Phytoseiulus Persimilis

Total Page:16

File Type:pdf, Size:1020Kb

Phytoseiulus Persimilis Phytoline p Phytoseiulus persimilis Spider Mite control Product description Phytoline p is a proprietary product containing the proven spider mite predator Phytoseiulus persimilis (Athias-Henriot) Phytoseiidae, Acari. The product is available in 500cm³ and 215cm³ bottles containing 2000 mites for application over wide areas, and also in 30 cm³ vials containing the same number of mites for treatment of ‘hot spots’ The 125cm³ and 30cm³ are available with either vermiculite or sawdust as the carrier material. The sawdust adheres better to leaves when first applied, and is preferred for crops with small, glossy leaves. The 30cm³ vials are supplied with a re-closeable flip-top for accurate spot applications. 125ml bottle formulations can be used with mite application machinery. How does it work? Phytoseiulus persimilis is an active predatory mite that has specialised in feeding on mites in the family Tetranychidae. This includes the common Red Spider Mite or Two-Spotted Mite Tetranychus urticae, and the Carmine Mite Tetranychus cinnabarinus. It is also reported to feed on some species of Oligonychus, but it is unable to feed on other arthropod prey or pollen. In the absence of spider mites it cannot become established. Female P.persimilis lay eggs amongst colonies of spider mites. The egg hatches to produce a six legged larva, which does not need to feed, and this is followed by protonymphal and deutonymphal stages. These two stages and the adult that follows feed voraciously on all stages of the spider mite, although they may show a preference for eggs. They are adapted to move easily over and amongst the webbing produced by the spider mites. Research has shown that they are attracted to leaves damaged by spider mite attack from some distance away. They may also be attracted by spider mite webbing. Phytoseiulus persimilis was one of the first beneficial arthropods to be commercialised, following successful trials for the control of acaricide-resistant spider mites on cucumber crops in England. At 20°C, eggs hatch in just over 3 days and development is completed within 10 days. This compares very favourably with the development of Tetranychus urticae, which takes nearly 17 days to complete its development at the same temperature. Once a female reaches adulthood, it may be a few days before she is able to lay eggs, but once she starts an average female will lay 2-4 eggs per day and may lay more than 50 eggs during her lifetime. At 30°C, the total development time is reduced to 5 days, which again compares favourably with a development time of 7.3 days for Tetranychus at the same temperature. There are approximately four females to every male of P. persimilis, so that the majority of individuals supplied are capable of laying eggs and the population can grow very rapidly. Commercial products may contain a higher proportion of females, but these will have mated during the production process and will be ready to lay eggs when released into colonies of spider mite. INSTRUCTIONS FOR USE OF Phytoline p. Phytoseiulus persimilis • Keep vials/ bottles horizontal and cool until use. DO NOT expose to direct sunlight at any time. • Immediately before opening, tap the base of the vial/ bottle sharply on a solid surface to dislodge the mites from the inner surface, and gently roll the vial/ bottle to distribute them evenly throughout the carrier material. VIALS • Open each vial in the glasshouse when ready to use it. • Apply the mites by inverting and tapping the vial over the spider mite infested leaves. • Before closing the re-closeable vial, tap it sharply to dislodge mites from the cap. Tap and roll the vial before re-opening it. • Leave the empty vial and lid on infested plants to allow any remaining predators to escape BOTTLES • Distribute the product over the leaves, gently shaking and rotating the bottles to give uniform distribution. Vigorous shaking will kill the mites. • Apply at an rate of 4/m². Repeat the introduction and increase the rate in established spider mite colonies until control is achieved. STORAGE • Use within 18 hours of receipt. • Keep in darkness at 5°C - 10°C with the vials horizontal until use. When and where should you use it? Best results are obtained by releasing Phytoseiulus persimilis soon after spider mites first appear on the crop. This may occur during the spring in field crops, when conditions are suitable for diapause break. In protected crops spider mites may enter diapause in September, but can become active again at any time from early January. In continuously heated crops, or where artificial light is used to extend the day length, the spider mites may remain active all year. Phytoseiulus persimilis may be used on any crop where spider mites are a pest. It is used widely on field grown and protected strawberries, on protected salad vegetables such as cucumbers, peppers, tomatoes