2.5D Elastic Graph Matching Algorithms

Total Page:16

File Type:pdf, Size:1020Kb

2.5D Elastic Graph Matching Algorithms 2.5D Elastic Graph Matching Algorithms Stefanos Zafeiriou† Maria Petrou† Vasileios Argyriou ∗ † Imperial College London ∗Kingston University {s.zafeiriou,maria.petrou}@imperial.ac.uk {v.argyriou}@kingston.ac.uk Abstract The graph matching process is implemented by a stochas- tic optimization of a cost function which takes into account In this paper, a series of advances in Elastic Graph both jet similarities and grid deformations. One of the basic Matching (EGM) for face recognition assisted by the avail- advantages of EGM algorithms is that they can be applied ability of 3D facial geometry is proposed. More speci- in a fully automatic manner when combined with a face de- cally, we conceptually extend the EGM algorithm in order tector and/or a fully automatic facial feature detection algo- to exploit the 3D nature of human facial geometry for face rithm [14, 11, 13]. recognition/verication. In order to achieve that, rst we A lot of research has been conducted in order to boost extend the matching module of the EGM algorithm in order the performance of EGM for face recognition, face veri- to capitalize on the 2.5D facial data. Moreover, we incor- cation and facial expression recognition [5, 8, 14, 13, 11]. porate the 3D geometry into the multiscale analysis used In [5], EGM has been proposed and tested for frontal face and build a novel geodesic multiscale morphological pyra- verication. A variant of the typical EGM, the so-called mid of dilations/erosions in order to ll the graph jets. We Morphological Elastic Graph Matching (MEGM), has been demonstrate the efciency of the proposed advances in the proposed for frontal face verication and tested under var- face recognition/verication problem. ious recording conditions [8, 14, 13]. EGM with morpho- logical feature vectors for facial expression recognition was proposed in [12]. 1. Introduction In this paper, we present EGM methods that exploit the Dynamic link architecture (DLA) has been proposed 3D facial geometry. Nowadays, the acquisition of 3D faces as an abstract methodology for distortion invariant object is a relatively simple procedure due to the low cost devices recognition [9]. In DLA, an object is represented as a con- that are available. This has constituted 3D face recogni- nected graph. Each graph node is located at a certain spa- tion a very rapidly growing research topic. Another reason, tial image location x. A feature vector, the so called jet, is that resulted in the increase of 3D face recognition popular- attached at each graph node. The jet elements can be local ity as a research topic, is that although 2D face recognition brightness values that represent the image region around the systems can achieve good performance in constrained envi- node. However, it is desirable to have more complex types ronments, they still encounter difculties in handling large of jet that are produced by multiscale image analysis [9]. amounts of facial variations due to head pose, lighting con- The representation of an object in DLA can be summarized ditions and facial expressions. Moreover, the acquisition of in the following steps: 1)Group all the features that corre- 3D face geometry is also quite restricted due to the pres- spond to the same graph node of the object into a jet. 2) ence of noise and the difculty presented in image acquisi- Group all the nodes and jets that belong to the object in tion [3]. For the acquisition of 3D data, different techniques order to form the object graph. 3) Dene neighborhood re- have been used, such as laser and structured light scanners. lationships for each graph node. However, the use of these techniques is not very practical as One of the most well-studied implementations of DLA is it requires the cooperation of the subject. So, we use pho- the Elastic Graph Matching (EGM) algorithm. In [9] EGM tometric stereo [2] for 3D acquisition, that does not depend was initially proposed for arbitrary object recognition from signicantly on the user’s cooperation. The actual model images and has been a very popular topic of research for that we acquire this way is a 2.5D model. 