Downloaded from Asset Store to a 3D Calculator Which Works Using the HTC VIVE Controllers

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from Asset Store to a 3D Calculator Which Works Using the HTC VIVE Controllers CALIFORNIA STATE UNIVERSITY SAN MARCOS PROJECT SIGNATURE PAGE PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF SCIENCE IN COMPUTER SCIENCE PROJECT TITLE: BIOCHEMISTRY MIXED REALITY LAB SIMULATION AUTHOR: Arshia Shaikh DATE OF SUCCESSFUL DEFENSE: 05/04/2020 THE PROJECT HAS BEEN ACCEPTED BY THE PROJECT COMMITTEE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE. Yuanyuan Jiang 05/06/2020 PROJECT COMMITTEE CHAIR SIGNATURE DATE Xin Ye 05/04/2020 PROJECT COMMITTEE MEMBER SIGNATURE DATE PROJECT COMMITTEE MEMBER SIGNATURE DATE BIOCHEMISTRY VIRTUAL REALITY LAB SIMULATION Arshia Shaikh Advisor: Dr. Yuanyuan Jiang California State University, San Marcos Master’s Project Report May 2020 1 ACKNOWLEDGEMENT I would like to acknowledge my advisor Dr. Yuanyuan Jiang for her guidance, support and time throughout my project. I am blessed to have her as my advisor as she has been motivating and always giving positive feedbacks. I am extremely thankful to Dr. Yuanyuan Jiang for enhancing my development skills and giving me an in-depth idea about virtual reality. I would like to thank Dr. Kambiz Hamadani, Dr. Xin Ye, other committee members and developers for being a great support and for the time they provided for this project. NSF for granting this project. This material is based upon work supported by the National Science Foundation under grant no. 1918045. I would also like to thank all the CSUSM professor for sharing their time. Thank you Dr. Hadaegh for always supporting me and guiding me in the right direction. 2 TABLE OF CONTENTS BIOCHEMISTRY VIRTUAL REALITY LAB SIMULATION .................................................................................. 1 1 Chapter - Introduction to the Problem & System ................................................................................. 9 1.1 Introduction/Background: ............................................................................................................ 9 2 Chapter - Thesis Overview .................................................................................................................. 11 2.1 Thesis overview: .......................................................................................................................... 11 2.2 My Contribution: ......................................................................................................................... 12 3 Chapter - Related Work ...................................................................................................................... 13 3.1 Paper 1: 3D Interactive Virtual Chemistry Laboratory ................................................................ 13 3.2 Paper 2: Low-Cost Virtual Reality Technology ............................................................................ 13 3.3 Paper 3: Haptic Display Technology ............................................................................................ 14 3.4 Paper 4: Mixed and Virtual Reality............................................................................................. 15 3.5 Paper 5: touch sensory feedback ................................................................................................ 15 4 Chapter - Big Project Design and Implementation ............................................................................. 16 4.1 Motion tracking hardware .......................................................................................................... 16 4.1.1 HTC VIVE Pro: ...................................................................................................................... 16 4.1.2 OptiTrack V120:................................................................................................................... 17 4.2 Simulation Software .................................................................................................................... 17 4.2.1 Unity: ................................................................................................................................... 17 4.2.2 SteamVR: ............................................................................................................................. 18 4.2.3 Motive: ................................................................................................................................ 19 4.2.4 Visual Studio:....................................................................................................................... 19 4.3 Project Flow: ............................................................................................................................... 21 4.4 Use case diagram: ....................................................................................................................... 23 4.4.1 Project flow ......................................................................................................................... 23 5 Chapter - Thesis Project and My Contributions .................................................................................. 24 5.1 My contribution implementation: .............................................................................................. 24 5.1.1 Automated Calibration of The Room .................................................................................. 24 5.1.2 Automated Detection of OptiTrack tracked Objects: ......................................................... 26 5.1.3 3D VR Compatible Calculator: ............................................................................................. 