJI Central Pathology Laboratory, Ministry of Health, Dar-es-Salaam, Tanzania SUMMARY A case of embryonal medulloepithelioma (diktyoma) presenting with perforated infected eye in a 13-year-old Black African girl is described. The tumour mass occupied most of the deformed eye, and invasion of the sclera anteriorly was seen. There was no evidence of orbital or distant tumour involvement. It is suggested that with increasing age these tumours are more likely to show frankly malignant features. Medulloepithelioma (diktyoma) is a rare neoplasm anteriorly perforated left eye, with loss of cornea, of the eye which is characterised by slow growth and purulent discharge, and a fragmenting mass of local invasion and is composed of glandular, irregular brownish-grey tissue attached mainly to neural, and mesenchymal elements (Andersen, the superior and temporal portion of the eye and 1962). It presents even rarely as an infected perfor- extending into the posterior chamber. The infection ated eye with a fungating mass replacing the ocular was controlled with systemic antibiotics and the left copyright. contents. Soudakoff (1936) reported the case of a eye was enucleated. Radiological examination of 28-year-old Chinese who had a perforated eye with the skull showed no orbital involvement, and chest tumour mass completely filling it. This paper x-rays were normal. Postoperative recovery was reports the case of a young black African girl who uneventful. -
Retinoblastoma Simulators
Retinoblastoma: Atypical Presentation & Simulators Dr. Njambi Ombaba; Paediatric Ophthalmologist, University of Nairobi Objectives • To review of typical presentation of retinoblastoma • To understand the atypical presentation • To understand the Rb simulators Presentation of retinoblastoma Growth patterns Endophytic: Inner retina, vitreous mass, no overlying vessels, pseudohypopyon Exophytic: Outer retina, SR space mass, overlying vessels, RD Diffuse: No mass, signs of inflammation/ endophthalmitis Echogenic soft tissue mass Variable shadowing – calcification Persistent on reduced gain Heterogeneous – necrosis/ haemorrhage Floating debris- vitreous seeds, increased globulin MRI- • Pre-treatment staging T1- Hyper intense to vitreous T2-Hypo intense to vitreous T1:C+Gd- homo/ heterogeneous Enhancement: Choroid & AC ON involvement Hypo intense sclera- Normal Trilateral retinoblastoma CT SCAN Typically a mass of high density Usually calcified and moderately enhancing on iodinated contrast CT has a sensitivity of 81–96%, and a higher specificity for calcification detection However, delineation of intraocular soft-tissue detail is limited. Low sensitivity for ON invasion Atypical presentation Non calcified Retinoblastoma Calcification is key to diagnosis retinoblastoma US detects calcifications in 92–95% of positive cases Non-calcified retinoblastomas: 1. Tumefaction with irregular internal structure 2. Medium reflectivity 3. Typical signs of vascularity 4. Retinal detachment with part of the retinal surface destroyed. Rare, 2% of all -
Ocular Colobomaâ
Eye (2021) 35:2086–2109 https://doi.org/10.1038/s41433-021-01501-5 REVIEW ARTICLE Ocular coloboma—a comprehensive review for the clinician 1,2,3 4 5 5 6 1,2,3,7 Gopal Lingam ● Alok C. Sen ● Vijaya Lingam ● Muna Bhende ● Tapas Ranjan Padhi ● Su Xinyi Received: 7 November 2020 / Revised: 9 February 2021 / Accepted: 1 March 2021 / Published online: 21 March 2021 © The Author(s) 2021. This article is published with open access Abstract Typical ocular coloboma is caused by defective closure of the embryonal fissure. The occurrence of coloboma can be sporadic, hereditary (known or unknown gene defects) or associated with chromosomal abnormalities. Ocular colobomata are more often associated with systemic abnormalities when caused by chromosomal abnormalities. The ocular manifestations vary widely. At one extreme, the eye is hardly recognisable and non-functional—having been compressed by an orbital cyst, while at the other, one finds minimalistic involvement that hardly affects the structure and function of the eye. In the fundus, the variability involves the size of the coloboma (anteroposterior and transverse extent) and the involvement of the optic disc and fovea. The visual acuity is affected when coloboma involves disc and fovea, or is complicated by occurrence of retinal detachment, choroidal neovascular membrane, cataract, amblyopia due to uncorrected refractive errors, etc. While the basic birth anomaly cannot be corrected, most of the complications listed above are correctable to a great 1234567890();,: 1234567890();,: extent. Current day surgical management of coloboma-related retinal detachments has evolved to yield consistently good results. Cataract surgery in these eyes can pose a challenge due to a combination of microphthalmos and relatively hard lenses, resulting in increased risk of intra-operative complications. -