and aubergines, and increasingly on ornamental crops such as roses. In salad vegetables there is some tolerance of leaf damage, so a balance is sought between pest and predator populations, as exemplified by the ‘pest in first’ strategy developed by the Glasshouse Crops Research Institute in England. In ornamental crops rates may be higher, or releases may be made on a much more frequent basis. The low or zero tolerance of damage on these crops means that a preventive programme is preferred, where predators are released whether prey is present or not. Hungry predators search the crop thoroughly and find small numbers of spider mite before they are able to establish and cause visible damage. How should you use it? Phytoseiulus persimilis is supplied as units of 2,000 in 500 cm³ or 125cm³ bottles, or 30 cm³ vials, with vermiculite or sawdust as a carrier material. In all cases it is essential to ensure that the mites are evenly distributed throughout the carrier before removing the cap to apply them. On receiving the bottles or vials, make sure they are kept horizontal and cool until use. Immediately before use, tap the container sharply on a hard surface to dislodge the mites from the inner surface. Roll the container gently to distribute the mites evenly in the carrier material before opening it. To release the mites, tap the container gently with a finger, while holding it horizontally above the infested foliage. Continue to roll the container while tapping it, to maintain uniform distribution of mites in the carrier material. Use the 500 cm³ unit size to achieve wide distribution of the mites over lightly infested areas or in low growing crops, for example in strawberries. For more accurate application of mites to leaves, use the 30cm³ unit. Each tap of this unit releases 5-10 mites and the smaller volume means that the mites are less likely to fall from the leaf with the carrier material. This unit is particularly useful for releasing mites into crops such as tomatoes, where heavy, localised spider mite outbreaks can occur. On crops where the plant leaves are small and glossy, a vermiculite carrier will tend to fall to the ground quickly: sawdust is preferred as a carrier material because it adheres to the leaves for longer. 125ml bottle formulations can be used with mite application machinery. Phytoseiulus should also be released into the areas around the outbreaks. If this is not done, the predators may remain in areas of plentiful food and not migrate to the edge of an infestation. Surviving spider mites at the periphery then continue to breed unchecked and the colony may expand in a ring away from the areas containing predators. When should you not use it? Phytoseiulus persimilis performs best in warm, relatively humid, conditions and may fail in hot, dry conditions, such as along the south side of some glasshouses, where the low humidity favours the spider mite. In these conditions, it is better to use the alternative predators Amblyseius andersoni, Amblyseius californicus or a combination of the two species. Although laboratory studies seem to show that A. californicus is no more tolerant of low humidity than P. persimilis, it has nevertheless proven more effective in these conditions in the field. Many growers experience difficulty in controlling spider mite outbreaks on tomato crops. Some commercial suppliers produce a ‘tomato-conditioned’ strain, but independent research has shown that this had no advantage over normal fresh stock despite the higher cost. In general, early release at high rates onto and around identified spider mite colonies remains the best option, with spot applications of compatible acaricides being used to treat larger outbreaks. The predatory midge Feltiella acarisuga can also be useful for control of spider mite. It frequently invades crops naturally, but inoculative releases ensure that it is present. Where Macrolophus caliginosus is established it will contribute to spider mite control on tomatoes and aubergines, but will prey on other beneficials such as Feltiella. What will it do? When used as advised, Phytoseiulus persimilis will control spider mites on the majority of protected crops. Success on outdoor crops is dependent on weather conditions at the time of application, and subsequently. What will it not do, and what are the control options? Phytoseiulus persimilis will not control the European Red Mite, Panonychus ulmi, nor Broad Mites (Tarsonemidae) or Rust Mites (Eriophyidae). Neither will it control very large populations of spider mites at normal introduction rates. Existing damage to leaves will remain even when all spider mites have been cleared from the area, so on crops where damage thresholds are low it must be used preventively. For control of these other pest mites Amblyseius andersoni and A montdorensis should be considered. Chemical compatibility Fumigation with sulphur on a regular basis can prevent establishment.