27 5.1.4 Submission Book: ................................................................................................................ 29 5.2 Documentation & collaboration ................................................................................................. 30 3 5.2.1 Class Document: .................................................................................................................. 30 5.2.2 Project Setup Document: .................................................................................................... 31 5.2.3 Chemistry Lab Lesson Plan Excel Sheet: ............................................................................. 32 6 Chapter - Contributions & Future Work ............................................................................................. 35 6.1 Contributions: ............................................................................................................................. 35 6.2 Future Work ................................................................................................................................ 36 7 Bibliography ........................................................................................................................................ 37 4 LIST OF FIGURES FIGURE 1: LESSON PLAN EXCEL SHEET MODEL. WHERE EACH MODULE IS DIVIDED INTO LESSONS AND EACH LESSON WILL BE DIVIDED INTO TASKS AND EACH TASK WILL DIVIDED WILL BE DIVIDED INTO OBJECTIVES. ... 11 FIGURE 2: HTC VIVE PRO. PACKAGE INCLUDING HEADSET, 2 CONTROLLER AND LIGHT HOUSES (CAMERAS) ........... 16 FIGURE 3: OPTITRACK V120 MOUNTED ON TRIPOD FOR TRACKING IR REFLECTIVE TRACKERS ................................ 17 FIGURE 4: SCREENSHOT DISPLAYING THE DEVELOPMENT ENVIRONMENT (SIMULATION SOFTWARE) IN UNITY ENGINE FOR VR CHEMISTRY LAB. ...................................................................................................................... 18 FIGURE 5: STEAMVR SOFTWARE WHICH IS USED TO MONITOR AND TROUBLESHOOT THE CONNECTIVITY OF VR DEVICES BY DISPLAYING THE STATUS OF EACH DEVICES. .................................................................................. 18 FIGURE 6: MOTIVE SOFTWARE TO TRACK THE IR REFLECTIVE TRACKERS. IT ALSO USED TO DEFINED THE RIGIDBODIES FOR MOTION TRACKING. ............................................................................................................. 19 FIGURE 7: VISUAL STUDIO: INTEGRATED DEVELOPMENT ENVIRONMENT (IDE) USED FOR CODE DEVELOPMENT IN C#. ...................................................................................................................................................................... 20 FIGURE 8 VR BIOCHEM LAB SIMULATION FLOW SHOWING THE FLOW OF HOW VARIOUS MODULES INTERACTING WITH EACH OTHER. ............................................................................................................................................ 21 FIGURE 9: THE DIGITAL DISPLAY: THIS DISPLAYS THE VARIOUS INFORMATION ABOUT THE APPARATUS AND CHEMICALS TO BE USED AND THE STEPS INVOLVED IN THE CURRENT OBJECTIVE. .......................................... 22 FIGURE 10 DEMONSTRATION OF CHEMICAL EXPERIMENT IN VR BIOCHEM LAB USING VR DEVICES AND ITS CORRESPONDING VR SIMULATION. ................................................................................................................... 22 FIGURE 11 USE CASE DIAGRAM FOR PROJECT FLOW DESCRIBING VARIOUS MODULES USED FOR THE VR LAB SIMULATION BY THE STUDENT AND THE CONTENT DEVELOPER ...................................................................... 23 FIGURE 12: 3D VR COMPATIBLE CALCULATOR FOR MATHEMATICAL CALCULATIONS INVOLVED DURING THE EXPERIMENT ...................................................................................................................................................... 27 FIGURE 13 TEXT BOX: GETS VALUE FROM THE CALCULATOR WHICH CAN BE USED TO SET THE PIPETTE ................. 27 5 FIGURE 14 SUBMISSION
Recommended publications
  • The Application of Virtual Reality in Engineering Education
    applied sciences Review The Application of Virtual Reality in Engineering Education Maged Soliman 1 , Apostolos Pesyridis 2,3, Damon Dalaymani-Zad 1,*, Mohammed Gronfula 2 and Miltiadis Kourmpetis 2 1 College of Engineering, Design and Physical Sciences, Brunel University London, London UB3 3PH, UK; [email protected] 2 College of Engineering, Alasala University, King Fahad Bin Abdulaziz Rd., Dammam 31483, Saudi Arabia; [email protected] (A.P.); [email protected] (M.G.); [email protected] (M.K.) 3 Metapower Limited, Northwood, London HA6 2NP, UK * Correspondence: [email protected] Abstract: The advancement of VR technology through the increase in its processing power and decrease in its cost and form factor induced the research and market interest away from the gaming industry and towards education and training. In this paper, we argue and present evidence from vast research that VR is an excellent tool in engineering education. Through our review, we deduced that VR has positive cognitive and pedagogical benefits in engineering education, which ultimately improves the students’ understanding of the subjects, performance and grades, and education experience. In addition, the benefits extend to the university/institution in terms of reduced liability, infrastructure, and cost through the use of VR as a replacement to physical laboratories. There are added benefits of equal educational experience for the students with special needs as well as distance learning students who have no access to physical labs. Furthermore, recent reviews identified that VR applications for education currently lack learning theories and objectives integration in their design.
