Compressive Force Promotes Sox9, Type II Collagen and Aggrecan and Inhibits IL-1Β Expression Resulting in Chondrogenesis in Mouse Embryonic Limb Bud Mesenchymal Cells

Total Page:16

File Type:pdf, Size:1020Kb

Compressive Force Promotes Sox9, Type II Collagen and Aggrecan and Inhibits IL-1Β Expression Resulting in Chondrogenesis in Mouse Embryonic Limb Bud Mesenchymal Cells Journal of Cell Science 111, 2067-2076 (1998) 2067 Printed in Great Britain © The Company of Biologists Limited 1998 JCS3791 Compressive force promotes Sox9, type II collagen and aggrecan and inhibits IL-1β expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells Ichiro Takahashi, Glen H. Nuckolls, Katsu Takahashi, Osamu Tanaka, Ichiro Semba, Ralph Dashner, Lillian Shum and Harold C. Slavkin* Craniofacial Development Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA *Author for correspondence (e-mail: [email protected]) Accepted 19 May; published on WWW 30 June 1998 SUMMARY The initial modeling and subsequent development of the apparent acceleration in the rate and extent of skeleton is controlled by complex gene-environment chondrogenesis. Quantitatively, there was a significant 2- to interactions. Biomechanical forces may be one of the major 3-fold increase in type II collagen and aggrecan expression epigenetic factors that determine the form and beginning at day 5 of culture and the difference was differentiation of skeletal tissues. In order to test the maintained through 10 days of cultures. Compressive force hypothesis that static compressive forces are transduced also causes an elevated level of Sox9, a transcriptional into molecular signals during early chondrogenesis, we activator of type II collagen. In contrast, the expression and have developed a unique three-dimensional collagen gel cell accumulation of IL-1β, a transcriptional repressor of type culture system which is permissive for the proliferation and II collagen was down-regulated. We conclude that static differentiation of chondrocytes. Mouse embryonic day 10 compressive forces promote chondrogenesis in embryonic (E10) limb buds were microdissected and dissociated into limb bud mesenchyme, and propose that the signal cells which were then cultured within a collagen gel matrix transduction from a biomechanical stimuli can be mediated and maintained for up to 10 days. Static compressive forces by a combination of positive and negative effectors of were exerted onto these cultures. The time course for cartilage specific extracellular matrix macromolecules. expression pattern and level for cartilage specific markers, type II collagen and aggrecan, and regulators of chondrogenesis, Sox9 and IL-1β, were analyzed and Key words: Biomechanical force, Chondrocyte, Type II collagen, compared with non-compressed control cultures. Under Aggrecan, Sox9, IL-1β, Competitive PCR, Mouse embryo, 3- compressive conditions, histological evaluation showed an Dimensional collagen gel culture INTRODUCTION Indeed, mathematical modeling predicts that biomechanical forces generated by cell migration and cell division create cell- The musculoskeletal system including bone, cartilage, skeletal cell and/or cell-extracellular matrix (ECM) interactions which muscles and ligaments responds to biomechanical stimuli by contribute to early patterning and morphogenesis in many altering their metabolism, cellular and cytoskeletal organization, tissues and organs, including neural tube (Jacobson and rate of proliferation and state of differentiation during Gordon, 1976) and precartilaginous mesenchymal development. For example, exercise induces physiological condensation (Edelstein-Keshet and Ermentrout, 1990; Murray changes in muscles, bone and articular cartilage, and static force and Oster, 1984; Ngwa and Maini, 1995; Totafurno and applied during orthodontic treatments induces bone remodeling, Bjerknes, 1995). During chondrogenesis, it was proposed that differentiation of chondrocytes and of other connective tissue the osmotic changes during hyaluronic acid synthesis and cells (Asano, 1986; McNamara and Carlson, 1979; Takahashi et degradation could produce sufficient swelling and deswelling al., 1995). In addition, excessive or inappropriate force loading to regulate the balance between cell-cell versus cell-ECM is a contributing factor in common skeletal degenerative contacts (Oster et al., 1985). diseases. The development of these tissues during embryonic Experimental models, though limited, have generally development may