Recommended publications
  • Genetics of Foraging Behavior of the Predatory Mite, Phytoseiulus Persimilis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by K-State Research Exchange GENETICS OF FORAGING BEHAVIOR OF THE PREDATORY MITE, PHYTOSEIULUS PERSIMILIS by BHANU S. KONAKANDLA B.S., Angrau, India, 1999 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Entomology College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2006 Approved by: Major Professor David C. Margolies Co-Major Professor Yoonseong Park ABSTRACT Phytoseiulus persimilis (Acari: Phytoseiidae) is a specialist predator on tetranychid mites, especially on the twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). The foraging environment of the predatory mites consists of prey colonies distributed in patches within and among plants. Quantitative genetic studies have shown genetic variation in, and phenotypic correlations among, several foraging behaviors within populations of the predatory mite, P. persimilis. The correlations between patch location, patch residence, consumption and oviposition imply possible fitness trade-offs. We used molecular techniques to investigate genetic variation underlying the foraging behaviors. However, these genetic studies require a sufficiently large amount of DNA which was a limiting factor in our studies. Therefore, we developed a method for obtaining DNA from a single mite by using a chelex extraction followed by whole genome amplification. Whole genome amplification from a single mite provided us with a large quantity of high-quality DNA. We obtained more than a ten thousand-fold amplified DNA from a single mite using 0.01ng as template DNA. Sequence polymorphisms of P. persimilis were analyzed for nuclear DNA Inter Transcribed Spacers (ITS1 & ITS2) and for a mitochondrial12S rRNA.
    [Show full text]
  • Reproductive Parameters of Phytoseiulus Macropilis (Banks) Fed with Tetranychus Urticae Koch (Acari: Phytoseiidae, Tetranychidae) in Laboratory G
    http://dx.doi.org/10.1590/1519-6984.13115 Original Article Reproductive parameters of Phytoseiulus macropilis (Banks) fed with Tetranychus urticae Koch (Acari: Phytoseiidae, Tetranychidae) in laboratory G. C. Souza-Pimentela*, P. R. Reisb, C. R. Bonattoc, J. P. Alvesc and M. F. Siqueirac aPostgraduate Program in Entomology, Universidade Federal de Lavras – UFLA, CP 3037, CEP 37200-000, Lavras, MG, Brazil bEmpresa de Pesquisa Agropecuária de Minas Gerais – EPAMIG/EcoCentro, CP 176, CEP 37200-000, Lavras, MG, Brazil cUniversidade Federal de Lavras – UFLA, CP 3037, CEP 37200-000, Lavras, MG, Brazil *e-mail: [email protected] Received: August 24, 2015 – Accepted: December 14, 2015 – Distributed: February 28, 2017 (With 1 figure) Abstract Predatory mites that belong to the Phytoseiidae family are one of the main natural enemies of phytophagous mites, thus allowing for their use as a biological control. Phytoseiulus macropilis (Banks, 1904) (Acari: Phytoseiidae) is among the main species of predatory mites used for this purpose. Tetranychus urticae Koch, 1836 (Acari: Tetranychidae) is considered to be one of the most important species of mite pests and has been described as attacking over 1,100 species of plants in 140 families with economic value. The objective of the present study was to investigate, in the laboratory, the reproductive parameters of the predatory mite P. macropilis when fed T. urticae. Experiments were conducted under laboratory conditions at 25 ± 2 °C of temperature, 70 ± 10% RH and 14 hours of photophase. In addition, biological aspects were evaluated and a fertility life table was established. The results of these experiments demonstrated that the longevity of adult female was 27.5 days and adult male was 29.0 days.