Ocular Findings Associated with Myelinated Retinal Nerve Fibers
Open Access Case Report DOI: 10.7759/cureus.14552 Ocular Findings Associated With Myelinated Retinal Nerve Fibers Jeslin Kera 1 , Airaj F. Fasiuddin 2 1. Ophthalmology, University of Central Florida College of Medicine, Orlando, USA 2. Ophthalmology, Nemours Children’s Hospital, Orlando, USA Corresponding author: Jeslin Kera, [email protected] Abstract The case involves a five-year-old female patient with a myelinated retinal nerve fiber (MRNF) layer of the right optic disc. Although this is a rare, benign, and often asymptomatic condition, it is sometimes associated with ocular findings which require early detection and treatment. In this case, the patient presented with strabismus, high myopia, and amblyopia. She was found to have myelinated retinal fiber layer lesions of the superotemporal and inferotemporal retina of her right eye. This case report aims to demonstrate the importance of performing a thorough evaluation of MRNF in the pediatric patient as well as to increase awareness of this entity to avoid misdiagnosis. Categories: Ophthalmology, Pediatrics Keywords: mrnf, myelinated retinal nerve fiber layer, optic nerve myelination, amblyopia, strabismus, high myopia, leukocoria, anisometropia Introduction Myelinated retinal nerve fiber (MRNF) layer is a rare and mostly benign congenital anomaly in which the retinal nerve fibers anterior to the lamina cribrosa have a myelin sheath. Normally, the optic nerve myelination does not extend past the lamina cribrosa and into the retina. Although the direct cause is unknown, MRNF occurs when the myelination extends past this point and is detectable on the fundus examination, obscuring the underlying retinal vessels. This anomaly can be present in up to 1% of the population, and approximately 7% of the affected patients will have bilateral involvement. -
Approach to Leukocoria Intro Hi Everyone, My Name Is
PedsCases Podcast Scripts This is a text version of a podcast from Pedscases.com on the “Approach to Leukocoria.” These podcasts are designed to give medical students an overview of key topics in pediatrics. The audio versions are accessible on iTunes or at www.pedcases.com/podcasts. Approach to Leukocoria Developed by Chris Novak, Dr. Natashka Pollock and Dr. Mel Lewis for PedsCases.com. March 1, 2016 Intro Hi everyone, my name is Chris Novak. I am a medical student at the University of Alberta. Today’s podcast is designed to give medical students an organized approach to the physical exam finding of leukocoria, or an abnormal red reflex in children. This podcast was developed with Dr. Melanie Lewis, a general pediatrician and Professor at the University of Alberta and Dr. Natashka Pollock, a pediatric ophthalmologist at the Stollery Children’s Hospital in Edmonton, Alberta. The term leukocoria refers to a “white pupil” when examining the eye. In some cases leukocoria may be grossly apparent, or may be noticed by parents in photographs, however it is often an incidental finding on physical exam. While leukocoria is not a common finding, it is a critical sign of vision- and potentially life-threatening conditions including cataracts, hemorrhage, and malignancy like retinoblastoma. Different causes of leukocoria can present from the neonatal period and throughout childhood hence,the American Academy of Pediatrics recommends that all neonates have their red reflex examined before discharge from hospital, and subsequently at all well-child visits. Thus, it is important that all physicians looking after children recognize the critical nature of this presentation so that it is not missed. -
Strabismus, Amblyopia Management and Leukocoria 431Team
Strabismus, Amblyopia Management and Leukocoria Done By: Tareq Mahmoud Aljurf Lecture mostly contains pictures, but the doctor gave a lot of additional info which we added here. Leukocoria Leukocoria is white opacity of the pupil, and it is a sign not a diagnosis. Causes will be presented going backwards through the eye structures: 1. Cataract Cataract: can be congenital or acquired, usually causes blurred vision and glare. Using the ophthalmoscope if you see nice red reflex on both eyes (pic on right.) unlikely to have any visual problems. Doctor’s notes: Congenital cataract is very important, because if you don’t treat it in the first months of life Irreversible amblyopia. For the brain to unify the 2 images both should have the same shape, size and clarity. If one is clear and the other is not brain gets confused can’t put them together suppresses image from the cataract eye. If this continues for 2,3 or 4 months amblyopia. For example: If the child presents with the problem at 1 year of age already too late, you can’t do anything. (Because amblyopia happens much earlier than 1yr) The eye is connected to the brain Retina and optic nerve regarded as parts of the CNS it’s a neurological problem difficult to reverse after 3 months of suppression. 