also be regulated by biomechanical stimuli, supported these theories. Paralyzed chicken embryos failed to contributing to the initial modeling of the three-dimensional form the clavicles and the quadratojugal, which is associated structure of the skeleton (van Limborgh, 1982). with the failure to activate chondrogenic markers, illustrating 2068 I. Takahashi and others the prerequisite of physical movements in the initial stages of hypothesis that compression promoted chondrogenesis is a chondrogenesis (Fang and Hall, 1995; Hall, 1979; Hall and response of molecular determinants to biomechanical forces. Herring, 1990). In vitro models using intermittent compressive Due to the complexity of differential mechanical properties force accelerated the maturation of chondrocytes (van Kampen among different cell populations and local matrix components, et al., 1985; van’t Veen et al., 1995; Veldhuijzen et al., 1987). and normal movements, an in vitro three-dimensional collagen However, the function of static compressive force in the early gel cell culture system was developed. We report that static molecular differentiation of chondroprogenitor cells frequently compressive force promotes the expression of two cartilage encountered in orthodontic and orthopedic treatments is as yet specific markers, type II collagen and aggrecan. This unknown. accelerated chondrogenesis was associated with an Morphogenesis of the skeletal system begins with the upregulation of the positive regulator Sox9, and condensation of undifferentiated embryonic mesenchymal downregulation of the negative regulator IL-1β. An cells (Hall, 1988). Condensation is promoted by a regulated understanding of the biomechanical stimuli that regulate balance between cell-ECM and cell-cell adhesion involving cartilage development and maintenance can contribute to the type I and type III collagen (von der Mark and von der Mark, improved management of skeletal malformations and 1977), tenascin (Pacifici, 1995), fibronectin (Silbermann et al., progressive joint diseases. 1987), cellular receptors for these matrix proteins such as integrins (Camper et al., 1997), and other non-integrin adhesion molecules (Noonan et al., 1996), such as cell-cell MATERIALS AND METHODS adhesion molecules N-CAM and N-cadherin (Oberlender and Tuan, 1994; Tavella et al., 1994; Tsonis et al., 1994). After Cell culture and force loading system condensation, the differentiating chondrocytes change their Timed-pregnant Swiss Webster mice (with day of detection of vaginal cell shape and alter their cell adhesion properties. sperm plug designated as day 0 of gestation) were purchased (Harlan Chondrocytes express type II collagen (Mizoguchi et al., 1990; Sprague Dawley, Inc., Indianapolis, Indiana). At gestation day 10, von der Mark and von der Mark, 1977), aggrecan (Vornehm et pregnant mice were sacrificed and the E10 stage embryos were al., 1996), and associated tissue-specific glycosaminoglycans isolated. Fore- and hindlimb buds were microdissected in ice-cold (Takahashi et al., 1996). As these matrix molecules are phosphate buffered saline (PBS), placed on ice, and subsequently they were washed three times in cold PBS, dissociated in 0.25 mg/ml deposited between cells, cell-cell contacts are lost (Tavella et trypsin EDTA (Life Technologies Gibco BRL, Inc., Gaithersburg, al., 1994). New proliferating chondrocytes establish the pattern MD) and 0.25 mg/ml collagenase type 2 (Washington Biochemical of subsequent bone formation. At the epiphyseal growth plate, Corporation, Freehold, NJ) in 0.1 M PBS for 15 minutes at 37°C, and the chondrocytes become hypertrophic, the cartilage matrix cell numbers were determined using a hemocytometer. Subsequently, becomes calcified, and the cartilage is replaced by bone in the cells were collected by centrifugation at 200 g for 15 minutes at 4°C process of endochondral ossification. At other sites, such as the and resuspended in Dulbecco’s modified Eagle’s medium (DMEM; formation of synovial joints, chondrocytes maintain the Life Technologies Gibco BRL, Inc., Gaithersburg, MD) at 4.5×107 or cartilage matrix through adulthood. Thus, skeletal development 5.0×107 cells/ml for compressed and control groups. Cells were provides mechanical stability and mobility, and is likely to cultured in three-dimensional collagen gel system (described below) respond reciprocally to biomechanical stimuli in order to adapt in DMEM supplemented with 10% heat inactivated fetal bovine serum (HyClone