    [Show full text]
  • Proceedings of a Workshop on Biodiversity Dynamics on La Réunion Island
    PROCEEDINGS OF A WORKSHOP ON BIODIVERSITY DYNAMICS ON LA RÉUNION ISLAND ATELIER SUR LA DYNAMIQUE DE LA BIODIVERSITE A LA REUNION SAINT PIERRE – SAINT DENIS 29 NOVEMBER – 5 DECEMBER 2004 29 NOVEMBRE – 5 DECEMBRE 2004 T. Le Bourgeois Editors Stéphane Baret, CIRAD UMR C53 PVBMT, Réunion, France Mathieu Rouget, National Biodiversity Institute, South Africa Ingrid Nänni, National Biodiversity Institute, South Africa Thomas Le Bourgeois, CIRAD UMR C53 PVBMT, Réunion, France Workshop on Biodiversity dynamics on La Reunion Island - 29th Nov. to 5th Dec. 2004 WORKSHOP ON BIODIVERSITY DYNAMICS major issues: Genetics of cultivated plant ON LA RÉUNION ISLAND species, phytopathology, entomology and ecology. The research officer, Monique Rivier, at Potential for research and facilities are quite French Embassy in Pretoria, after visiting large. Training in biology attracts many La Réunion proposed to fund and support a students (50-100) in BSc at the University workshop on Biodiversity issues to develop (Sciences Faculty: 100 lecturers, 20 collaborations between La Réunion and Professors, 2,000 students). Funding for South African researchers. To initiate the graduate grants are available at a regional process, we decided to organise a first or national level. meeting in La Réunion, regrouping researchers from each country. The meeting Recent cooperation agreements (for was coordinated by Prof D. Strasberg and economy, research) have been signed Dr S. Baret (UMR CIRAD/La Réunion directly between La Réunion and South- University, France) and by Prof D. Africa, and former agreements exist with Richardson (from the Institute of Plant the surrounding Indian Ocean countries Conservation, Cape Town University, (Madagascar, Mauritius, Comoros, and South Africa) and Dr M.
    [Show full text]
  • Control of Two-Spotted Spider Mite (Tetranychus Urticae) by a Predatory Mite (Phytoseiulus Persimilis)
    CONTROL OF TWO-SPOTTED SPIDER MITE (TETRANYCHUS URTICAE) BY A PREDATORY MITE (PHYTOSEIULUS PERSIMILIS) Yong-Heon Kim Division of Entomology National Institute of Agricultural Science and Technology (NIAST), RDA Korea ABSTRACT A mass rearing technique for the predatory mite, Phytoseiulus persimilis Athias-Henriot, was successfully developed and used in five local Agricultural Extension Centers and by two commercial strawberry growers in Korea. Currently, biological control of the two-spotted spider mite, Tetranychus urticae Koch, by the predatory mite has been successfully implemented in ap- proximately 75 ha of commercial strawberry grown in vinyl greenhouses. T. urticae was effec- tively controlled by the release of predatory mites at a rate of 3/m2. At least two monthly re- leases were required, both for strawberry crops maturing at the normal time (February or early March) and for early-maturing crops (maturing in December and January). A schedule of abamectin plus the release of the predatory mites was compared with the application of fenazaquin. Abamectin enhanced the control of T. urticae significantly, whereas fenazaquin did not. Fenazaquin was not effective in controlling T. urticae. INTRODUCTION Germany, it was subsequently shipped to other parts of the world, including California (McMurtry et al. In Korea, strawberry is a favorite fruit in 1978). winter and spring. Korea’s total production of Strawberries in Korea are cultivated in strawberry ranks seventh in the world. The two- greenhouses, which keep the temperature above spotted spider mite (TSM), Tetranychus urticae 5°C over the winter (October to April). Such Koch, is an extremely difficult pest to manage on temperatures are favorable for the reproduction and strawberries.
    [Show full text]
  • VINEYARD BIODIVERSITY and INSECT INTERACTIONS! ! - Establishing and Monitoring Insectariums! !
