New and Little Known Orthopteroid Insects (Polyneoptera) from Fossil Resins: Communication 1 A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fossil Record of Stem Groups Employed In
www.nature.com/scientificreports OPEN Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Received: 07 April 2016 Accepted: 16 November 2016 Hexapoda) Published: 13 December 2016 Yan-hui Wang1,2,*, Michael S. Engel3,*, José A. Rafael4,*, Hao-yang Wu2, Dávid Rédei2, Qiang Xie2, Gang Wang1, Xiao-guang Liu1 & Wen-jun Bu2 Insecta s. str. (=Ectognatha), comprise the largest and most diversified group of living organisms, accounting for roughly half of the biodiversity on Earth. Understanding insect relationships and the specific time intervals for their episodes of radiation and extinction are critical to any comprehensive perspective on evolutionary events. Although some deeper nodes have been resolved congruently, the complete evolution of insects has remained obscure due to the lack of direct fossil evidence. Besides, various evolutionary phases of insects and the corresponding driving forces of diversification remain to be recognized. In this study, a comprehensive sample of all insect orders was used to reconstruct their phylogenetic relationships and estimate deep divergences. The phylogenetic relationships of insect orders were congruently recovered by Bayesian inference and maximum likelihood analyses. A complete timescale of divergences based on an uncorrelated log-normal relaxed clock model was established among all lineages of winged insects. The inferred timescale for various nodes are congruent with major historical events including the increase of atmospheric oxygen in the Late Silurian and earliest Devonian, the radiation of vascular plants in the Devonian, and with the available fossil record of the stem groups to various insect lineages in the Devonian and Carboniferous. Over half of all described living species are insects, and they dominate all terrestrial ecosystems1. -
Of Agrocenosis of Rice Fields in Kyzylorda Oblast, South Kazakhstan
Acta Biologica Sibirica 6: 229–247 (2020) doi: 10.3897/abs.6.e54139 https://abs.pensoft.net RESEARCH ARTICLE Orthopteroid insects (Mantodea, Blattodea, Dermaptera, Phasmoptera, Orthoptera) of agrocenosis of rice fields in Kyzylorda oblast, South Kazakhstan Izbasar I. Temreshev1, Arman M. Makezhanov1 1 LLP «Educational Research Scientific and Production Center "Bayserke-Agro"», Almaty oblast, Pan- filov district, Arkabay village, Otegen Batyr street, 3, Kazakhstan Corresponding author: Izbasar I. Temreshev ([email protected]) Academic editor: R. Yakovlev | Received 10 March 2020 | Accepted 12 April 2020 | Published 16 September 2020 http://zoobank.org/EF2D6677-74E1-4297-9A18-81336E53FFD6 Citation: Temreshev II, Makezhanov AM (2020) Orthopteroid insects (Mantodea, Blattodea, Dermaptera, Phasmoptera, Orthoptera) of agrocenosis of rice fields in Kyzylorda oblast, South Kazakhstan. Acta Biologica Sibirica 6: 229–247. https://doi.org/10.3897/abs.6.e54139 Abstract An annotated list of Orthopteroidea of rise paddy fields in Kyzylorda oblast in South Kazakhstan is given. A total of 60 species of orthopteroid insects were identified, belonging to 58 genera from 17 families and 5 orders. Mantids are represented by 3 families, 6 genera and 6 species; cockroaches – by 2 families, 2 genera and 2 species; earwigs – by 3 families, 3 genera and 3 species; sticks insects – by 1 family, 1 genus and 1 species. Orthopterans are most numerous (8 families, 46 genera and 48 species). Of these, three species, Bolivaria brachyptera, Hierodula tenuidentata and Ceraeocercus fuscipennis, are listed in the Red Book of the Republic of Kazakhstan. Celes variabilis and Chrysochraon dispar indicated for the first time for a given location. The fauna of orthopteroid insects in the studied areas of Kyzylorda is compared with other regions of Kazakhstan. -
Volume 2, Chapter 12-5: Terrestrial Insects: Hemimetabola-Notoptera