Laboratories Inc, Logan, UT), 2.4 mg/ml of Hepes (ICN to the range of force exerted and motion. The ECM component Biomedicals Inc., Aurora, OH), 0.2% bicarbonate, 2 mM glutamine is conceivably the transducer of biomechanical stimuli into (Sigma, St Louis, MO), 100 units of penicillin, 100 µg of transcriptional controls. streptomycin and 0.25 µg of amphotericin (Life Technologies Gibco Signal transduction initiated by growth factors and BRL, Inc., Gaithersburg, MD). cytokines, and subsequent transcriptional controls contribute In order to determine the effect of static compressive force on the broadly to the regulation of cartilage and bone development. differentiation of limb bud mesenchymal cells, cells were embedded However, one such cytokine, interleukin 1-beta (IL-1β), has and cultured in a three-dimensional collagen gel system to mimic in
Recommended publications
  • TACI:Fc Scavenging B Cell Activating Factor (BAFF) Alleviates Ovalbumin-Induced Bronchial Asthma in Mice
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 39, No. 3, 343-352, June 2007 TACI:Fc scavenging B cell activating factor (BAFF) alleviates ovalbumin-induced bronchial asthma in mice 1,2,3 2 Eun-Yi Moon and Sook-Kyung Ryu the percentage of non-lymphoid cells and no changes were detected in lymphoid cell population. 1 Department of Bioscience and Biotechnology Hypodiploid cell formation in BALF was decreased Sejong University by OVA-challenge but it was recovered by TACI:Fc Seoul 143-747, Korea treatment. Collectively, data suggest that asthmatic 2 Laboratory of Human Genomics symptom could be alleviated by scavenging BAFF Korea Research Institute of Bioscience and Biotechnology (KRIBB) and then BAFF could be a novel target for the Daejeon 305-806, Korea develpoment of anti-asthmatic agents. 3 Corresponding author: Tel, 82-2-3408-3768; Fax, 82-2-466-8768; E-mail, [email protected] Keywords: asthma; B-cell activating factor; ovalbu- and [email protected] min; transmembrane activator and CAML interactor protein Accepted 28 March 2007 Introduction Abbreviations: BAFF, B cell activating factor belonging to TNF- family; BALF, bronchoalveolar lavage fluid; OVA, ovalbumin; PAS, Mature B cell generation and maintenance are regu- periodic acid-Schiff; Prx, peroxiredoxin; TACI, transmembrane lated by B-cell activating factor (BAFF). BAFF is pro- activator and calcium modulator and cyclophilin ligand interactor duced by macrophages or dendritic cells upon stim- ulation with LPS or IFN- . BAFF belongs to the TNF family. Its biological role is mediated by the specific Abstract receptors, B-cell maturation antigen (BCMA), trans- membrane activator and calcium modulator and cy- Asthma was induced by the sensitization and chal- clophilin ligand interactor (TACI) and BAFF receptor, lenge with ovalbumin (OVA) in mice.
    [Show full text]
  • Aggrecan (A1960)
    Aggrecan from bovine articular cartilage Catalog Number A1960 Storage Temperature –20 °C Product Description References Aggrecan is the major structural proteoglycan found in 1. Hardingham, T.E., and Muir, H., Biochim. Biophys. the extracellular matrix of cartilage. It has a molecular Acta, 279, 401-405 (1972). mass >2,500 kDa. The core protein (210–250 kDa) has 2. Hedlund, H., et al., Association of the aggrecan 100–150 glycosaminoglycan (GAG) chains attached to keratan sulfate-rich region with collagen in bovine it. The majority of the GAG chains are chondroitin/ articular cartilage. J. Biol. Chem., 274, 5777-5781 dermatan sulfate with the remainder being keratan (1999). sulfate. This structural molecule produces a rigid, 3. Cao, L., and Yang, B.B., Chondrocyte apoptosis reversibly deformable gel that resists compression. It induced by aggrecan G1 domain as a result of combines with hyaluronic acid to form very large decreased cell adhesion. Exp. Cell Res., 246, 527- macromolecular complexes. Addition of small amounts 537 (1999). (0.1–2% w/w) of hyaluronic acid to a solution of 4. Bolton, M.C., et al., Age-related changes in the aggrecan (2 mg/ml) results in the formation of a synthesis of link protein and aggrecan in human complex with an increased hydrodynamic volume and articular cartilage: implications for aggregate in a significant increase (30–40%) in the relative stability. Biochem. J., 337, 77-82 (1999). viscosity of the solution. 5. Arner, E.C., et al., Generation and Characterization of Aggrecanase. A soluble, cartilage-derived Aggrecan is a critical component for cartilage structure aggrecan-degrading activity.