    [Show full text]
  • Design Architecture in Virtual Reality
    Design Architecture in Virtual Reality by Anisha Sankar A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Architecture Waterloo, Ontario, Canada, 2019 © Anisha Sankar 2019 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. - iii - Abstract Architectural representation has newly been introduced to Virtual Real- ity (VR) technology, which provides architects with a medium to show- case unbuilt designs as immersive experiences. Designers can use specialized VR headsets and equipment to provide a client or member of their design team with the illusion of being within the digital space they are presented on screen. This mode of representation is unprec- edented to the architectural field, as VR is able to create the sensation of being encompassed in an environment at full scale, potentially elic- iting a visceral response from users, similar to the response physical architecture produces. While this premise makes the technology highly applicable towards the architectural practice, it might not be the most practical medium to communicate design intent. Since VR’s conception, the primary software to facilitate VR content creation has been geared towards programmers rather than architects. The practicality of inte- grating virtual reality within a traditional architectural design workflow is often overlooked in the discussion surrounding the use of VR to rep- resent design projects. This thesis aims to investigate the practicality of VR as part of a de- sign methodology, through the assessment of efficacy and efficiency, while studying the integration of VR into the architectural workflow.
    [Show full text]
  • 4010, 237 8514, 226 80486, 280 82786, 227, 280 a AA. See Anti-Aliasing (AA) Abacus, 16 Accelerated Graphics Port (AGP), 219 Acce
    Index 4010, 237 AIB. See Add-in board (AIB) 8514, 226 Air traffic control system, 303 80486, 280 Akeley, Kurt, 242 82786, 227, 280 Akkadian, 16 Algebra, 26 Alias Research, 169 Alienware, 186 A Alioscopy, 389 AA. See Anti-aliasing (AA) All-In-One computer, 352 Abacus, 16 All-points addressable (APA), 221 Accelerated Graphics Port (AGP), 219 Alpha channel, 328 AccelGraphics, 166, 273 Alpha Processor, 164 Accel-KKR, 170 ALT-256, 223 ACM. See Association for Computing Altair 680b, 181 Machinery (ACM) Alto, 158 Acorn, 156 AMD, 232, 257, 277, 410, 411 ACRTC. See Advanced CRT Controller AMD 2901 bit-slice, 318 (ACRTC) American national Standards Institute (ANSI), ACS, 158 239 Action Graphics, 164, 273 Anaglyph, 376 Acumos, 253 Anaglyph glasses, 385 A.D., 15 Analog computer, 140 Adage, 315 Anamorphic distortion, 377 Adage AGT-30, 317 Anatomic and Symbolic Mapper Engine Adams Associates, 102 (ASME), 110 Adams, Charles W., 81, 148 Anderson, Bob, 321 Add-in board (AIB), 217, 363 AN/FSQ-7, 302 Additive color, 328 Anisotropic filtering (AF), 65 Adobe, 280 ANSI. See American national Standards Adobe RGB, 328 Institute (ANSI) Advanced CRT Controller (ACRTC), 226 Anti-aliasing (AA), 63 Advanced Remote Display Station (ARDS), ANTIC graphics co-processor, 279 322 Antikythera device, 127 Advanced Visual Systems (AVS), 164 APA. See All-points addressable (APA) AED 512, 333 Apalatequi, 42 AF. See Anisotropic filtering (AF) Aperture grille, 326 AGP. See Accelerated Graphics Port (AGP) API. See Application program interface Ahiska, Yavuz, 260 standard (API) AI.