Glime, J. M. 2017. Terrestrial Insects: Hemimetabola – Notoptera and Psocoptera. Chapter 12-5. In: Glime, J. M. Bryophyte Ecology. 12-5-1 Volume 2. Interactions. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. eBook last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 12-5 TERRESTRIAL INSECTS: HEMIMETABOLA – NOTOPTERA AND PSOCOPTERA TABLE OF CONTENTS NOTOPTERA .................................................................................................................................................. 12-5-2 Grylloblattodea – Ice Crawlers ................................................................................................................. 12-5-3 Grylloblattidae – Ice Crawlers ........................................................................................................... 12-5-3 Galloisiana ................................................................................................................................. 12-5-3 Grylloblatta ................................................................................................................................ 12-5-3 Grylloblattella ............................................................................................................................ 12-5-4 PSOCOPTERA – Booklice, Barklice, Barkflies .............................................................................................. 12-5-4 Summary ......................................................................................................................................................... -
Ent18 1 007 016 Shcherbakov for Inet.Pmd
Russian Entomol. J. 18(1): 716 © RUSSIAN ENTOMOLOGICAL JOURNAL, 2009 Permian insects from the Russky Island, South Primorye Ïåðìñêèå íàñåêîìûå ñ îñòðîâà Ðóññêèé â Þæíîì Ïðèìîðüå Dmitry E. Shcherbakov1, Vladimir N. Makarkin2, Daniil S. Aristov3 & Dmitry V. Vasilenko4 Ä.Å. Ùåðáàêîâ1, Â.Í. Ìàêàðêèí2, Ä.Ñ. Àðèñòîâ3, Ä.Â. Âàñèëåíêî4 1, 3, 4 Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow 117647, Russia. 1 E-mail: [email protected] 3 E-mail: [email protected] 4 E-mail: [email protected] 2 Institute of Biology and Soil Sciences, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia. E- mail: [email protected] Ïàëåîíòîëîãè÷åñêèé èíñòèòóò ÐÀÍ, Ïðîôñîþçíàÿ óë. 123, Ìîñêâà 117647, Ðîññèÿ. Áèîëîãî-ïî÷âåííûé èíñòèòóò ÄÂÎ ÐÀÍ, Âëàäèâîñòîê 690022, Ðîññèÿ. KEY WORDS: fossil insects, Megasecoptera, Titanoptera, Grylloblattida, Homoptera, Neuroptera, Coleoptera, Mecoptera, entomofauna, South Primorye, Permian, Kungurian. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: èñêîïàåìûå íàñåêîìûå, Megasecoptera, Titanoptera, Grylloblattida, Homoptera, Neuroptera, Coleoptera, Mecoptera, ýíòîìîôàóíà, Þæíîå Ïðèìîðüå, ïåðìñêèé ïåðèîä, êóíãóðñêèé âåê. ABSTRACT. The first Permian insect assemblage ÐÅÇÞÌÅ. Âïåðâûå ñ Äàëüíåãî Âîñòîêà îïèñàí from the Russian Far East, collected in the lower ïåðìñêèé êîìïëåêñ íàñåêîìûõ èç íèæíåé ÷àñòè Pospelovo Formation (Kungurian, Lower Permian) of ïîñïåëîâñêîé ñâèòû (êóíãóðñêèé ÿðóñ, íèæíÿÿ the Russky Island near Vladivostok, is described. It is ïåðìü) îñòðîâà Ðóññêèé áëèç Âëàäèâîñòîêà.  í¸ì dominated -
Karyotype of Karoophasma Biedouwense (Austrophasmatidae)
Eur. J. Entomol. 112(4): 599–605, 2015 doi: 10.14411/eje.2015.093 ISSN 1210-5759 (print), 1802-8829 (online) First chromosomal study of Mantophasmatodea: Karyotype of Karoophasma biedouwense (Austrophasmatidae) DOROTA LACHOWSKA-CIERLIK1, ANNA MARyAńSKA-Nadachowska2, VALENTINA KuZNETSOvA3 and MIKE PICKER4 1 Institute of Zoology, Jagiellonian university, Cracow, Poland; e-mail: [email protected] 2 Institute of Systematic and Evolution of Animals, PAS, Cracow, Poland; e-mail: [email protected] 3 Zoological Institute Russian Academy of Sciences, St. Petersburg, Russia; e-mail: [email protected] 4 Department of Biological Sciences, university of Cape Town, Rondebosch, Cape Town, South Africa; e-mail: [email protected] Key words. Mantophasmatodea, Karoophasma biedouwense, FISH, heterochromatin, heelwalkers, meiosis, ribosomal genes, sex determination system, telomeres Abstract. We have investigated for the first time the chromosomes of Karoophasma biedouwense, a species belonging to the Manto- phasmatodea, a recently discovered order of carnivorous insects. Our study has revealed that males of this species display testes with numerous seminal tubes (follicles), as in other Polyneoptera, and short tubular seminal vesicles embedded in a utricular gland. The karyotype consists of 2n = 12A + X monocentric and biarmed, meta/submetacentric chromosomes (fundamental number of arms: FN = 26) with blocks of heterochromatin around centromeres. The autosomes are classified into two size groups, one represented by a single, very large pair of autosomes, the other by five smaller pairs which constitute a continuous series gradually decreasing in size. Among “monocentric” orders of Polyneoptera, K. biedouwense shares its low chromosome number, 2n = 13, as also found with some Orthoptera (Acridoidea, Grylloidea, Gryllacridoidea). -
