Advance Program 2021 Virtual Display Week International Symposium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
会议详细议程(Final Program)
会议详细议程(Final Program) 2019 International Conference on Display Technology March 26th—29th, 2019 (Tuesday - Friday) Kunshan International Convention and Exhibition Center Kunshan, Suzhou, China Plenary Session Wednesday, Mar. 27/14:00—18:00/Reception Hall Chair: Shintson Wu (吴诗聪), University of Central Florida (UCF) Title: Laser display Technology (14:00-14:30) Zuyan Xu (许祖彦), Technical Institute of Physics and Chemistry, China Academy of Engineering (CAE) Title: Thin film transistor technology and applications (14:30-15:00) Ming Liu (刘明), Institute of Microelectronics of the Chinese Academy of Sciences Title: Technology creates a win-win future (15:00-15:30) Wenbao Gao (高文宝), BOE Title: Gallium nitride micro-LEDs: a novel multi-mode, high-brightness and fast-response display technology (15:30-16:00) Martin Dawson, the University of Strathclyde’s Institute of Photonics, the Fraunhofer Centre for Applied Photonics Title: Virtual and Augmented Reality: Hope or Hype? (16:00-16:30) Achin Bhowmik, Starkey Hearing Technologies Title: Monocular Vision Impact: Monocular 3D and AR Display and Depth Detection with Monocular Camera (16:30-17:00) Haruhiko Okumura, Media AI Lab, Toshiba Title: ePaper, The Most Suitable Display Technology in AIoT (17:00-17:30) Fu-Jen (Frank) Ko, E Ink Holdings Inc. Title: Application Advantage of Laser Display in TV Market and Progress of Hisense (17:30- 18:00) Weidong Liu (刘卫东), Hisense Thursday, Mar. 28/8:30—12:30/Reception Hall Chair: Hoi S. Kwok (郭海成), Hong Kong University of Science and Technology Title: High Performance Tungsten-TADF OLED Emitters (8:30-9:00) Chi-Ming CHE (支志明), The University of Hong Kong Title: Challenges of TFT Technology for AMOLED Display (9:00-9:30) Junfeng Li (李俊峰), Nanyang Technological University, Innovation Research Institute of Visionox Technology Co., Ltd. -
Oleds and E-PAPER Disruptive Potential for the European Display Industry
OLEDs AND E-PAPER Disruptive potential for the European display industry Authors: Simon Forge and Colin Blackman Editor: Sven Lindmark EUR 23989 EN - 2009 The mission of the JRC-IPTS is to provide customer-driven support to the EU policy- making process by developing science-based responses to policy challenges that have both a socio-economic as well as a scientific/technological dimension. European Commission Joint Research Centre Institute for Prospective Technological Studies Contact information Address: Edificio Expo. c/ Inca Garcilaso, 3. E-41092 Seville (Spain) E-mail: [email protected] Tel.: +34 954488318 Fax: +34 954488300 http://ipts.jrc.ec.europa.eu http://www.jrc.ec.europa.eu Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 51739 EUR 23989 EN ISBN 978-92-79-13421-0 ISSN 1018-5593 DOI 10.2791/28548 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2009 Reproduction is authorised provided the source is acknowledged Printed in Spain PREFACE Information and Communication Technology (ICT) markets are exposed to a more rapid cycle of innovation and obsolescence than most other industries. -
List of Suppliers for the Fairphone 2 Understanding Our List of Suppliers
List of Suppliers for the Fairphone 2 Consumer electronics supply chains include layers of our supply chain. In addition to our several complex, often opaque tiers of first-tier assembly manufacturer, we have suppliers, ranging from first-tier assembly mapped all second-tier suppliers, and are manufacturers (direct suppliers) to second, progressively including third and fourth-tier third and sometimes even fourth-tier suppliers in our research. By uncovering all component manufacturers. Many electronics of the different players and manufacturing manufacturers only have insight into their locations in our smartphone supply chain, we direct suppliers and perhaps some second-tier can start engaging with suppliers, establishing component manufacturers. relationships and initiating programs for improvement. At Fairphone, we are working to gain an in-depth understanding of the complicated Understanding our List of Suppliers The