Annual Report 2019

Total Page:16

File Type:pdf, Size:1020Kb

Annual Report 2019 ANNUAL REPORT 2019 Cover picture: ESA’s first Exoplanet Mission CHEOPS Photo Credit: ESA TABLE OF CONTENTS 1 Introduction..........................................................................................................................4 2 Year 2019 Review ...............................................................................................................5 3 Reports of Industrial and Institutional Members .................................................................10 3.1 Austrian Academy of Sciences .......................................................................................10 3.2 AAC - Aerospace & Advanced Composites GmbH (AAC as spin-off from AIT)..............62 3.3 Atos IT Solutions and Services GmbH .............................................................................69 3.4 ENPULSION GMBH .......................................................................................................80 3.5 EODC: Earth Observation Data Centre for Water Resources Monitoring GmbH.............83 3.6 EOX IT Services GmbH.................................................................................................87 3.7 Fachhochschule Wiener Neustadt – University of Applied Sciences Wiener Neustadt (& research company FOTEC)..................................................................................................96 3.8 GeoVille Information Systems and Data Processing GmbH..........................................101 3.9 Joanneum Research Forschungsgesellschaft mbH ......................................................107 3.10 MAGNA STEYR Aerospace...................................................................................... 122 3.11 OHB Digital Solutions GmbH ......................................................................................124 3.12 RUAG Space GmbH...................................................................................................129 3.13 Seibersdorf Labor GmbH ............................................................................................135 3.14 Graz University of Technology (TU Graz) ...................................................................147 3.15 TTTech Computertechnik AG .....................................................................................155 4 Executive and Members ..................................................................................................157 Photo: ESA 5 Industrial Members ..........................................................................................................158 6 Research Organisations ..................................................................................................160 7 Institutional Members ......................................................................................................162 3 1 Introduction The present AUSTROSPACE Annual Report is composed of a brief review of major space events in 2019, contributions from industrial members and research organizations about their space activities, and a current list of members with contact information. Vienna, June 2020 Max Kowatsch Hans-Martin Steiner President Vice President and Managing Director A U S T R O S P A C E Association of Austrian Space Industries Mailing Address: AUSTROSPACE p.A. Ruag Space GmbH Stachegasse 16 1120 Wien www.austrospace.at 4 2 Year 2019 Review In 2019 orders for seventeen geostationary (GEO) telecommunications satellites were placed worldwide, which means a significant increase compared to the previous year (5) and the first double-digit number since 2016. Ten contracts were awarded to European satellite manufacturers (Airbus: 4, Thales Alenia Space (TAS): 4, Airbus & TAS jointly: 2) and seven to their US competitors (Boeing: 2, Northrop Grumman: 2, Maxar Technologies: 1, Astranis: 1, Saturn Satellite Networks: 1). Satellites ordered ranged from the 350-kilogram Astranis small GEO to the heavyweight 6500-kilogram very high-throughput ViaSat-3 Asia-Pacific satellite booked by Boeing. For 2020 expert predictions vary between 10 and 20 GEOs. (Source: Space News, January 20, 2020). Commercial geostationary telecommunications satellite orders 2019 (Source: Space News, January 20, 2020) However, the number of GEO orders may no longer be a useful metric of market demand, as operators seem to develop a preference for portfolios of satellites from a few hundred kilograms to several thousand kilograms. Technological breakthroughs in the area of flexible, high- throughput satellites as well as competition from constellations of small satellites in low earth orbits (LEO) make the picture even more complex. The development of OneWeb, a constellation of 648 LEO satellites in the first phase with a planned follow-on extension, has experienced further delays. The launch of the first six satellites, built by Airbus in Toulouse, at the end of February 2019 was a highly important milestone for the operator, at least. The next phase of the constellation deployment, however, had to be postponed to 2020. In the meantime, satellites are delivered from a new production 5 site in Florida jointly established by OneWeb Satellites and Airbus, where up to two satellites can be integrated daily. OneWeb launch on Soyuz from Kourou In May 2019 competitor SpaceX successfully launched the first 60 satellites for a much more complex network of 11.943 satellites (Starlink), which shall be deployed until 2025. Further 60 satellites were delivered in space in November. According to company information releases, currently seven satellites are produced daily, and, after further five launches of 60 satellites each, initial services shall be started in northern USA and Canada. Global operations shall commence after 22 launches. Starlink satellites in orbit In January 2019 a SpaceX Falcon 9 launched the final ten Iridium NEXT satellites. This completed the deployment of the 75 satellites constellation. With additional four satellites put into service in February 2019, the European satellite navigation system Galileo now is operational with 22 satellites. Unfortunately, the system suffered a week-long outage in July. On December 18 the CHaracterising ExOPlanets Satellite (CHEOPS), developed under the direction of the University of Bern and ESA, was launched on a Soyuz-Fregat from Kourou. 