    ! VINEYARD BIODIVERSITY AND INSECT INTERACTIONS! ! - Establishing and monitoring insectariums! ! Prepared for : GWRDC Regional - SA Central (Adelaide Hills, Currency Creek, Kangaroo Island, Langhorne Creek, McLaren Vale and Southern Fleurieu Wine Regions) By : Mary Retallack Date : August 2011 ! ! ! !"#$%&'(&)'*!%*!+& ,- .*!/'01)!.'*&----------------------------------------------------------------------------------------------------------------&2 3-! "&(')1+&'*&4.*%5"/0&#.'0.4%/+.!5&-----------------------------------------------------------------------------&6! ! &ABA <%5%+3!C0-72D0E2!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!F! &A&A! ;D,!*2!G*0.*1%-2*3,!*HE0-3#+3I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!J! &AKA! ;#,2!0L!%+D#+5*+$!G*0.*1%-2*3,!*+!3D%!1*+%,#-.!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!B&! 7- .*+%)!"/.18+&--------------------------------------------------------------------------------------------------------------&,2! ! ! KABA ;D#3!#-%!*+2%53#-*MH2I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!BN! KA&A! O3D%-!C#,2!0L!L0-H*+$!#!2M*3#G8%!D#G*3#3!L0-!G%+%L*5*#82!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&P! KAKA! ?%8%53*+$!3D%!-*$D3!2E%5*%2!30!E8#+3!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&B! 9- :$"*!.*;&5'1/&.*+%)!"/.18&-------------------------------------------------------------------------------------&3<!
    [Show full text]
  • Phytoseiids As Biological Control Agents of Phytophagous Mites
    PHYTOSEIIDS AS BIOLOGICAL CONTROL AGENTS OF PHYTOPHAGOUS MITES IN WASHINGTON APPLE ORCHARDS By REBECCA ANN SCHMIDT-JEFFRIS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Entomology MAY 2015 © Copyright by REBECCA ANN SCHMIDT-JEFFRIS, 2015 All Rights Reserved © Copyright by REBECCA ANN SCHMIDT-JEFFRIS, 2015 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of REBECCA ANN SCHMIDT-JEFFRIS find it satisfactory and recommend that it be accepted. Elizabeth H. Beers, Ph.D., Chair David W. Crowder, Ph.D. Richard S. Zack, Ph.D. Thomas R. Unruh, Ph.D. Nilsa A. Bosque-Pérez, Ph.D. ii ACKNOWLEDGEMENT I would like to thank Dr. Elizabeth Beers for giving me the opportunity to work in her lab and for several years of exceptional mentoring. She has provided me with an excellent experience and is an outstanding role model. I would also like to thank the other members of my committee, Drs. Thomas Unruh, David Crowder, Nilsa Bosque-Pérez, and Richard Zack for comments on these (and other) manuscripts, and invaluable advice throughout my graduate career. Additionally, I thank the entomology faculty of Washington State University and the University of Idaho for coursework that acted as the foundation for this degree, especially Dr. Sanford Eigenbrode and Dr. James “Ding” Johnson. I also thank Dr. James McMurtry, for input on manuscripts and identification confirmation of mite specimens. I would like to acknowledge the assistance I received in conducting these experiments from our laboratory technicians, Bruce Greenfield and Peter Smytheman, my labmate Alix Whitener, and the many undergraduate technicians that helped collect data: Denise Burnett, Allie Carnline, David Gutiérrez, Kylie Martin, Benjamin Peterson, Mattie Warner, Alyssa White, and Shayla White.
    [Show full text]
  • Phytoseiidae (Acari: Mesostigmata) on Plants of the Family Solanaceae
    Phytoseiidae (Acari: Mesostigmata) on plants of the family Solanaceae: results of a survey in the south of France and a review of world biodiversity Marie-Stéphane Tixier, Martial Douin, Serge Kreiter To cite this version: Marie-Stéphane Tixier, Martial Douin, Serge Kreiter. Phytoseiidae (Acari: Mesostigmata) on plants of the family Solanaceae: results of a survey in the south of France and a review of world biodiversity. Experimental and Applied Acarology, Springer Verlag, 2020, 28 (3), pp.357-388. 10.1007/s10493-020- 00507-0. hal-02880712 HAL Id: hal-02880712 https://hal.inrae.fr/hal-02880712 Submitted on 25 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Experimental and Applied Acarology https://doi.org/10.1007/s10493-020-00507-0 Phytoseiidae (Acari: Mesostigmata) on plants of the family Solanaceae: results of a survey in the south of France and a review of world biodiversity M.‑S. Tixier1 · M. Douin1 · S. Kreiter1 Received: 6 January 2020 / Accepted: 28 May 2020 © Springer Nature Switzerland AG 2020 Abstract Species of the family Phytoseiidae are predators of pest mites and small insects. Their biodiversity is not equally known according to regions and supporting plants.