    [Show full text]
  • Learn More: Windows Mixed Reality Platform + Steamvr
    NOT FOR USE IN INDIA FAQ HP REVERB VR HEADSET PROFESSIONAL EDITION, STEAMVR & WINDOWS MIXED REALITY 2 1.0 STEAMVR 3 2.0 HP REVERB VR HEADSET PRO EDITION 6 3.0 WINDOWS MIXED REALITY 7 LEARN MORE: WINDOWS MIXED 4.0 GENERAL VR REALITY PLATFORM + STEAMVR Frequently asked questions about HP’s professional head-mounted display (HMD) - built on the Windows Mixed Reality (WMR) platform - and integration with SteamVR. The HP Reverb Virtual Reality Headset - Professional Edition offers stunning immersive computing with significant ease of setup and use in a cost effective solution. This solution is well suited for Engineering Product Dev and design reviews, AEC (Architecture, Engineering & Construction) reviews, location-based entertainment, and MRO (Maintenance, Repair and Overhaul) training use environments. HIGHLIGHT: Take advantage of the complete Windows 10 Mixed Reality and SteamVR ecosystems. The HP Reverb VR Headset Pro HP Reverb Virtual Reality Headset - Professional Edition is not recommended for children under the age of Edition is built on the Windows IMPORTANT NOTE: 13. All users should read the HP Reverb Virtual Reality Headset - Professional Edition User Guide to reduce the risk of personal Mixed Reality platform. injury, discomfort, property damage, and other potential hazards and for important information related to your health and Integration with SteamVR safety when using the headset. Windows Mixed Reality requires Windows 10 October 2018 Update installed on the workstation requires the Windows Mixed or PC. Features may require software or other 3rd-party applications to provide the described functionality. To minimize the Reality bridge app. possibility of experiencing discomfort using a VR application, ensure that the PC system is equipped with the appropriate graphics and CPU for the VR application.
    [Show full text]
  • Immersive Virtual Reality Attacks and the Human Joystick Peter Casey University of New Haven
    University of New Haven Masthead Logo Digital Commons @ New Haven Electrical & Computer Engineering and Computer Electrical & Computer Engineering and Computer Science Faculty Publications Science 3-27-2019 Immersive Virtual Reality Attacks and the Human Joystick Peter Casey University of New Haven Ibrahim Baggili University of New Haven, [email protected] Ananya Yarramreddy University of New Haven Follow this and additional works at: https://digitalcommons.newhaven.edu/ electricalcomputerengineering-facpubs Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons, Forensic Science and Technology Commons, and the Information Security Commons Publisher Citation Casey, P., Baggili, I., & Yarramreddy, A. (2019). Immersive Virtual Reality Attacks and the Human Joystick. IEEE Transactions on Dependable and Secure Computing. doi:10.1109/TDSC.2019.2907942 Comments This material is based upon work supported by the National Science Foundation under Grant No. 1748950. © © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The ev rsion of record may be found at http://dx.doi.org/10.1109/ TDSC.2019.2907942. Dr. Baggili was appointed to the University of New Haven's Elder Family Endowed Chair in 2015. 1 Immersive Virtual Reality Attacks and the Human Joystick Peter Casey, Ibrahim Baggili, and Ananya Yarramreddy Abstract—This is one of the first accounts for the security analysis of consumer immersive Virtual Reality (VR) systems.
    [Show full text]
  • Self Representation and Interaction in Immersive Virtual Reality
    Self Representation and Interaction in Immersive Virtual Reality Eros Viola a, Fabio Solari b and Manuela Chessa c Dept. of Informatics, Bioengineering, Robotics, and Systems Engineering, University of Genoa, Italy Keywords: Virtual Reality, Self Representation, Intel Realsense D435, Interaction, Leap Motion, Manus Prime Haptic Gloves, Alignment, Rigid Transformation, Live Correction. Abstract: Inserting a self-representation in Virtual Reality is an open problem with several implications for both the sense of presence and interaction in virtual environments. To cope the problem with low cost devices, we de- vise a framework to align the measurements of different acquisition devices used while wearing a tracked VR head-mounted display (HMD). Specifically, we use the skeletal tracking features of an RGB-D sensor (Intel Realsense d435) to build the user’s avatar, and compare different interaction technologies: a Leap Motion, the Manus Prime haptic gloves, and the Oculus Controllers. The effectiveness of the proposed systems is assessed through an experimental session, where an assembly task is proposed with the three different interaction medi- ums, with and without the self-representation. Users reported their feeling by answering the User Experience and Igroup Presence Questionnaires, and we analyze the total time to completion and the error rate. 1 INTRODUCTION The focus is to develop a framework that is compat- ible with the most common head-mounted displays In current Virtual Reality (VR) applications, the vi- (HMDs), and that can also be extended to other track- sual feedback of the user’s body is often missing, de- ing devices, both for the body tracking and for the spite the abundance of enabling technologies, which hands and fingers tracking.