list below includes all of the first, second Locations: Whenever possible, we have listed and third-tier suppliers that we know of to the (approximate) manufacturing location. If this date, and it is accurate to the best of our information was not available, we have provided the location of the company headquarters. knowledge at the time of publication. We will periodically update the information in this Categories: Suppliers are grouped by the type of document as we learn more. components they produce. Some suppliers may be mentioned more than once because they produce Here is a bit more information about how the different kinds of components, sometimes with list is arranged: different manufacturing locations. Tiers: Supplier tiers are calculated from the point of the final assembly. -
Phoenix Unit Trust Managers Manager's Interim Report Putm Bothwell Japan Tracker Fund
PHOENIX UNIT TRUST MANAGERS MANAGER’S INTERIM REPORT For the half year: 1 February 2016 to 31 July 2016 PUTM BOTHWELL JAPAN TRACKER FUND Contents Investment review 2-3 Portfolio of investments 4-51 Top ten purchases and sales 52 Statistical information 53-56 Statements of total return & change in net assets attributable to unitholders 57 Balance sheet 58 Distribution table 59 Corporate information 60-61 1 Investment review Dear Investor Performance Review Welcome to the PUTM Bothwell Japan Tracker Fund Over the review period, the PUTM Bothwell Japan interim report for the six months to 31 July 2016. Tracker Fund returned 17.59% (Source: HSBC, Gross of AMC, GBP, based upon the movement in the Cancellation Price for the six months to 31/07/16). This compares with its benchmark index return of 17.94% (Source: Datastream, FTSE World Japan Index until 04/03/14 and thereafter the Topix Index, Total Return in GBP terms for six months to 31/07/16). In the table below, you can see how the Fund performed against its benchmark index over the last five discrete one-year periods. Standardised Past Performance Jul 15-16 Jul 14-15 Jul 13-14 Jul 12-13 Jul 11-12 % growth % growth % growth % growth % growth PUTM Bothwell Japan Tracker Fund 15.15 17.3 -0.6 29.8 -8.2 Benchmark Index 15.66 17.7 -0.4 30.2 -8.1 Source: Fund performance is HSBC, Gross of AMC, GBP, based upon the movement in the Cancellation Price to 31 July for each year. Benchmark Index performance is Datastream, FTSE World Japan Index until 04/03/14 and thereafter the Topix Index, Total Return in GBP terms to 31 July for each year. -
IN the UNITED STATES DISTRICT COURT for the EASTERN DISTRICT of TEXAS MARSHALL DIVISION VISTA PEAK VENTURES, LLC, Plaintiff, V
Case 2:18-cv-00433 Document 1 Filed 10/18/18 Page 1 of 21 PageID #: 1 IN THE UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF TEXAS MARSHALL DIVISION VISTA PEAK VENTURES, LLC, § § Plaintiff, § § v. § JURY TRIAL DEMANDED § BOE TECHNOLOGY GROUP CO., LTD., § § CIVIL ACTION NO. 2:18-cv-433 Defendant. § § § § § § PLAINTIFF’S COMPLAINT FOR PATENT INFRINGEMENT Plaintiff Vista Peak Ventures, LLC (“VPV”) files this Complaint against BOE Technology Group Co., Ltd. (“BOE”) for infringement of U.S. Patent No. 7,046,327 (“the ’327 patent”), U.S. Patent No. 6,870,593 (“the ’593 patent”), and U.S. Patent No. 6,812,528 (“the ’528 patent”), collectively, the “Asserted Patents.” THE PARTIES 1. Vista Peak Ventures, LLC is a Texas limited liability company, located at 1400 Preston Rd, Suite 472, Plano, TX 75093. 2. Upon information and belief, BOE was founded in April 1993 and provides “intelligent interface products and professional services for information interaction and human health.” See BOE Company Profile, (available at https://www.boe.com/en/about/gsjs/). BOE first issued “B shares” in foreign currency on the Shenzhen Stock Exchange in 1997, and later issued “A shares” in the same exchange in 2001. See BOE Course of Development (available at https://www.boe.com/en/about/gsjs/). In its Company Profile, BOE lists its core businesses as PLAINTIFF’S COMPLAINT FOR PATENT INFRINGEMENT 1 Case 2:18-cv-00433 Document 1 Filed 10/18/18 Page 2 of 21 PageID #: 2 “Display and Sensor Devices, Smart Systems and Healthcare Services.” See BOE Company Profile. -