    [Show full text]
  • Niche Modeling May Explain the Historical Population Failure of Phytoseiulus Persimilis in Taiwan: Implications of Biocontrol Strategies
    insects Article Niche Modeling May Explain the Historical Population Failure of Phytoseiulus persimilis in Taiwan: Implications of Biocontrol Strategies Jhih-Rong Liao 1 , Chyi-Chen Ho 2, Ming-Chih Chiu 3,* and Chiung-Cheng Ko 1,† 1 Department of Entomology, National Taiwan University, Taipei 106332, Taiwan; [email protected] (J.-R.L.); [email protected] (C.-C.K.) 2 Taiwan Acari Research Laboratory, Taichung 413006, Taiwan; [email protected] 3 Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama 7908577, Japan * Correspondence: [email protected] † Deceased, 29 October 2020. This paper is dedicated to the memory of the late Chiung-Cheng Ko. Simple Summary: Phytoseiulus persimilis Athias-Henriot, a mite species widely used in pest manage- ment for the control of spider mites, has been commercialized and introduced to numerous countries. In the 1990s, P. persimilis was imported to Taiwan, and a million individuals were released into the field. However, none have been observed since then. In this study, we explored the ecological niche of this species to determine reasons underlying its establishment failure. The results indicate that P. persimilis was released in areas poorly suited to their survival. To the best of our knowledge, the present study is the first to predict the potential distribution of phytoseiids as exotic natural enemies. This process should precede the commercialization of exotic natural enemies and their introduction Citation: Liao, J.-R.; Ho, C.-C.; Chiu, into any country. M.-C.; Ko, C.-C. Niche Modeling May Explain the Historical Population Abstract: Biological control commonly involves the commercialization and introduction of natural Failure of Phytoseiulus persimilis in enemies.
    [Show full text]
  • Dr. Frank G. Zalom
    Award Category: Lifetime Achievement The Lifetime Achievement in IPM Award goes to an individual who has devoted his or her career to implementing IPM in a specific environment. The awardee must have devoted their career to enhancing integrated pest management in implementation, team building, and integration across pests, commodities, systems, and disciplines. New for the 9th International IPM Symposium The Lifetime Achievement winner will be invited to present his or other invited to present his or her own success story as the closing plenary speaker. At the same time, the winner will also be invited to publish one article on their success of their program in the Journal of IPM, with no fee for submission. Nominator Name: Steve Nadler Nominator Company/Affiliation: Department of Entomology and Nematology, University of California, Davis Nominator Title: Professor and Chair Nominator Phone: 530-752-2121 Nominator Email: [email protected] Nominee Name of Individual: Frank Zalom Nominee Affiliation (if applicable): University of California, Davis Nominee Title (if applicable): Distinguished Professor and IPM specialist, Department of Entomology and Nematology, University of California, Davis Nominee Phone: 530-752-3687 Nominee Email: [email protected] Attachments: Please include the Nominee's Vita (Nominator you can either provide a direct link to nominee's Vita or send email to Janet Hurley at [email protected] with subject line "IPM Lifetime Achievement Award Vita include nominee name".) Summary of nominee’s accomplishments (500 words or less): Describe the goals of the nominee’s program being nominated; why was the program conducted? What condition does this activity address? (250 words or less): Describe the level of integration across pests, commodities, systems and/or disciplines that were involved.