6 The CHEOPS mission is dedicated to the characterization of exoplanet transits. The telescope will observe how planets pass in front of their mother star in other solar systems and support the search for potentially life-friendly planets. Austrian scientists and industry have contributed major elements to the challenging satellite payload. CHEOPS at ESTEC (Source: ESA) CHEOPS launch on Soyuz-Fregat from Kourou (Source: ESA) The ESA Ministerial Conference Space19+, which took place in Seville on November 27/28, concluded with a remarkable success for ESA and a very strong signal for the European institutional space market. New commitments confirmed by member states add up to 14.4 BEUR, which represents an increase of 40% compared to the previous conference in 2016. 7 The budget for the science program and the basic activities of the agency was increased by almost 10%. The Earth Observation program, in particular the joint ESA/EU initiative Copernicus, received very high interest, but also the proposed activities in the areas of Human & Robotic Exploration and Space Transportation were strongly supported. ESA Ministerial Conference Space19+ (Source: ESA) Unfortunately, Austria could not fully adapt the subscription portfolio to this growth path, due to budgetary limitations. As a consequence, the relative level of total contributions declined from 1.9% in 2016 to 1.3%. The focus on Earth Observation and Telecom remained, but in some highly interesting new initiatives in Exploration as well as in Space Safety & Security there are currently no substantial opportunities for Austrian industry, despite attractive potential and product offerings identified by several companies. This unsatisfactory situation needs to be corrected by an adjustment of subscriptions, where possible. This is a matter of urgency, to avoid that Austrian suppliers lose ground in a dynamic market situation, where many new initiatives, both institutional and commercial, will shape the future of space industry for the next decade. At the end of 2019 AUSTROSPACE had 20 members. The evolution of sales of the four biggest AUSTROSPACE companies is illustrated on the following page. The figures demonstrate a rather good leverage effect of ESA projects, i.e. a sustainable growth of commercial business. 8 *) no figures available due to organizational changes no figures available for 2019 9 3 Reports of Industrial and Institutional Members 3.1 Austrian Academy of Sciences The Space Research Institute (Institut für Weltraumforschung, IWF) in Graz focuses on the physics of space plasmas and (exo-)planets. With about 100 staff members from 20 nations it is one of the largest institutes of the Austrian Academy of Sciences (Österreichische Akademie der Wissenschaften, ÖAW). IWF develops and builds space-qualified instruments and analyzes and interprets the data returned by them. Its core engineering expertise is in building magnetometers and on-board computers, as well as in satellite laser ranging, which is performed at a station operated by IWF at the Lustbühel Observatory. In terms of science, the institute concentrates on dynamical processes in space plasma physics and on the upper atmospheres of planets and exoplanets. IWF cooperates closely with
Recommended publications
  • Ariane 5'S First 2020 Launch Is a Success
    Ariane 5’s First 2020 Launch is a Success Kourou, January 16, 2020 For its first launch of the year, Ariane 5 placed two telecommunications satellites in orbit: EUTELSAT KONNECT for Eutelsat and GSAT-30 for the Indian Space Research Organisation (ISRO) This was the 251st flight of an Ariane launcher, which celebrated its 40th anniversary on December 24, 2019 Arianespace, operator of the Ariane rocket, has scheduled 10 launches by 2022, including four more in 2020 For its first launch of the year from the European spaceport in Kourou, French Guiana, Ariane 5 placed two satellites in geostationary transfer orbit (GTO): the EUTELSAT KONNECT satellite for Eutelsat and the GSAT-30 satellite for the Indian Space Research Organisation (ISRO). The total performance required of the launcher was 7,888 kg, including 6,976 kg for the two satellites injected into an orbit inclined 6° to the equator. “This successful first launch kicks off a special year for the Ariane sector because 2020 is the year of the inaugural flight of Ariane 6, which will be gradually taking over from Ariane 5 through to 2023. Ariane 5 will continue to demonstrate its incredible reliability for a further 10 flights, while series production of the first Ariane 6 models is underway at the industrial sites of ArianeGroup and its partners in Europe,” said André-Hubert Roussel, CEO of ArianeGroup. “As this new year begins, I wish to extend my very best wishes for success and my thanks for their commitment to all the engineers, technicians and colleagues in ArianeGroup, all of our industrial partners, and our launch- operator subsidiary, Arianespace.