Quantum Dot-Based Light Emitting Diodes (Qdleds): New Progress
DOI: 10.5772/intechopen.69014 Provisional chapter Chapter 3 Quantum Dot-Based Light Emitting Diodes (QDLEDs): QuantumNew Progress Dot-Based Light Emitting Diodes (QDLEDs): New Progress Neda Heydari, Seyed Mohammad Bagher NedaGhorashi Heydari,, Wooje Seyed Han Mohammad and Hyung-Ho Bagher Park Ghorashi, WoojeAdditional Han information and Hyung-Ho is available at Parkthe end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.69014 Abstract In recent years, the display industry has progressed rapidly. One of the most important developments is the ability to build flexible, transparent and very thin displays by organic light emitting diode (OLED). Researchers working on this field try to improve this area more and more. It is shown that quantum dot (QD) can be helpful in this approach. In this chapter, writers try to consider all the studies performed in recent years about quantum dot-based light emitting diodes (QDLEDs) and conclude how this nanoparticle can improve performance of QDLEDs. In fact, the existence of quantum dots in QDLEDs can cause an excellent improvement in their efficiency and lifetime resulted from using improved active layer by colloidal nanocrystals. Finally, the recent progresses on the quantum dot-based light emitting diodes are reviewed in this chapter, and an important outlook into challenges ahead is prepared. Keywords: quantum dot, organic light emitting diode, efficiency, lifetime, active layer 1. Introduction Due to increased population and consumption of more energy, the people of Earth are faced with a serious shortage of energy resources. Therefore, the primary concern of researchers and manufacturers is closely linked to energy consumption. -
LCD Manufacturers Face Price Crisis
BUSINESS NEWS TECHNOLOGY FOCUS LCD manufacturers face price crisis fter months of price cuts, manufacturers Aof large-size liquid-crystal displays 60,000 (LCDs) are under pressure to reduce panel LCD-TV panels prices further, following a major build-up of LCD-TV set inventory. A recent report from US business analyst iSuppli revealed that the second quarter of 2010 saw the manufacture of 52 40,000 million large (ten inches and above) LCD television panel shipments, but the sale of only 38.7 million LCD television sets. The resulting imbalance between supply 20,000 and demand is having a strong impact on the sector. “This gap is higher than anything seen in 2009. Over-supply persisted in shipments (thousands of units) Total the first two months of the third quarter 0 9 0 0 -0 -1 -1 as buyers cut orders in July and August,” Q1 Q1-09 Q2 Q3-09 Q4-09 Q2 says iSuppli analyst Sweta Dash. “LCD ISUPPLI television brands are expected to lower prices more aggressively to reduce their An imbalance between supply and demand is causing prices to decline in the large-panel LCD industry. inventory levels, thus putting mounting pressure on panel suppliers to reduce and help to steady panel prices by the end of iPhone, iPad and other competing prices further.” the fourth quarter of 2010. products,” explains Jakhanwal. Dash points out that manufacturers of At the same time, rapidly rising sales of “Smart phone manufacturers are now monitor and notebook panels have been smart phones and tablet PCs are predicted adopting TFT LCDs that use in-plane reducing supply to mitigate excessive to see the global market for small- and switching technology, which supports inventory levels, and that panel prices are medium-size thin-film transistor (TFT) a wider viewing angle and better now stabilizing as a result. -
Ess School 9-800-143 Rev