2.5D is a sim- various facial image characterization applications. In EGM, plied 3D (x, y, z) surface representation that contains at a reference object graph is created by overlaying a rectan- most one depth value (z direction) for every point in the gular elastic sparse graph on the object image and then cal- (x, y) plane. culating a Gabor wavelet bank response at each graph node. All EGM based methods proposed so far do not take into 703 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops 978-1-4244-4441-0/09/$25.00 ©2009 IEEE consideration the 3D nature of the objects. In this paper ordinates x, a jet (feature vector) j(x) is formed: we propose methods for exploiting the 3D nature of the ob- j x x x T jects inside the EGM architecture. That is, the proposed ( )=[f1( ),...,fM ( )] , (1) algorithm introduces a new structure for object representa- where f (x) denotes the output of a local operator applied tion combining both image intensity and 3D geometry in- i to image f at the i-thscaleoratthei-th pair (scale, orien- formation. Moreover, we propose algorithms which can be tation) and M is the jet dimensionality. used for robustly matching the object structure in novel in- The next step of EGM is to match the reference graph on stances. The algorithm is general and can be used for arbi- the test facial expression image in order to nd the corre- trary object recognition. In this paper we demonstrate the spondences of the reference graph nodes on the test image. power of the proposed method in face recognition assisted This is accomplished by minimizing a cost function that em- by the available 3D face geometry. Moreover, we exploit ploys node jet similarities while preserving at the same time the 3D face information available in order to advance the the node neighborhood relationships. Let the subscripts t matching procedure. Moreover, we adopt the assumption and r denote a test and a reference facial image (or graph), that facial expressions are isometries upon the facial sur- respectively. The L2 norm between the feature vectors at face and we incorporate this inside the matching algorithm. the l-th graph node of the reference and the test graph is This assumption has been exploited in [4, 10] for creating used as a similarity measure between jets. Another simi- expression invariant face representations. larity measure that is used is the cosine between the two The proposed method in its generalized version can be vectors: applied in a fully automatic manner, combined with a face j(xl )T j(xl ) detection algorithm. The simplied version of the proposed C (j(xl ), j(xl )) = r t . (2) f t r ||j xl ||||j xl || algorithm requires the detection of the nose. The nose is ( r) ( t) the most easily detected facial feature when the 3D facial V geometry is available. On the contrary, most of the 3D face Let be the set of all graph vertices of a certain facial recognition algorithms proposed so far require the robust image. For the rectangular graphs, all nodes apart from the detection [7] of a set of facial features, which is in general boundary nodes have exactly four connected nodes. Let N (l) l a difcult task. Furthermore, we incorporate the 3D facial be the four-connected neighborhood of node .Inor- geometry inside the multiscale analysis and we propose a der to quantify the node neighborhood relationships using a novel Geodesic Morphological Multiscale analysis in order measure, the relative normalized local node deformation is to ll the graph jets. used: || xl − xξ − xl − xξ || l l ( t t ) ( r r) Cd(x , x )= . (3) t r ||xl − xξ|| 2. 2D Elastic Graph Matching Techniques ξ∈N (l) r r {xl }L In the rst step of the EGM algorithm, a suitable for The set of vertices t(r)opt l=1 can be found by mini- face representation sparse graph is selected. An evenly dis- mizing: tributed rectangular graph is one of the most easy to handle l L l {x (r) } =min{xl } C({x }) t opt l=1 t t automatically forms of a graph, since only a face detection l l =min{xl } {−Cf (j(x ), j(x )) algorithm is needed in order to nd an initial approxima- t l∈V t r +λC (xl , xl )}. tion of the rectangular facial region. The facial image re- d t r (4) gion is analyzed and a set of local descriptors is extracted at The choice of λ in (10) controls the rigidity/plasticity of the each graph node (called jets). Analysis is usually performed graph [5], [8]. by building an information pyramid using scale-space tech- In [8], the optimization of (4) was implemented as a Sim- niques. In the standard EGM, a 2D Gabor based lter bank ulated Annealing (SA) procedure, that imposes global trans- has been used for image analysis. The output of multiscale lation at the graph and local node deformations. In [12], in morphological dilation-erosion operations or the morpho- order to deal with face translation, rotation and scaling, the logical signal decomposition at several scales are nonlinear following optimization problem has been formulated: alternatives of the Gabor lters for multiscale analysis and L l both have been both successfully used for facial image anal- {{δl} =1, t, A} =min L C({Ax + t + δl}) l opt {δl}l=1,t,A r ysis [8].