    [Show full text]
  • The Brain Chondroitin Sulfate Proteoglycan Brevican Associates with Astrocytes Ensheathing Cerebellar Glomeruli and Inhibits Neurite Outgrowth from Granule Neurons
    The Journal of Neuroscience, October 15, 1997, 17(20):7784–7795 The Brain Chondroitin Sulfate Proteoglycan Brevican Associates with Astrocytes Ensheathing Cerebellar Glomeruli and Inhibits Neurite Outgrowth from Granule Neurons Hidekazu Yamada, Barbara Fredette, Kenya Shitara, Kazuki Hagihara, Ryu Miura, Barbara Ranscht, William B. Stallcup, and Yu Yamaguchi The Burnham Institute, La Jolla, California 92037 Brevican is a nervous system-specific chondroitin sulfate surface of these cells. Binding assays with exogenously proteoglycan that belongs to the aggrecan family and is one added brevican revealed that primary astrocytes and several of the most abundant chondroitin sulfate proteoglycans in immortalized neural cell lines have cell surface binding sites adult brain. To gain insights into the role of brevican in brain for brevican core protein. These cell surface brevican binding development, we investigated its spatiotemporal expression, sites recognize the C-terminal portion of the core protein and cell surface binding, and effects on neurite outgrowth, using are independent of cell surface hyaluronan. These results rat cerebellar cortex as a model system. Immunoreactivity of indicate that brevican is synthesized by astrocytes and re- brevican occurs predominantly in the protoplasmic islet in tained on their surface by an interaction involving its core the internal granular layer after the third postnatal week. protein. Purified brevican inhibits neurite outgrowth from Immunoelectron microscopy revealed that brevican is local- cerebellar granule neurons in vitro, an activity that requires ized in close association with the surface of astrocytes that chondroitin sulfate chains. We suggest that brevican pre- form neuroglial sheaths of cerebellar glomeruli where incom- sented on the surface of neuroglial sheaths may be control- ing mossy fibers interact with dendrites and axons from ling the infiltration of axons and dendrites into maturing resident neurons.
    [Show full text]
  • T Cell Reactivity + Autoantibodies and CD4 Therapy Is Mediated By
    Suppression of Proteoglycan-Induced Arthritis by Anti-CD20 B Cell Depletion Therapy Is Mediated by Reduction in Autoantibodies and CD4 + T Cell Reactivity This information is current as of September 27, 2021. Keith Hamel, Paul Doodes, Yanxia Cao, Yumei Wang, Jeffrey Martinson, Robert Dunn, Marilyn R. Kehry, Balint Farkas and Alison Finnegan J Immunol 2008; 180:4994-5003; ; doi: 10.4049/jimmunol.180.7.4994 Downloaded from http://www.jimmunol.org/content/180/7/4994 References This article cites 48 articles, 20 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/180/7/4994.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Suppression of Proteoglycan-Induced Arthritis by Anti-CD20 B Cell Depletion Therapy Is Mediated by Reduction in Autoantibodies and CD4؉ T Cell Reactivity1 Keith Hamel,* Paul Doodes,* Yanxia Cao,† Yumei Wang,† Jeffrey Martinson,* Robert Dunn,§ Marilyn R.
    [Show full text]
  • Syndecan - Regulation and Function of Its Glycosaminoglycan Chains
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 884 Syndecan - Regulation and Function of its Glycosaminoglycan Chains ANNA S. ERIKSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-8637-2 UPPSALA urn:nbn:se:uu:diva-197691 2013 Dissertation presented at Uppsala University to be publicly examined in A1:107a, BMC, Husargatan 3, Uppsala, Friday, May 17, 2013 at 13:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Abstract Eriksson, A. S. 2013. Syndecan - Regulation and Function of its Glycosaminoglycan Chains. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 884. 54 pp. Uppsala. ISBN 978-91-554-8637-2. The cell surface is an active area where extracellular molecules meet their receptors and affect the cellular fate by inducing for example cell proliferation and adhesion. Syndecans and integrins are two transmembrane molecules that have been suggested to fine-tune these activities, possibly in cooperation. Syndecans are proteoglycans, i.e. proteins with specific types of carbohydrate chains attached. These chains are glycosaminoglycans and either heparan sulfate (HS) or chondroitin sulfate (CS). Syndecans are known to influence cell adhesion and signaling. Integrins in turn, are important adhesion molecules that connect the extracellular matrix with the cytoskeleton, and hence can regulate cell motility. In an attempt to study how the two types of glycosaminoglycans attached to syndecan-1 can interact with integrins, a cell based model system was used and functional motility assays were performed. The results showed that HS, but not CS, on the cell surface was capable of regulating integrin-mediated cell motility.
    [Show full text]
  • Fibroblasts from the Human Skin Dermo-Hypodermal Junction Are
    cells Article Fibroblasts from the Human Skin Dermo-Hypodermal Junction are Distinct from Dermal Papillary and Reticular Fibroblasts and from Mesenchymal Stem Cells and Exhibit a Specific Molecular Profile Related to Extracellular Matrix Organization and Modeling Valérie Haydont 1,*, Véronique Neiveyans 1, Philippe Perez 1, Élodie Busson 2, 2 1, 3,4,5,6, , Jean-Jacques Lataillade , Daniel Asselineau y and Nicolas O. Fortunel y * 1 Advanced Research, L’Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France; [email protected] (V.N.); [email protected] (P.P.); [email protected] (D.A.) 2 Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), 91223 CEDEX Brétigny sur Orge, France; [email protected] (É.B.); [email protected] (J.-J.L.) 3 Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France 4 INSERM U967, 92260 Fontenay-aux-Roses, France 5 Université Paris-Diderot, 75013 Paris 7, France 6 Université Paris-Saclay, 78140 Paris 11, France * Correspondence: [email protected] (V.H.); [email protected] (N.O.F.); Tel.: +33-1-48-68-96-00 (V.H.); +33-1-60-87-34-92 or +33-1-60-87-34-98 (N.O.F.) These authors contributed equally to the work. y Received: 15 December 2019; Accepted: 24 January 2020; Published: 5 February 2020 Abstract: Human skin dermis contains fibroblast subpopulations in which characterization is crucial due to their roles in extracellular matrix (ECM) biology.