    [Show full text]
  • Course Descriptions
    COURSE DESCRIPTIONS Architectural Design Technology COURSE DESCRIPTIONS The following course descriptions are intended to briefly describe the nature of each of the courses. For more complete information, AAD 180 Fundamentals of Design I 3 (2,2,0,0) departments or faculty can provide specific course syllabuses. Introduction to the principles and theories of design and design methodology in the “making” of representations of form and space. The numbers in the right side of each description define the credits and average weekly contact hours the student will spend AAD 182 Fundamentals of Design II 3 (2,2,0,0) in formal classes during a 16 week semester. Classes scheduled Continuation of AAD 180, with emphasis on spatial sequence, for other than a 16 week semester will have the contact hours tectonics, and design precedents. adjusted accordingly. Prerequisite: AAD 180. A – defines the number of semester credits B Architecture – average number of lecture hours per week C – average number of laboratory hours per week AAE 100 Introduction to Architecture 3 (3,0,0,0) D – average number of clinical hours per week Survey of architecture. Includes historical examples and the E – average number of other formal instructional hours per week theoretical, social, technical, and environmental forces that shape this profession. Especially for majors and non-majors who wish to explore this field as a career choice. Automotive Technology, Collision and Repair ABDY 101B Collision Repair Fundamentals and Estimating 4 (1,6,0,0) This lecture/lab course includes an overview of the collision industry, instruction in safe shop procedures, measurement, vehicle disassembly, and estimating software and techniques.
    [Show full text]
  • View / Download
    www.arianespace.com www.starsem.com www.avio Arianespace’s eighth launch of 2021 with the fifth Soyuz of the year will place its satellite passengers into low Earth orbit. The launcher will be carrying a total payload of approximately 5 518 kg. The launch will be performed from Baikonur, in Kazakhstan. MISSION DESCRIPTION 2 ONEWEB SATELLITES 3 Liftoff is planned on at exactly: SOYUZ LAUNCHER 4 06:23 p.m. Washington, D.C. time, 10:23 p.m. Universal time (UTC), LAUNCH CAMPAIGN 4 00:23 a.m. Paris time, FLIGHT SEQUENCES 5 01:23 a.m. Moscow time, 03:23 a.m. Baikonur Cosmodrome. STAKEHOLDERS OF A LAUNCH 6 The nominal duration of the mission (from liftoff to separation of the satellites) is: 3 hours and 45 minutes. Satellites: OneWeb satellite #255 to #288 Customer: OneWeb • Altitude at separation: 450 km Cyrielle BOUJU • Inclination: 84.7degrees [email protected] +33 (0)6 32 65 97 48 RUAG Space AB (Linköping, Sweden) is the prime contractor in charge of development and production of the dispenser system used on Flight ST34. It will carry the satellites during their flight to low Earth orbit and then release them into space. The dedicated dispenser is designed to Flight ST34, the 29th commercial mission from the Baikonur Cosmodrome in Kazakhstan performed by accommodate up to 36 spacecraft per launch, allowing Arianespace and its Starsem affiliate, will put 34 of OneWeb’s satellites bringing the total fleet to 288 satellites Arianespace to timely deliver the lion’s share of the initial into a near-polar orbit at an altitude of 450 kilometers.
    [Show full text]
  • The Space-Based Global Observing System in 2010 (GOS-2010)
    WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available.