2. Persistent hyperplastic primary vitreous PHPV is a congenital condition caused by failure of the normal regression of the primary vitreous. It is usually associated with unilateral vision loss Doctor’s notes: During embryology, blood vessels come from the optic nerve to nourish the lens, they usually disappear clear vitreous. -
Successful Treatment of Ciliary Body Medulloepithelioma with Intraocular
Stathopoulos et al. BMC Ophthalmology (2020) 20:239 https://doi.org/10.1186/s12886-020-01512-y CASE REPORT Open Access Successful treatment of ciliary body medulloepithelioma with intraocular melphalan chemotherapy: a case report Christina Stathopoulos*, Marie-Claire Gaillard, Julie Schneider and Francis L. Munier Abstract Background: Intraocular medulloepithelioma is commonly treated with primary enucleation. Conservative treatment options include brachytherapy, local resection and/or cryotherapy in selected cases. We report for the first time the use of targeted chemotherapy to treat a ciliary body medulloepithelioma with aqueous and vitreous seeding. Case presentation: A 17-month-old boy with a diagnosis of ciliary body medulloepithelioma with concomitant seeding and neovascular glaucoma in the right eye was seen for a second opinion after parental refusal of enucleation. Examination under anesthesia showed multiple free-floating cysts in the pupillary area associated with iris neovascularization and a subluxated and notched lens. Ultrasound biomicroscopy revealed a partially cystic mass adjacent to the ciliary body between the 5 and 9 o’clock meridians as well as multiple nodules in the posterior chamber invading the anterior vitreous inferiorly. Fluorescein angiography demonstrated peripheral retinal ischemia. Left eye was unremarkable. Diagnosis of intraocular medulloepithelioma with no extraocular invasion was confirmed and conservative treatment initiated with combined intracameral and intravitreal melphalan injections given according to the previously described safety-enhanced technique. Ciliary tumor and seeding totally regressed after a total of 3 combined intracameral (total dose 8.1 μg) and intravitreal (total dose 70 μg) melphalan injections given every 7–10 days. Ischemic retina was treated with cryoablation as necessary. -
Pediatric Uveitis: Challenging for Ophthalmologists
PEDIATRIC UVEITIS: CHALLENGING FOR OPHTHALMOLOGISTS, COVER FOCUS COVER PATIENTS, AND PARENTS Management of these complicated diseases differs between pediatric and adult patient populations. BY LISA J. FAIA, MD, AND KIMBERLY A. DRENSER, MD, PHD Managing uveitis in children infectious versus noninfectious uveitis and by anatomic can be daunting. Difficult location. In the pediatric population, it is also helpful to examinations, anxious note age, with the following delineations: infancy (0 to parents, delays in diagnosis, 2 years), toddler-school age (2 to 10 years), and adoles- and high morbidity make cence (10 to 20 years). it especially challenging. Toxocariasis (Figure 1) rarely presents in adults. Other Although uveitis is less diagnoses seen in children but rarely, if at all, in adults common in children than in include juvenile idiopathic arthritis (JIA), tubulointerstital adults, a higher percentage (40% in children, 20% in adults) nephitis and uveitis (TINU), leukemia, retinoblastoma, presents in the form of posterior uveitis, which can be juvenile xanthogranuloma (JXG), and Blau syndrome. more devastating than more anterior disease.1 When the disease has such an early onset, the stakes are higher. Some of the biggest mistakes, aside from not delivering timely and proper treatment, are thinking that these diseases affect only the eyes, that they will “burn out,” AT A GLANCE and that local therapies will be sufficient. In this article, we briefly describe the etiology, diagnosis, treatment, and complications of pediatric uveitis, and we explore how these • Pediatric uveitis is an uncommon but potentially aspects compare with those of uveitis in adults. blinding condition with a higher rate of complications As in adults, uveitis in childhood appears to have a slight and vision loss than uveitis in adults.