Monophyletic Polyneoptera Recovered by Wing Base Structure
Title Monophyletic Polyneoptera recovered by wing base structure Author(s) Yoshizawa, Kazunori Systematic Entomology, 36(3), 377-394 Citation https://doi.org/10.1111/j.1365-3113.2011.00572.x Issue Date 2011-07 Doc URL http://hdl.handle.net/2115/49480 Rights The definitive version is available at http://onlinelibrary.wiley.com/ Type article (author version) File Information SE36-3_377-394.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Running title: Phylogeny of Polyneoptera Monophyletic Polyneoptera recovered by the wing base structure KAZUNORI YOSHIZAWA Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan Correspondence: Kazunori Yoshizawa, Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan. E-mail. [email protected] Abstract. Phylogenetic relationships among the winged orders of Polyneoptera (Blattodea, Dermaptera, Embiodea or Embioptera, Isoptera, Mantodea, Orthoptera, Phasmatodea, Plecoptera, Zoraptera) were estimated based on morphological data selected from the hindwing base structure. Cladistic analyses were carried out using the hindwing base data alone and in combination with other, more general, morphological data. Both data sets resulted in similar trees and recovered monophyly of Polyneoptera. Deepest phylogenetic relationships among the polyneopteran orders were not confidently estimated, but monophyly of Mystroptera (= Embiodea + Zoraptera), Orthopterida (= Orthoptera + Phasmatodea) and Dictyoptera (= Blattodea + Mantodea + Isoptera) was supported consistently. In contrast, placements of Plecoptera and Dermaptera were unstable, although independent analysis of the wing base data supported their sister group relationship with two non-homoplasious synapomorphies (unique conditions in the ventral basisubcostale and in the articulation between the antemedian notal wing process and first axillary sclerite). -
Evolution of the Insects David Grimaldi and Michael S
Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Frontmatter More information EVOLUTION OF THE INSECTS Insects are the most diverse group of organisms to appear in the 3-billion-year history of life on Earth, and the most ecologically dominant animals on land. This book chronicles, for the first time, the complete evolutionary history of insects: their living diversity, relationships, and 400 million years of fossils. Whereas other volumes have focused on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Current estimates of phylogeny are used to interpret the 400-million-year fossil record of insects, their extinctions, and radiations. Introductory sections include the living species, diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections cover the relationships and evolution of each order of hexapod. The book also chronicles major episodes in the evolutionary history of insects: their modest beginnings in the Devonian, the origin of wings hundreds of millions of years before pterosaurs and birds, the impact that mass extinctions and the explosive radiation of angiosperms had on insects, and how insects evolved the most complex societies in nature. Evolution of the Insects is beautifully illustrated with more than 900 photo- and electron micrographs, drawings, diagrams, and field photographs, many in full color and virtually all original. The book will appeal to anyone engaged with insect diversity: professional ento- mologists and students, insect and fossil collectors, and naturalists. David Grimaldi has traveled in 40 countries on 6 continents collecting and studying recent species of insects and conducting fossil excavations. -