    [Show full text]
  • American Mathematical Association of Two-Year Colleges
    American Mathematical Association of Two-Year Colleges Photo courtesy of Visit Phoenix/dspaz.com 47th AMATYC Annual Conference Keynote Speakers October 28 – 31, 2021 Lindy Elkins-Tanton Arizona State University The NASA Psyche Mission: Journey to a Metallic World Sheraton Phoenix Downtown 340 North 3rd Street Talithia Williams Harvey Mudd College Phoenix, AZ 85004 Power in Numbers: Reservations (online): Unveiling Hidden Figures https://tinyurl.com/AMATYC2021Sheraton Reservations (phone): 1.866.837.4213 ext. 4 (mention AMATYC Conference) Featured Speakers James Tanton Mathematical Association of America Opening Doors The Astounding Mathematics Through Mathematics of Bicycle Tracks Scott Adamson Chandler-Gilbert CC Fired Up to Take Online Teaching Innovations Back to the Classroom! Hosted by ArizMATYC and the Southwest Region www.amatyc.org Vision Statement To be the leading voice and resource for excellence in mathematics education in the first two years of college Mission Statement To provide high quality professional development, to advocate and collaborate at all levels, and to build communities of learners for all involved in mathematics education in the first two years of college. Adopted by the Board on April 1, 2016 Core Values These are the Core Values that guide AMATYC’s internal and external interactions with each other and our community: Academic Excellence Access Collegiality Innovation Integrity Professional Development Teaching Excellence KEYNOTE SPEAKERS Thursday Keynote Session Lindy Elkins-Tanton The NASA Psyche Mission: Journey to a Metallic World Thursday, October 28 3:00 pm – 4:30 pm “Psyche” is both the name of a metallic asteroid, and the name of the NASA mission to visit that asteroid.
    [Show full text]
  • GEORIX Single-Frequency Multi - Constellation GNSS Receiver
    GEORIX Single-Frequency Multi - Constellation GNSS Receiver GEORIX, the RUAG Space single-frequency GNSS Receiver for GTO and GEO appli- cations provides an excellent on-board real-time navigation solution accuracy of below 20 meter (in GEO) based on an arbitrary mix of GPS and GALILEO space vehicles. Data Products Based on dedicated RF- and Mixed-Signal ASICs as well as – Navigation solution based on GPS/GALILEO constellations the AGGA-4 ASIC, GEORIX is able to use the following signals: – Generation of the PPS signal synchronized to GPS/GALILEO second – GPS C/A on L1 – Carrier phase measurements for each tracked signal – Galileo E1 B/C – code phase measurements for each tracked signal – Support data: Main Features - Tracking state – Antenna with gain pattern optimised for GEO - GDOP – Detached LNAs for improved performance figures - Carrier to noise (C/N) measurement of each tracked signal – GTO support, e.g. for electric propulsion satellites - Noise measurements of each RF down-conversion chain – Support for cross-coupling of two non-redundant antenna/LNA sets - Satellites in view status to cold-redundant electronics box - Satellite navigation message – Accurate force model-based orbit propagator – Advanced Kalman filtering allows high on-board navigation perfor- Interfaces mance – TC/TM interface: MIL-STD-1553B or UART (RS-422) or SpaceWire – Flexible acquisition and tracking concept providing: – PPS output nom/red/test (RS-422) – single frequency signal processing of up to 12 satellites – Primary power interface 100 V regulated –
    [Show full text]
  • THOMAS H. ZURBUCHEN Associate Administrator NASA Science Mission Directorate @Dr Thomasz September 10, 2020
    THOMAS H. ZURBUCHEN Associate Administrator NASA Science Mission Directorate @Dr_ThomasZ September 10, 2020 UPDATES PROGRAMS & DIVISION RESEARCH HIGHLIGHTS 3 NASA's Mars 2020 Perseverance rover launched on the Atlas V-541 rocket from Launch Complex 41 at Cape Canaveral Air Force Station, Florida on July 30, 2020, at 7:50 a.m. NASA’s James Webb Space Telescope testing teams have successfully completed the Ground Segment Test, a critical milestone focused on demonstrating that Webb will respond to commands once in space. 5 The Copernicus Sentinel-6 Michael Freilich satellite has passed all tests and is ready for shipment to the Vanderburg launch site in California. 6 Science Mission Directorate (SMD) Updates • Diversity, Equity, Inclusion, and Accessibility (DEIA) Initiatives in SMD • Recognize as a long-term effort, but immediate action and problem solving will advance initiatives in parallel with systemic, enduring activity • Deputy Associate Administrator for Exploration (DAAX), Assistant Deputy Associate Administrator for Research (DAAR), and Cyber/Enterprise Protection PE announcements closed, post announcement recruitment process underway, and selection forthcoming • All missions in Formulation are proceeding and most missions in Implementation are accomplishing some hands-on work • Mars Exploration Program (MEP) remains independent with strong focus on Mars science and the future: • Operating Mars missions, including Mars 2020/Perseverance • Sample Return Science (Mars Sample Return campaign managed outside of MEP) • Any future Mars development projects • Jim Watzin moving to new position to support Agency Mars exploration efforts. Director duties to be assumed by Eric Ianson, Michael Meyer to take on additional MEP science and strategic leadership responsibilities 7 Welcome to the Team, Dr.