Recommended publications
  • Two-Dimensional Rotational Kinematics Rigid Bodies
    Rigid Bodies A rigid body is an extended object in which the Two-Dimensional Rotational distance between any two points in the object is Kinematics constant in time. Springs or human bodies are non-rigid bodies. 8.01 W10D1 Rotation and Translation Recall: Translational Motion of of Rigid Body the Center of Mass Demonstration: Motion of a thrown baton • Total momentum of system of particles sys total pV= m cm • External force and acceleration of center of mass Translational motion: external force of gravity acts on center of mass sys totaldp totaldVcm total FAext==mm = cm Rotational Motion: object rotates about center of dt dt mass 1 Main Idea: Rotation of Rigid Two-Dimensional Rotation Body Torque produces angular acceleration about center of • Fixed axis rotation: mass Disc is rotating about axis τ total = I α passing through the cm cm cm center of the disc and is perpendicular to the I plane of the disc. cm is the moment of inertial about the center of mass • Plane of motion is fixed: α is the angular acceleration about center of mass cm For straight line motion, bicycle wheel rotates about fixed direction and center of mass is translating Rotational Kinematics Fixed Axis Rotation: Angular for Fixed Axis Rotation Velocity Angle variable θ A point like particle undergoing circular motion at a non-constant speed has SI unit: [rad] dθ ω ≡≡ω kkˆˆ (1)An angular velocity vector Angular velocity dt SI unit: −1 ⎣⎡rad⋅ s ⎦⎤ (2) an angular acceleration vector dθ Vector: ω ≡ Component dt dθ ω ≡ magnitude dt ω >+0, direction kˆ direction ω < 0, direction − kˆ 2 Fixed Axis Rotation: Angular Concept Question: Angular Acceleration Speed 2 ˆˆd θ Object A sits at the outer edge (rim) of a merry-go-round, and Angular acceleration: α ≡≡α kk2 object B sits halfway between the rim and the axis of rotation.
    [Show full text]
  • 1.2 Rules for Translations
    1.2. Rules for Translations www.ck12.org 1.2 Rules for Translations Here you will learn the different notation used for translations. The figure below shows a pattern of a floor tile. Write the mapping rule for the translation of the two blue floor tiles. Watch This First watch this video to learn about writing rules for translations. MEDIA Click image to the left for more content. CK-12 FoundationChapter10RulesforTranslationsA Then watch this video to see some examples. MEDIA Click image to the left for more content. CK-12 FoundationChapter10RulesforTranslationsB 18 www.ck12.org Chapter 1. Unit 1: Transformations, Congruence and Similarity Guidance In geometry, a transformation is an operation that moves, flips, or changes a shape (called the preimage) to create a new shape (called the image). A translation is a type of transformation that moves each point in a figure the same distance in the same direction. Translations are often referred to as slides. You can describe a translation using words like "moved up 3 and over 5 to the left" or with notation. There are two types of notation to know. T x y 1. One notation looks like (3, 5). This notation tells you to add 3 to the values and add 5 to the values. 2. The second notation is a mapping rule of the form (x,y) → (x−7,y+5). This notation tells you that the x and y coordinates are translated to x − 7 and y + 5. The mapping rule notation is the most common. Example A Sarah describes a translation as point P moving from P(−2,2) to P(1,−1).
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • 2-D Drawing Geometry Homogeneous Coordinates
    2-D Drawing Geometry Homogeneous Coordinates The rotation of a point, straight line or an entire image on the screen, about a point other than origin, is achieved by first moving the image until the point of rotation occupies the origin, then performing rotation, then finally moving the image to its original position. The moving of an image from one place to another in a straight line is called a translation. A translation may be done by adding or subtracting to each point, the amount, by which picture is required to be shifted. Translation of point by the change of coordinate cannot be combined with other transformation by using simple matrix application. Such a combination is essential if we wish to rotate an image about a point other than origin by translation, rotation again translation. To combine these three transformations into a single transformation, homogeneous coordinates are used. In homogeneous coordinate system, two-dimensional coordinate positions (x, y) are represented by triple- coordinates. Homogeneous coordinates are generally used in design and construction applications. Here we perform translations, rotations, scaling to fit the picture into proper position 2D Transformation in Computer Graphics- In Computer graphics, Transformation is a process of modifying and re- positioning the existing graphics. • 2D Transformations take place in a two dimensional plane. • Transformations are helpful in changing the position, size, orientation, shape etc of the object. Transformation Techniques- In computer graphics, various transformation techniques are- 1. Translation 2. Rotation 3. Scaling 4. Reflection 2D Translation in Computer Graphics- In Computer graphics, 2D Translation is a process of moving an object from one position to another in a two dimensional plane.