Harvard Business School 9-800-143 Rev. May 18, 2000 E Ink This is a chance for all of us to leave a legacy. Nothing I’ve seen has shaken my belief that this technology is just fundamentally revolutionary. —Jim Iuliano, President & CEO of E Ink The research building of E Ink in Cambridge, Massachusetts, sounded more like a party than a lab for serious, cutting-edge technology. Loud polka music and the laughter of young employees filled the air as they went about their work. Founded just over a year earlier, in 1997, the company aimed to revolutionize print communication through display technology. Black and white photographs, hung throughout the lab, captured scenes of everyday expression that could be affected by E Ink’s technology; these photos included everything from subway graffiti to the sign for the tobacco shop in Harvard Square. Across the parking lot, a different building housed the offices of E Ink’s management team, including Jim Iuliano, president and CEO of E Ink, and Russ Wilcox, vice president and general manager. A prototype of E Ink’s first product hung outside their offices—a sign prepared for JC Penney. It read, “Reebok High Tops on sale today. Sale ends Friday.” Electronic ink (e-ink) was an ink solution, composed of tiny paint particles and dye, that could be activated by an electric charge. This ink could be painted onto nearly any type of surface— including thin, flexible plastics. Charged particles could display one color, such as white, while the dye displayed another color, such as blue. -
Aquarius Series Blue Laser Pointer This Blue Laser Pointer Will Captivate Audiences Wherever You Take It, Whether at Home with F
216-5 ADRIAN AVE. TORONTO, ON, CANADA M6N5G4 T. 1.416.729.7976 F. 1.480.247.4864 [email protected] Aquarius Series Blue Laser Pointer This blue laser pointer will captivate audiences wherever you take it, whether at home with friends or at a presentation conference with colleagues. Blue laser pointers are still so rare that few have ever seen one. Be one of the first to own this unique product but don’t blame us if you keep getting asked how you got one! Key Features: • Starting at: $395 • Output Power: Varies with model • Expected Life: 5000 hours • Wavelength: 473nm (blue) • Key Feature: Most technologically advanced portable laser • Package Includes: Portable laser, aluminum carrying case, instructions/warranty. • Casing: Hard anodized machined aluminum • Safety Info: Complies with Class IIIa regulations • Duty Cycle: 90 sec. on/20 sec. off ©2009 LASERGLOW TECHNOLOGIES Page 1 of 3 Item Details Price (USD) Sustained: 0.6-2.0mW Aquarius-2 $395 Peak: ~3mW Sustained: 2-5mW Aquarius-5 $449 Peak: <5mW Sustained: 5-9mW Aquarius-6 $499 Peak: ~15mW Sustained:10-19mW Aquarius-10 $599 Peak: ~25mW Sustained: 20-39mW Aquarius-20 $799 Peak: ~45mW Sustained: 40-59mW Aquarius-40 $1,199 Peak: ~65mW Sustained: 60-79mW Aquarius-60 $1,599 Peak: ~85mW SPECIFICATIONS: Series Name Aquarius Series Dimensions (mm) 155 x 34 Battery Type 1 pcs. lithium 3V "CR-2" battery Sustained Output Power 2-25 mW Wavelength 473 nm Output Type Pulsed (700Hz) Cooling Method Air Beam Color Blue Transverse Mode TEM00, TEM01, TEM02 Beam Diameter <1.0 mm Beam Divergence <1.0 mrad Operating Temperature 20 - 35°C Expected Lifetime 5,000 hours Warranty Period 6 months ©2009 LASERGLOW TECHNOLOGIES Page 2 of 3 If selecting an Aquarius over 5mW, you should be aware that this laser is not FDA compliant and is intended for use in countries that do not require FDA Class IIIb certification for lasers over 5mW. -
Quietrock Case Study | Sony Computer Entertainment America
Studios & Entertainment Quiet® Success Story Project: ® Sony Computer Entertainment ‘Sh-h-h-h!’ PlayStation 4 game- America, LLC making in progress! Location: San Mateo, California New sound studios spearhead renovations for Sony Computer General Contractor: Entertainment America, with an acoustical assist from Magnum Drywall Magnum Drywall and PABCO® Gypsum’s QuietRock® Products: QuietRock® FLAME CURB® San Mateo, California The Sound of Silence means a lot to engineers producing video games for Sony PlayStation®4 (PS4™) enthusiasts. At Sony Computer Entertainment America LLC headquarters in San Mateo, California, producers’ tolerance for intrusive noise from beyond studio walls is zero. Only the intense action on-screen matters while creating audio effects that dramatize, punctuate and heighten the deeply immersive experience for video gamers. In these studios Sony Entertainment sound engineers make the most of that capability while keeping the PlayStation® pipeline full for weekly launches of new games. The gaming experience draws players to PS4™ and its predecessor PlayStation® consoles, and PS4™ elevates 3D excitement ever higher. It’s the world’s most powerful games console, with a Graphics Processing Unit (GPU) able to perform 1,843 teraflops*. “When sound is important, we prefer to submit QuietRock as a good solution for the architect and the owner. There’s nothing else on the market that’s comparable. I even used it in my own home movie theatre.”” – Gary Robinson, Owner Magnum Drywall what the job demands Visit www.QuietRock.com or call Call 1.800.797.8159 for more information On top of its introductory lineup in November 2013, over 180 PS4™ games are in development, including “Be the Batman”, the epic conclusion of the “Batman: Arkham Knight” trilogy, that is due out in June 2015. -
List of Notable Handheld Game Consoles (Source
List of notable handheld game consoles (source: http://en.wikipedia.org/wiki/Handheld_game_console#List_of_notable_handheld_game_consoles) * Milton Bradley Microvision (1979) * Epoch Game Pocket Computer - (1984) - Japanese only; not a success * Nintendo Game Boy (1989) - First internationally successful handheld game console * Atari Lynx (1989) - First backlit/color screen, first hardware capable of accelerated 3d drawing * NEC TurboExpress (1990, Japan; 1991, North America) - Played huCard (TurboGrafx-16/PC Engine) games, first console/handheld intercompatibility * Sega Game Gear (1991) - Architecturally similar to Sega Master System, notable accessory firsts include a TV tuner * Watara Supervision (1992) - first handheld with TV-OUT support; although the Super Game Boy was only a compatibility layer for the preceding game boy. * Sega Mega Jet (1992) - no screen, made for Japan Air Lines (first handheld without a screen) * Mega Duck/Cougar Boy (1993) - 4 level grayscale 2,7" LCD - Stereo sound - rare, sold in Europe and Brazil * Nintendo Virtual Boy (1994) - Monochromatic (red only) 3D goggle set, only semi-portable; first 3D portable * Sega Nomad (1995) - Played normal Sega Genesis cartridges, albeit at lower resolution * Neo Geo Pocket (1996) - Unrelated to Neo Geo consoles or arcade systems save for name * Game Boy Pocket (1996) - Slimmer redesign of Game Boy * Game Boy Pocket Light (1997) - Japanese only backlit version of the Game Boy Pocket * Tiger game.com (1997) - First touch screen, first Internet support (with use of sold-separately -
Injection Locking of New Focus Lasers for 100+ Mw of Power at 461 Nm
TECHNICAL APPLICATION NOTE Injection Locking of New Focus Lasers for 100+ mW of Power at 461 nm 1. Introduction The GaN blue light-emitting diode, first demonstrated by Akasaki, Amano, and independently by Nakamura earned them the Nobel Prize in Physics in 2014 and has revolutionized modern lighting technology. This led to many new developments, one of which was the blue laser diode which has similarly transformed the way researchers obtain laser light at blue wavelengths. The blue laser diode has also greatly reduced the cost and level of complexity involved with such experiments. The blue laser diode can be integrated into an external cavity with wavelength-selective optics to make a tunable external cavity diode laser (ECDL). One example of this is the New Focus TLB-6802 Vortex™ Plus tunable Figure 1. Fluorescence emitted by strontium atoms (blue dot in center of laser which adopts a Littman-Metcalf configuration to give continuously viewport) trapped in a MOT. Number density is estimated at 1 0 11 cm -3 . tunable output in the blue in a single longitudinal mode and boasts an output Image courtesy of Francisco Camarga, Tom Killian Lab, Rice University. power greater than 40 mW. And in the world of atomic physics, several In injection locking of lasers, a small fraction of the output of a “master” laser neutral atoms and ions of alkaline earth metals have electronic transitions in is injected into the gain region of a free-running, higher-powered “slave” the blue and can therefore be studied using the Vortex Plus. For example, laser. By doing so, the slave laser inherits many of the optical properties of neutral strontium’s 1S -1P main cooling transition is resonant with 461 nm 0 1 master laser including single-mode output, narrow linewidth, and frequency light.