    [Show full text]
  • APSCC Monthly E-Newsletter
    APSCC Monthly e‐Newsletter October 2020 The Asia‐Pacific Satellite Communications Council (APSCC) e‐Newsletter is produced on a monthly basis as part of APSCC’s information services for members and professionals in the satellite industry. Subscribe to the APSCC monthly newsletter and be updated with the latest satellite industry news as well as APSCC activities! To renew your subscription, please visit www.apscc.or.kr. To unsubscribe, send an email to [email protected] with a title “Unsubscribe.” News in this issue has been collected from September 1 to Septmebr 30. INSIDE APSCC APSCC 2020 Conference Series Season 2 Starts from October 7: LIVE Every Wednesday 9AM HK l Singapore Time from October 7 to November 25 APSCC 2020 is the largest annual event of the Asia Pacific satellite community, which incorporates industry veterans, local players as well as new players into a single platform in order to reach out to a wide-ranging audience. Organized by the Asia Pacific Satellite Communications Council (APSCC), APSCC 2020 this year is even stretching further by going virtual and live. Every Wednesday mornings at 9 AM Hong Kong and Singapore time, new installments in APSCC 2020 will be presented live - in keynote speeches, panel discussions, and in presentations followed by Q&A format. Topics will range across a selection of issues the industry is currently grappling with globally, as well as in the Asia-Pacific region. Register now and get access to the complete APSCC 2020 Series with a single password. To register go to https://apsccsat.com. SATELLITE BUSINESS Nelco and Telesat Partner to Bring Advanced LEO Satellite Network to India September 30, 2020 - Nelco has entered into a cooperation agreement with Telesat, a leading global satellite operator that has been addressing complex connectivity challenges for over 50 years.
    [Show full text]
  • Command & Data Handling
    Command & Data Handling We help our customers, the satellite primes, and their customers, the fl eet operators, to manage their spacecraft. We put pride in designing Spacecraft Management Units that are capable of interfacing all the types of equipment you normally find on-board a satellite. Furthermore, we offer our customers a hardware and software environment that makes it easy for them to develop the necessary applications while we take care of system start-up and configuration, software drivers and system debug support. We do all this, and on top we see to that the latest technology available is applied to minimize requirements on mass, volume and power consumption. Ideally, you will not notice our presence! The units handle all commonly used interfaces like reaction wheels, magnetorquers and thrusters as well as standardized analogue and digital interfaces and thermistors. The same basic design is applicable to LEO and GEO satellites and also to interplanetary missions. Features • Everything you need for spacecraft control in a single box • Design scalable to platform size • Highly reliable using internal redundancy and cross-strappings • Advanced hardware support for autonomous missions • Standard interfaces: -Multiple MIL-STD-1553 -SpaceWire -RS-422 UART -Synchronous serial links Functions • On-board satellite telecommand functions as decoding, authen- tication, decryption and distribution of commands • On-board satellite telemetry functions including telemetry data acquisition or generation, formatting, encoding and transmis-
    [Show full text]
  • Into the Unknown Together the DOD, NASA, and Early Spaceflight
    Frontmatter 11/23/05 10:12 AM Page i Into the Unknown Together The DOD, NASA, and Early Spaceflight MARK ERICKSON Lieutenant Colonel, USAF Air University Press Maxwell Air Force Base, Alabama September 2005 Frontmatter 11/23/05 10:12 AM Page ii Air University Library Cataloging Data Erickson, Mark, 1962- Into the unknown together : the DOD, NASA and early spaceflight / Mark Erick- son. p. ; cm. Includes bibliographical references and index. ISBN 1-58566-140-6 1. Manned space flight—Government policy—United States—History. 2. National Aeronautics and Space Administration—History. 3. Astronautics, Military—Govern- ment policy—United States. 4. United States. Air Force—History. 5. United States. Dept. of Defense—History. I. Title. 629.45'009'73––dc22 Disclaimer Opinions, conclusions, and recommendations expressed or implied within are solely those of the editor and do not necessarily represent the views of Air University, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public re- lease: distribution unlimited. Air University Press 131 West Shumacher Avenue Maxwell AFB AL 36112-6615 http://aupress.maxwell.af.mil ii Frontmatter 11/23/05 10:12 AM Page iii To Becky, Anna, and Jessica You make it all worthwhile. THIS PAGE INTENTIONALLY LEFT BLANK Frontmatter 11/23/05 10:12 AM Page v Contents Chapter Page DISCLAIMER . ii DEDICATION . iii ABOUT THE AUTHOR . ix 1 NECESSARY PRECONDITIONS . 1 Ambling toward Sputnik . 3 NASA’s Predecessor Organization and the DOD . 18 Notes . 24 2 EISENHOWER ACT I: REACTION TO SPUTNIK AND THE BIRTH OF NASA . 31 Eisenhower Attempts to Calm the Nation .