    [Show full text]
  • Translation and Reflection; Geometry
    Translation and Reflection Reporting Category Geometry Topic Translating and reflecting polygons on the coordinate plane Primary SOL 7.8 The student, given a polygon in the coordinate plane, will represent transformations (reflections, dilations, rotations, and translations) by graphing in the coordinate plane. Materials Graph paper or individual whiteboard with the coordinate plane Tracing paper or patty paper Translation Activity Sheet (attached) Reflection Activity Sheets (attached) Vocabulary polygon, vertical, horizontal, negative, positive, x-axis, y-axis, ordered pair, origin, coordinate plane (earlier grades) translation, reflection (7.8) Student/Teacher Actions (what students and teachers should be doing to facilitate learning) 1. Introduce the lesson by discussing moves on a checkerboard. Note that a move is made by sliding the game piece to a new position. Explain that the move does not affect the size or shape of the game piece. Use this to lead into a discussion on translations. Review horizontal and vertical moves. Review moving in a positive or negative direction on the coordinate plane. 2. Distribute copies of the Translation Activity Sheet, and have students graph the trapezoid. Guide students in completing the sheet. Emphasize the use of the prime notation for the translated figure. 3. Introduce reflection by discussing mirror images. 4. Distribute copies of the Reflection Activity Sheet, and have students graph the trapezoid. Guide students in completing the sheet. Emphasize the use of the prime notation for the translated figure. 5. Give students additional practice. Individual whiteboards could be used for this practice. Assessment Questions o How does translating a figure affect the size, shape, and position of that figure? o How does rotating a figure affect the size, shape, and position of that figure? o What are the differences between a translated polygon and a reflected polygon? Journal/Writing Prompts o Describe what a scalene triangle looks like after being reflected over the y-axis.
    [Show full text]
  • Lecture 8 Image Transformations
    Lecture 8 Image Transformations Last Time (global and local warps) Handouts: PS#2 assigned Idea #1: Cross-Dissolving / Cross-fading Idea #2: Align, then cross-disolve Interpolate whole images: Ihalfway = α*I1 + (1- α)*I2 This is called cross-dissolving in film industry Align first, then cross-dissolve Alignment using global warp – picture still valid But what if the images are not aligned? Failure: Global warping Idea #3: Local warp & cross-dissolve Warp Warp What to do? Cross-dissolve doesn’t work Avg. ShapeCross-dissolve Avg. Shape Global alignment doesn’t work Cannot be done with a global transformation (e.g. affine) Morphing procedure: Any ideas? 1. Find the average shape (the “mean dog”☺) Feature matching! local warping Nose to nose, tail to tail, etc. 2. Find the average color This is a local (non-parametric) warp Cross-dissolve the warped images 1 Triangular Mesh Transformations 1. Input correspondences at key feature points 2. Define a triangular mesh over the points (ex. Delaunay Triangulation) (global and local warps) Same mesh in both images! Now we have triangle-to-triangle correspondences 3. Warp each triangle separately How do we warp a triangle? 3 points = affine warp! Just like texture mapping Slide Alyosha Efros Parametric (global) warping Parametric (global) warping Examples of parametric warps: T p’ = (x’,y’) p = (x,y) Transformation T is a coordinate-changing machine: p’ = T(p) translation rotation aspect What does it mean that T is global? Is the same for any point p can be described by just
    [Show full text]
  • Affine Transformations and Rotations
    CMSC 425 Dave Mount & Roger Eastman CMSC 425: Lecture 6 Affine Transformations and Rotations Affine Transformations: So far we have been stepping through the basic elements of geometric programming. We have discussed points, vectors, and their operations, and coordinate frames and how to change the representation of points and vectors from one frame to another. Our next topic involves how to map points from one place to another. Suppose you want to draw an animation of a spinning ball. How would you define the function that maps each point on the ball to its position rotated through some given angle? We will consider a limited, but interesting class of transformations, called affine transfor- mations. These include (among others) the following transformations of space: translations, rotations, uniform and nonuniform scalings (stretching the axes by some constant scale fac- tor), reflections (flipping objects about a line) and shearings (which deform squares into parallelograms). They are illustrated in Fig. 1. rotation translation uniform nonuniform reflection shearing scaling scaling Fig. 1: Examples of affine transformations. These transformations all have a number of things in common. For example, they all map lines to lines. Note that some (translation, rotation, reflection) preserve the lengths of line segments and the angles between segments. These are called rigid transformations. Others (like uniform scaling) preserve angles but not lengths. Still others (like nonuniform scaling and shearing) do not preserve angles or lengths. Formal Definition: Formally, an affine transformation is a mapping from one affine space to another (which may be, and in fact usually is, the same space) that preserves affine combi- nations.