    [Show full text]
  • Mechanical Release of Phytoseiulus Persimilis and Amblyseius Swirskii on Protected Crops
    Bulletin of Insectology 70 (2): 245-250, 2017 ISSN 1721-8861 Mechanical release of Phytoseiulus persimilis and Amblyseius swirskii on protected crops 1 2 2 Alberto LANZONI , Roberta MARTELLI , Fabio PEZZI 1Department of Agricultural Sciences, University of Bologna, Italy 2Department of Agricultural and Food Sciences, University of Bologna, Italy Abstract The distribution of chemicals on protected crops can be critical for the operators who are forced to make frequent treatments in an enclosed environment and in the presence of high pesticide concentrations. The introduction of organic farming techniques limits these aspects but generally requires a substantial commitment of manpower for the release of beneficial organisms resulting in high costs. To evaluate the feasibility of improving the mechanical application of beneficial organisms a mechanical blower was used. The device was previously tested in the laboratory in terms of mites survival, reproduction and distribution patterns. The application of Phytoseiulus persimilis Athias-Henriot and Amblyseius swirskii Athias-Henriot against Tetranychus urticae Koch and Frankliniella occidentalis (Pergande) on protected crops was investigated. Different application methods of the antagonists were considered: i) hand-sprinkling, ii) separate mechanical release, iii) combined mechanical release, iv) paper sachets (Swirskii- Breeding-System). Compared to hand application the mechanical release allowed a significant reduction in time needed for the dis- tribution, while showing equal pest control effectiveness. P. persimilis was able to control T. urticae adequately in all treatments, while in the case of A. swirskii release a final spinosad application became necessary to provide effective F. occidentalis control. Key words: application technology, biological control, Frankliniella occidentalis, mechanical distribution, natural enemy re- lease, predatory mite, Tetranychus urticae.
    [Show full text]
  • Microscopic Analysis of the Microbiota of Three Commercial Phytoseiidae Species (Acari: Mesostigmata)
    Experimental and Applied Acarology (2020) 81:389–408 https://doi.org/10.1007/s10493-020-00520-3 Microscopic analysis of the microbiota of three commercial Phytoseiidae species (Acari: Mesostigmata) Jason C. Sumner‑Kalkun1 · Ian Baxter2 · M. Alejandra Perotti3 Received: 21 December 2019 / Accepted: 19 June 2020 / Published online: 7 July 2020 © The Author(s) 2020 Abstract Microbes associated with the external and internal anatomy of three commercially avail- able predatory mite species—Phytoseiulus persimilis, Typhlodromips (= Amblyseius) swirskii, and Neoseiulus (= Amblyseius) cucumeris—were examined using light micros- copy, confocal laser scanning microscopy and fuorescence in-situ hybridization (FISH). Four microbe morphotypes were observed on external body regions. These included three microfungi-like organisms (named T1, T2 and T3) and rod-shaped bacteria (T4). Mor- photypes showed unique distributions on the external body regions and certain microbes were found only on one host species. Microfungi-like T1 were present in all three species whereas T2 and T3 were present in only P. persimilis and T. swirskii, respectively. T1 and T2 microbes were most abundant on the ventral structures of the idiosoma and legs, most frequently associated with coxae, coxal folds, ventrianal shields and epigynal shields. T3 microbes were most abundant on legs and dorsal idiosoma. T4 microbes were less abun- dant and were attached to epigynal shields of N. cucumeris and T. swirskii. Signifcant dif- ferences in distribution between batches suggest temporal fuctuations in the microbiota of phytoseiids in mass-reared systems. FISH showed bacteria within the alimentary tract, in Malpighian tubules and anal atria. These may aid absorption of excretory products or maintaining gut physiology.
    [Show full text]
  • The Thermal Biology and Thresholds of Phytoseiulus Macropilis Banks (Acari: Phytoseiidae) and Balaustium Hernandezi Von Heyden (Acari: Erythraeidae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Birmingham Research Archive, E-theses Repository The thermal biology and thresholds of Phytoseiulus macropilis Banks (Acari: Phytoseiidae) and Balaustium hernandezi von Heyden (Acari: Erythraeidae) By Megan R. Coombs A thesis submitted to the University of Birmingham For the degree of DOCTOR OF PHILOSOPHY School of Biosciences College of Life and Environmental Sciences University of Birmingham September 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Phytoseiulus macropilis Banks (Acari: Phytoseiidae) and Balaustium hernandezi von Heyden (Acari: Erythraeidae) have been identified as candidate augmentative biological control agents for the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). The two-spotted spider mite is a significant pest of many commercial crops, including those grown in glasshouses. This study investigated the potential of both species to survive a typical northern European winter, and risk of establishment. The thermal thresholds of each species were also assessed to determine the efficacy of the predator in a horticultural system. Through a combination of laboratory and field trials, P.
    [Show full text]