    [Show full text]
  • Subject Index
    863 Subject Index ‘Note: Page numbers followed by “f” indicate figures, “t” indicate tables and “b” indicate boxes.’ A Affordances, 112–114 A/D conversion. See Analog to Digital conversion in virtual reality, 114–117 (A/D conversion) false affordances, 116 AAAD. See Action at a distance (AAAD) reinforcing perceived affordances, 116–117 AAR. See After-action review (AAR) After-action review (AAR), 545f, 630, 630f, 634–635, 645, Absolute input, 198–200 761 Abstract haptic representations, 439 Affordances of VR, 114–117 Abstract synthesis, 495 Agency, 162, 164, 181 Abstraction triangle, 448 Agents, 552–553, 592–593, 614, 684–685 Accelerometers, 198–199, 218 AIFF. See Audio interchange file format (AIFF) Accommodation, 140–141, 273–275, 320, 570, 804 Airfoils, 13 Action at a distance (AAAD), 557–558 AIs. See Artificial intelligences (AIs) Activation mechanism, 554–556, 583 Aladdin’s Magic Carpet Ride VR experience, 185–186, 347, Active haptic displays, 516 347f, 470, 505, 625, 735, 770–771 Active input, 193–196 Alberti, Leon Battista, 28 Active surfaces, 808 Alice system for programming education, Adaptability, 122–123 758–759 Adaptive rectangular decomposition (ARD), 502 AlloSphere, 51–52, 51f, 280 Additive sound creation techniques, 499 Allstate Impaired Driver Simulator, 625, 629f Advanced Realtime Tracking (ART), 53–54, 213f Alpha delta fiber (Aδ fiber), 149 Advanced Robotics Research Lab (ARRL), 369 Alphanumeric value selection, 591–593 Advanced systems, 11–12 Ambient sounds, 436–437, 505 Advanced texture mapping techniques, 469–473 Ambiotherm device, 372, 373f Adventure (games), 12 Ambisonics, 354 Adverse effect, 351 Ambulatory platforms, 242–243 Aestheticism, 414 American Sign Language (ASL), 552–553 Affine transformations, 486–487 Amount/type of information, 196–198 864 | SUBJECT INDEX Amplification, 349–350 ARToolKit (ARTK), 48–49, 715–716 Amplifier, 349–350, 349f Ascension Technologies, 41–44, 44f, 46–47, 86–87 Anaglyphic 3D, 270f, 7f, 30, 49, 269–270, 271f ASL.
    [Show full text]
  • A Survey Full Text Available At
    Full text available at: http://dx.doi.org/10.1561/0600000083 Publishing and Consuming 3D Content on the Web: A Survey Full text available at: http://dx.doi.org/10.1561/0600000083 Other titles in Foundations and Trends R in Computer Graphics and Vision Crowdsourcing in Computer Vision Adriana Kovashka, Olga Russakovsky, Li Fei-Fei and Kristen Grauman ISBN: 978-1-68083-212-9 The Path to Path-Traced Movies Per H. Christensen and Wojciech Jarosz ISBN: 978-1-68083-210-5 (Hyper)-Graphs Inference through Convex Relaxations and Move Making Algorithms Nikos Komodakis, M. Pawan Kumar and Nikos Paragios ISBN: 978-1-68083-138-2 A Survey of Photometric Stereo Techniques Jens Ackermann and Michael Goesele ISBN: 978-1-68083-078-1 Multi-View Stereo: A Tutorial Yasutaka Furukawa and Carlos Hernandez ISBN: 978-1-60198-836-2 Full text available at: http://dx.doi.org/10.1561/0600000083 Publishing and Consuming 3D Content on the Web: A Survey Marco Potenziani Visual Computing Lab, ISTI CNR [email protected] Marco Callieri Visual Computing Lab, ISTI CNR [email protected] Matteo Dellepiane Visual Computing Lab, ISTI CNR [email protected] Roberto Scopigno Visual Computing Lab, ISTI CNR [email protected] Boston — Delft Full text available at: http://dx.doi.org/10.1561/0600000083 Foundations and Trends R in Computer Graphics and Vision Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc.