    [Show full text]
  • Engineering Mechanics
    Course Material in Dynamics by Dr.M.Madhavi,Professor,MED Course Material Engineering Mechanics Dynamics of Rigid Bodies by Dr.M.Madhavi, Professor, Department of Mechanical Engineering, M.V.S.R.Engineering College, Hyderabad. Course Material in Dynamics by Dr.M.Madhavi,Professor,MED Contents I. Kinematics of Rigid Bodies 1. Introduction 2. Types of Motions 3. Rotation of a rigid Body about a fixed axis. 4. General Plane motion. 5. Absolute and Relative Velocity in plane motion. 6. Instantaneous centre of rotation in plane motion. 7. Absolute and Relative Acceleration in plane motion. 8. Analysis of Plane motion in terms of a Parameter. 9. Coriolis Acceleration. 10.Problems II.Kinetics of Rigid Bodies 11. Introduction 12.Analysis of Plane Motion. 13.Fixed axis rotation. 14.Rolling References I. Kinematics of Rigid Bodies I.1 Introduction Course Material in Dynamics by Dr.M.Madhavi,Professor,MED In this topic ,we study the characteristics of motion of a rigid body and its related kinematic equations to obtain displacement, velocity and acceleration. Rigid Body: A rigid body is a combination of a large number of particles occupying fixed positions with respect to each other. A rigid body being defined as one which does not deform. 2.0 Types of Motions 1. Translation : A motion is said to be a translation if any straight line inside the body keeps the same direction during the motion. It can also be observed that in a translation all the particles forming the body move along parallel paths. If these paths are straight lines. The motion is said to be a rectilinear translation (Fig 1); If the paths are curved lines, the motion is a curvilinear translation.
    [Show full text]
  • Ting Yip Math 308A 12/3/2001 Ting Yip Math 308A Abstract
    Matrices in Computer Graphics Ting Yip Math 308A 12/3/2001 Ting Yip Math 308A Abstract In this paper, we discuss and explore the basic matrix operation such as translations, rotations, scaling and we will end the discussion with parallel and perspective view. These concepts commonly appear in video game graphics. Introduction The use of matrices in computer graphics is widespread. Many industries like architecture, cartoon, automotive that were formerly done by hand drawing now are done routinely with the aid of computer graphics. Video gaming industry, maybe the earliest industry to rely heavily on computer graphics, is now representing rendered polygon in 3- Dimensions. In video gaming industry, matrices are major mathematic tools to construct and manipulate a realistic animation of a polygonal figure. Examples of matrix operations include translations, rotations, and scaling. Other matrix transformation concepts like field of view, rendering, color transformation and projection. Understanding of matrices is a basic necessity to program 3D video games. Graphics (Screenshots taken from Operation Flashpoint) Polygon figures like these use many flat or conic surfaces to represent a realistic human soldier. The last coordinate is a scalar term. Homogeneous Coordinate Transformation 3 æ x y z ö Points (x, y, z) in R can be identified as a homogeneous vector (x,y,z,h)®ç , , ,1÷with èh h h ø h ¹ 0 on the plane in R4. If we convert a 3D point to a 4D vector, we can represent a transformation to this point with a 4 x 4 matrix. 2 Ting Yip Math 308A EXAMPLE 3 4 Point (2, 5, 6) in R a Vector (2, 5, 6, 1) or (4, 10, 12, 2) in R NOTE It is possible to apply transformation to 3D points without converting them to 4D vectors.