Changes to the Fossil Record of Insects Through Fifteen Years of Discovery
This is a repository copy of Changes to the Fossil Record of Insects through Fifteen Years of Discovery. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/88391/ Version: Published Version Article: Nicholson, David Blair, Mayhew, Peter John orcid.org/0000-0002-7346-6560 and Ross, Andrew J (2015) Changes to the Fossil Record of Insects through Fifteen Years of Discovery. PLosOne. e0128554. https://doi.org/10.1371/journal.pone.0128554 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ RESEARCH ARTICLE Changes to the Fossil Record of Insects through Fifteen Years of Discovery David B. Nicholson1,2¤*, Peter J. Mayhew1, Andrew J. Ross2 1 Department of Biology, University of York, York, United Kingdom, 2 Department of Natural Sciences, National Museum of Scotland, Edinburgh, United Kingdom ¤ Current address: Department of Earth Sciences, The Natural History Museum, London, United Kingdom * [email protected] Abstract The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. -
New Canadian and Ontario Orthopteroid Records, and an Updated Checklist of the Orthoptera of Ontario
Checklist of Ontario Orthoptera (cont.) JESO Volume 145, 2014 NEW CANADIAN AND ONTARIO ORTHOPTEROID RECORDS, AND AN UPDATED CHECKLIST OF THE ORTHOPTERA OF ONTARIO S. M. PAIERO1* AND S. A. MARSHALL1 1School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1 email, [email protected] Abstract J. ent. Soc. Ont. 145: 61–76 The following seven orthopteroid taxa are recorded from Canada for the first time: Anaxipha species 1, Cyrtoxipha gundlachi Saussure, Chloroscirtus forcipatus (Brunner von Wattenwyl), Neoconocephalus exiliscanorus (Davis), Camptonotus carolinensis (Gerstaeker), Scapteriscus borellii Linnaeus, and Melanoplus punctulatus griseus (Thomas). One further species, Neoconocephalus retusus (Scudder) is recorded from Ontario for the first time. An updated checklist of the orthopteroids of Ontario is provided, along with notes on changes in nomenclature. Published December 2014 Introduction Vickery and Kevan (1985) and Vickery and Scudder (1987) reviewed and listed the orthopteroid species known from Canada and Alaska, including 141 species from Ontario. A further 15 species have been recorded from Ontario since then (Skevington et al. 2001, Marshall et al. 2004, Paiero et al. 2010) and we here add another eight species or subspecies, of which seven are also new Canadian records. Notes on several significant provincial range extensions also are given, including two species originally recorded from Ontario on bugguide.net. Voucher specimens examined here are deposited in the University of Guelph Insect Collection (DEBU), unless otherwise noted. New Canadian records Anaxipha species 1 (Figs 1, 2) (Gryllidae: Trigidoniinae) This species, similar in appearance to the Florida endemic Anaxipha calusa * Author to whom all correspondence should be addressed. -
Phylogeny and Life History Evolution of Blaberoidea (Blattodea)
78 (1): 29 – 67 2020 © Senckenberg Gesellschaft für Naturforschung, 2020. Phylogeny and life history evolution of Blaberoidea (Blattodea) Marie Djernæs *, 1, 2, Zuzana K otyková Varadínov á 3, 4, Michael K otyk 3, Ute Eulitz 5, Kla us-Dieter Klass 5 1 Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom — 2 Natural History Museum Aarhus, Wilhelm Meyers Allé 10, 8000 Aarhus C, Denmark; Marie Djernæs * [[email protected]] — 3 Department of Zoology, Faculty of Sci- ence, Charles University, Prague, 12844, Czech Republic; Zuzana Kotyková Varadínová [[email protected]]; Michael Kotyk [[email protected]] — 4 Department of Zoology, National Museum, Prague, 11579, Czech Republic — 5 Senckenberg Natural History Collections Dresden, Königsbrücker Landstrasse 159, 01109 Dresden, Germany; Klaus-Dieter Klass [[email protected]] — * Corresponding author Accepted on February 19, 2020. Published online at www.senckenberg.de/arthropod-systematics on May 26, 2020. Editor in charge: Gavin Svenson Abstract. Blaberoidea, comprised of Ectobiidae and Blaberidae, is the most speciose cockroach clade and exhibits immense variation in life history strategies. We analysed the phylogeny of Blaberoidea using four mitochondrial and three nuclear genes from 99 blaberoid taxa. Blaberoidea (excl. Anaplectidae) and Blaberidae were recovered as monophyletic, but Ectobiidae was not; Attaphilinae is deeply subordinate in Blattellinae and herein abandoned. Our results, together with those from other recent phylogenetic studies, show that the structuring of Blaberoidea in Blaberidae, Pseudophyllodromiidae stat. rev., Ectobiidae stat. rev., Blattellidae stat. rev., and Nyctiboridae stat. rev. (with “ectobiid” subfamilies raised to family rank) represents a sound basis for further development of Blaberoidea systematics. -