    [Show full text]
  • Envrment: Investigating Experience in a Virtual User-Composed Environment
    ENVRMENT: INVESTIGATING EXPERIENCE IN A VIRTUAL USER-COMPOSED ENVIRONMENT A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Computer Science by Matthew Key December 2020 c 2020 Matthew Key ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: EnVRMent: Investigating Experience in a Virtual User-Composed Environment AUTHOR: Matthew Key DATE SUBMITTED: December 2020 COMMITTEE CHAIR: Zo¨eWood, Ph.D. Professor of Computer Science COMMITTEE MEMBER: Christian Eckhardt, Ph.D. Professor of Computer Science COMMITTEE MEMBER: Franz Kurfess, Ph.D. Professor of Computer Science iii ABSTRACT EnVRMent: Investigating Experience in a Virtual User-Composed Environment Matthew Key Virtual Reality is a technology that has long held society's interest, but has only recently began to reach a critical mass of everyday consumers. The idea of modern VR can be traced back decades, but because of the limitations of the technology (both hardware and software), we are only now exploring its potential. At present, VR can be used for tele-surgery, PTSD therapy, social training, professional meetings, conferences, and much more. It is no longer just an expensive gimmick to go on a momentary field trip; it is a tool, and as with the automobile, personal computer, and smartphone, it will only evolve as more and more adopt and utilize it in various ways. It can provide a three dimensional interface where only two dimensions were previously possible. It can allow us to express ourselves to one another in new ways regardless of the distance between individuals.
    [Show full text]
  • Memory Forensics of Immersive Virtual Reality with the HTC Vive
    DIGITAL FORENSIC RESEARCH CONFERENCE Inception: Virtual Space in Memory Space in Real Space – Memory Forensics of Immersive Virtual Reality with the HTC Vive By Peter Casey, Rebecca Lindsay-Decusati, Ibrahim Baggili, and Frank Breitinger From the proceedings of The Digital Forensic Research Conference DFRWS 2019 USA Portland, OR (July 15th - 19th) DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development. https://dfrws.org Digital Investigation 29 (2019) S13eS21 Contents lists available at ScienceDirect Digital Investigation journal homepage: www.elsevier.com/locate/diin DFRWS 2019 USA d Proceedings of the Nineteenth Annual DFRWS USA Inception: Virtual Space in Memory Space in Real Space e Memory Forensics of Immersive Virtual Reality with the HTC Vive Peter Casey*, Rebecca Lindsay-Decusati, Ibrahim Baggili, Frank Breitinger University of New Haven, 300 Boston Post Rd, West Haven, CT, 06516, USA article info abstract Article history: Virtual Reality (VR) has become a reality. With the technology's increased use cases, comes its misuse. Malware affecting the Virtual Environment (VE) may prevent an investigator from ascertaining virtual information from a physical scene, or from traditional “dead” analysis. Following the trend of anti- Keywords: forensics, evidence of an attack may only be found in memory, along with many other volatile data Memory forensics points.
    [Show full text]
  • Telepresence and Remote Communication Through Virtual Reality Gabriella Rydenfors
    LiU-ITN-TEK-A--17/012--SE Telepresence and remote communication through virtual reality Gabriella Rydenfors 2017-06-09 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings universitet nedewS ,gnipökrroN 47 106-ES 47 ,gnipökrroN nedewS 106 47 gnipökrroN LiU-ITN-TEK-A--17/012--SE Telepresence and remote communication through virtual reality Examensarbete utfört i Datateknik vid Tekniska högskolan vid Linköpings universitet Gabriella Rydenfors Handledare Karljohan Lundin Palmerius Examinator Camilla Forsell Norrköping 2017-06-09 Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en längre tid från publiceringsdatum under förutsättning att inga extra- ordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a considerable time from the date of publication barring exceptional circumstances.
    [Show full text]
  • Investigation of the Stroop Effect in a Virtual Reality Environment
    Tallinn University of Technology School of Information Technologies Younus Ali 177356IASM Investigation of the Stroop Effect in a Virtual Reality Environment Master’s Thesis Aleksei Tepljakov Ph.D. Research Scientist TALLINN 2020 Declaration of Originality Declaration: I hereby declare that this thesis, my original investigation and achieve- ment, submitted for the Master’s degree at Tallinn University of Technology, has not been submitted for any degree or examination. Younus Ali Date: January 7, 2020 Signature: ......................................... Abstract Human cognitive behavior is an exciting subject to study. In this work, the Stroop effect is investigated. The classical Stroop effect arises as a consequence of cognitive interference due to mismatch of the written color name and the actual text color. The purpose of this study is to investigate the Stroop effect and Reverse Stroop in the virtual reality environment by considering response, error, and subjective selection. An interactive application using virtual reality technology with Unreal Engine implemented using instruction-based Stroop and reversed Stroop tasks. In the designed test, participants need to throw a cube-shaped object into three specific zones according to instructions. The instructions depend on the color ( represents Stroop Test ) or the meaning of the words (represents reversed Stroop test). The instructions using either congruent or incongruent (“blue” displayed in red or green) color stimuli. Participants took more time to respond to the Stroop test than
    [Show full text]