    [Show full text]
  • The Mathematics Behind Escher's Prints: Form Symmetry to Groups
    LECTURE NOTES ON "THE MATHEMATICS BEHIND ESCHER'S PRINTS: FORM SYMMETRY TO GROUPS" JULIA PEVTSOVA 1. Introduction to symmetries of the plane 1.1. Rigid motions of the plane. Examples of four plane symmetries (using a primitive model of the Space needle): (1) Bilateral (reflection) (2) Rotational (3) Translational (4) Glide symmetry (=reflection + rotation) Applying plane symmetries to a fixed object we can create lots of wallpaper patterns (tessellations). Now watch Fries and Ghost examples. All these symmetries have a common property: they do not change distance between objects. Definition 1.1. A rigid motion ( = an isometry) is a motion that preserves dis- tance. 9 Reflection (Refl) > Rotation (Rot) => (rigid) motions of the plane. Translation (Tr) > Glide Reflection (Gl) ;> Theorem 1.2. The list of the four motions above contains ALL rigid motions of the plane. This poses a question: what if we do a rotation and then a reflection? By the theorem it should again be a rotation or a reflection or a translation of a glide reflection. Which one? Let's investigate this in the first exercise set. We shall denote the \composition" of two symmetries by a circle: ◦. For example, what is Rotation ◦ Rotation = ? 1.2. Orientation. Definition 1.3. A rigid motion is orientation preserving if it does not flip the plane over. Otherwise, it is orientation reversing. Orientation preserving Orientation reversing Rotation (Rot) Reflection (Refl) Translation (Tr) Glide reflection (Gl = Refl ◦ Tr) +1 −1 When we compose symmetries, \orientations" multiply. Let's make a table for \compositions": Date: July 29 - August 9, 2013. 1 2 JULIA PEVTSOVA Composition Orientation Tr ◦ Tr = Tr + Rot ◦ Rot = Rot n Tr + Rot ◦ Tr = Rot n Tr + Tr ◦ Rot = Rot n Tr + Rot ◦ Refl = Refl n Gl − Refl ◦ Rot = Refl n Gl − Refl ◦ Refl = Rot n Tr + We do not put glide reflection in this table because it is a composition in itself.
    [Show full text]
  • FRIEZE GROUPS in R2 Contents 1. Metric Spaces, Groups, And
    FRIEZE GROUPS IN R2 MAXWELL STOLARSKI Abstract. Focusing on the Euclidean plane under the Pythagorean Metric, our goal is to classify the frieze groups, discrete subgroups of the set of isome- tries of the Euclidean plane under the Pythagorean metric whose translation subgroups are infinite cyclic. We begin by developing a normal form for repre- senting all isometries. To simplify the problem of composing isometries written in normal form, we shall discuss the properties of compositions of reflections across different axes. Such a discussion will naturally lead to a classification of all isometries of the plane. Using such knowledge, we can then show that there are only seven geometrically different types of frieze groups. Contents 1. Metric Spaces, Groups, and Isometries 1 2. E and the Normal Form Theorem 3 3. Generators and Relations 5 4. Compositions of Reflections Across Different Axes 5 5. Classification of Frieze Groups 9 Acknowledgments 13 References 13 1. Metric Spaces, Groups, and Isometries Before we can begin to talk about frieze groups, we must discuss certain necessary preliminary concepts. We begin by formalizing the concept of distance between points in a set. Definition 1.1. A metric on a set X is a map d : X × X ! R such that i) d(x; y) ≥ 0 for all x; y 2 X and d(x; y) = 0 if and only if x = y; ii) d(x; y) = d(y; x) for all x; y 2 X; iii) d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X. A set X with a metric d is called a metric space, written (X; d).
    [Show full text]
  • Unit-1 : 2D and 3D Transformation & Viewing
    UNIT-1 : 2D AND 3D TRANSFORMATION & VIEWING 2D Transformation Transformation means changing some graphics into something else by applying rules. We can have various types of transformations such as translation, scaling up or down, rotation, shearing, etc. When a transformation takes place on a 2D plane, it is called 2D transformation. Transformations play an important role in computer graphics to reposition the graphics on the screen and change their size or orientation. Homogenous Coordinates To perform a sequence of transformation such as translation followed by rotation and scaling, we need to follow a sequential process − • Translate the coordinates, • Rotate the translated coordinates, and then • Scale the rotated coordinates to complete the composite transformation. • To shorten this process, we have to use 3×3 transformation matrix instead of 2×2 transformation matrix. To convert a 2×2 matrix to 3×3 matrix, we have to add an extra dummy coordinate W. In this way, we can represent the point by 3 numbers instead of 2 numbers, which is called Homogenous Coordinate system. In this system, we can represent all the transformation equations in matrix multiplication. Any Cartesian point P(X, Y) can be converted to homogenous coordinates by P’ (Xh, Yh, h). Translation A translation moves an object to a different position on the screen. You can translate a point in 2D by adding translation coordinate (tx, ty) to the original coordinate (X, Y) to get the new coordinate (X’, Y’). From the above figure, you can write that − X’ = X + tx Y’ = Y + ty Rotation In rotation, we rotate the object at particular angle θ (theta) from its origin.
    [Show full text]