Evolution of the Insects David Grimaldi and Michael S
Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Index More information INDEX 12S rDNA, 32, 228, 269 Aenetus, 557 91; general, 57; inclusions, 57; menageries 16S rDNA, 32, 60, 237, 249, 269 Aenigmatiinae, 536 in, 56; Mexican, 55; parasitism in, 57; 18S rDNA, 32, 60, 61, 158, 228, 274, 275, 285, Aenne, 489 preservation in, 58; resinite, 55; sub-fossil 304, 307, 335, 360, 366, 369, 395, 399, 402, Aeolothripidae, 284, 285, 286 resin, 57; symbioses in, 303; taphonomy, 468, 475 Aeshnoidea, 187 57 28S rDNA, 32, 158, 278, 402, 468, 475, 522, 526 African rock crawlers (see Ambermantis wozniaki, 259 Mantophasmatodea) Amblycera, 274, 278 A Afroclinocera, 630 Amblyoponini, 446, 490 aardvark, 638 Agaonidae, 573, 616: fossil, 423 Amblypygida, 99, 104, 105: in amber, 104 abdomen: function, 131; structure, 131–136 Agaoninae, 423 Amborella trichopoda, 613, 620 Abies, 410 Agassiz, Alexander, 26 Ameghinoia, 450, 632 Abrocomophagidae, 274 Agathiphaga, 560 Ameletopsidae, 628 Acacia, 283 Agathiphagidae, 561, 562, 567, 630 American Museum of Natural History, 26, 87, acalyptrate Diptera: ecological diversity, 540; Agathis, 76 91 taxonomy, 540 Agelaia, 439 Amesiginae, 630 Acanthocnemidae, 391 ages, using fossils, 37–39; using DNA, 38–40 ametaboly, 331 Acari, 99, 105–107: diversity, 101, fossils, 53, Ageniellini, 435 amino acids: racemization, 61 105–107; in-Cretaceous amber, 105, 106 Aglaspidida, 99 ammonites, 63, 642 Aceraceae, 413 Aglia, 582 Amorphoscelidae, 254, 257 Acerentomoidea, 113 Agrias, 600 Amphientomidae, -
The Innovation of the Final Moult and the Origin of Insect Metamorphosis Royalsocietypublishing.Org/Journal/Rstb Xavier Belles
The innovation of the final moult and the origin of insect metamorphosis royalsocietypublishing.org/journal/rstb Xavier Belles Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim 37, 08003 Barcelona, Spain XB, 0000-0002-1566-303X Review The three modes of insect postembryonic development are ametaboly, hemi- Cite this article: Belles X. 2019 The metaboly and holometaboly, the latter being considered the only significant innovation of the final moult and the origin of metamorphosis mode. However, the emergence of hemimetaboly, with the genuine innovation of the final moult, represents the origin of insect metamor- insect metamorphosis. Phil. Trans. R. Soc. B phosis and a necessary step in the evolution of holometaboly. Hemimetaboly 374: 20180415. derives from ametaboly and might have appeared as a consequence of wing http://dx.doi.org/10.1098/rstb.2018.0415 emergence in Pterygota, in the early Devonian. In extant insects, the final moult is mainly achieved through the degeneration of the prothoracic gland Accepted: 27 March 2019 (PG), after the formation of the winged and reproductively competent adult stage. Metamorphosis, including the formation of the mature wings and the degeneration of the PG, is regulated by the MEKRE93 pathway, through One contribution of 13 to a theme issue ‘The which juvenile hormone precludes the adult morphogenesis by repressing evolution of complete metamorphosis’. the expression of transcription factor E93, which triggers this change. The MEKRE93 pathway appears conserved in extant metamorphosing insects, which suggest that this pathway was operative in the Pterygota last Subject Areas: common ancestor. We propose that the final moult, and the consequent hemi- evolution, developmental biology metabolan metamorphosis, is a monophyletic innovation and that the role of E93 as a promoter of wing formation and the degeneration of the PG was Keywords: mechanistically crucial for their emergence.