    [Show full text]
  • Vega Lofts Two Satellites on Second Launch This Year 2 August 2017
    Vega lofts two satellites on second launch this year 2 August 2017 Optsat-3000 has a design life of seven years and Ven?s four and a half years. Flight VV10 marks the debut of Vega's new lighter payload fairing that protects the satellites during the ascent to space. It was developed under ESA's Launchers Exploitation Accompaniment Programme and manufactured by RUAG Space Switzerland with ELV in Italy as prime contractor. The technology was first proved on 28 June on Ariane 5. The new Vega fairing structure features fewer On 2 August 2017, Vega flight VV10 lifted off from panels and no metallic joints. Different composite Europe’s Spaceport in French Guiana to deliver two material and improved manufacturing have lowered Earth observation satellites, Optsat-3000 and Ven?s, the production cost. into their planned Sun-synchronous orbits. Credit: ESA A launch pad modification for this flight reduced the acoustic loads – the pressure caused by sound waves on the payloads at liftoff – from the first- This morning, Arianespace launched a Vega rocket stage plume striking the structure. carrying two Earth observation satellites for Italy, France and Israel encased in Vega's lighter The changes exploited a computer model of the protective fairing. acoustic environment at liftoff developed under an ESA–NASA knowledge exchange agreement for Liftoff of Vega's 10th mission from Europe's launchers. Flight and ground measurements from Spaceport in Kourou, French Guiana came at this flight will help to gauge the improvements. 01:58 GMT on 2 August (03:58 CEST; 22:58 local time on 1 August) on a mission lasting 97 minutes The payload mass for this launch was about 982 to deliver Optsat-3000 and Ven?s into their kg.
    [Show full text]
  • Heliophysics Division Committee on Solar and Space Physics
    Heliophysics Division Committee on Solar and Space Physics Dr. Nicky Fox Heliophysics Division Director March 24, 2021 1 Update on Heliophysics COVID-19 Impacts We recognize everyone’s enormous personal and professional challenges at this time. Everyone’s physical safety and emotional wellness remains our priority. Missions • Minimal impacts to operating missions • Many missions in formulation or development have already submitted, and amended, re-plans to accommodate COVID impacts Research • NASA instituted a number of grant administration flexibilities to ease the burden on grant recipients during the COVID-19 emergency • Post-COVID-19 Recovery: Heliophysics R&A augmentation requests received in early March and under evaluation 2 2020 Year in Review: Heliophysics is Experiencing Incredible Growth • NASEM conducted a mid-term assessment of progress toward implementation of the 2013 Decadal Survey. • Heliophysics program reflects the results of a concerted effort to successfully launch missions developed over the past decade and to increase cadence of flight opportunities. • Heliophysics is driving growth in other areas of the program: • Space weather, space situational awareness, scientific discovery, application of the revolutionary new capabilities in Artificial Intelligence, Machine Learning, citizen science, data analysis and archiving to enhance data assimilation and modeling, and technology development. • In 2018-20, HPD successfully launched 5 missions: GOLD, Space Environment Testbeds, Parker Solar Probe, ICON, and Solar Orbiter Collaboration. • Leaning forward to accelerate mission selections and cadence as outlined in the 2013 Decadal Survey. Heliophysics currently has 12 missions in formulation or development and another 7 under study, representing the largest increase in missions in the history of the Division.
    [Show full text]