    [Show full text]
  • Fibronectin Regulates Proteoglycan Production Balance in Transforming Growth Factor-Β1-Induced Chondrogenesis
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 28: 829-834, 2011 Fibronectin regulates proteoglycan production balance in transforming growth factor-β1-induced chondrogenesis TatsuHIKO KUTSUNA1,2, HIROFUMI INOUE2-4, HARUHIKO TAKEDA1, TOSHIAKI TAKAHASHI1, HARUYASU Yamamoto1, HIROMASA MIURA1 and SHIGEKI HIGASHIYAMA2,3 Departments of 1Bone and Joint Surgery and 2Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295; 3Department of Cell Growth and Tumor Regulation, 4Ehime-Nikon Bioimaging Core Laboratory, Ehime Proteo Medicine Research Center (ProMRes), Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan Received May 23, 2011; Accepted June 22, 2011 DOI: 10.3892/ijmm.2011.766 Abstract. Transforming growth factor (TGF)-β and bone Introduction morphogenetic protein (BMP) induce a cartilage-specific extracellular matrix (ECM) gene, aggrecan, in a chondrogenic Cartilage is a firm connective tissue with high water-holding cell line, ATDC5. The results of our recent study show that capacity found in many parts of animal bodies, including the TGF-β1, but not BMP-4, strongly induces an ECM gene, joints, ears, nose, trachea, and intervertebral discs. Cartilage fibronectin, during chondrogenesis. However, the role of fibro- is composed of chondrocytes which produce copious extra- nectin in chondrogenesis is unclear. In the current study, our cellular matrix (ECM), including type I or II collagen fibres, results showed that TGF-β1, but not BMP-4, led to versican- proteoglycans, and elastin fibres. Cartilage is classified into dominant proteoglycan production during chondrogenesis of 3 types, elastic cartilage, hyaline cartilage and fibrocartilage, ATDC5 cells. siRNA-mediated reduction of fibronectin and which differ in the relative amounts of the above-mentioned interference in the liaison between fibronectin and integrins main components.
    [Show full text]
  • Studies of the Articular Cartilage Proteoglycan Aggrecan in Health and Osteoarthritis
    Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular heterogeneity and extensive molecular changes in disease. G Rizkalla, … , E Bogoch, A R Poole J Clin Invest. 1992;90(6):2268-2277. https://doi.org/10.1172/JCI116113. Research Article Changes in the structure of the proteoglycan aggrecan (PG) of articular cartilage were determined immunochemically by RIA and gel chromatography and related to cartilage degeneration documented histologically by the Mankin grading system. Monoclonal antibodies to glycosaminoglycan epitopes were used. In all cartilages, three chondroitin sulfate (CS)- rich populations of large size were observed in addition to a smaller keratan sulfate (KS)-rich population. In grades 7-13 OA cartilages (phase II), molecules were significantly larger than the equivalent molecules of grades 2-6 (phase I). CS chain lengths remained unchanged. In most OA cartilages, a CS epitope 846 was elevated in content, this being most marked in phase II (mean: fivefold). Loss of uronic acid, KS, and hyaluronic acid were only pronounced in phase II OA because of variations in normal contents. Aggregation of PG was unchanged (50-60%) or reduced in OA cartilages, but molecules bearing epitope 846 exhibited almost complete aggregation in normal cartilages. This study provides evidence for the capacity of OA cartilage to synthesize new aggrecan molecules to replace those damaged and lost by disease- related changes. It also defines two phases of PG change in OA: an early predominantly degenerate phase I followed by a net reparative phase II accompanied by net loss of these molecules. Find the latest version: https://jci.me/116113/pdf Studies of the Articular Cartilage Proteoglycan Aggrecan in Health and Osteoarthritis Evidence for Molecular Heterogeneity and Extensive Molecular Changes in Disease Geihan Rizkalla, * Agnes Reiner, * Earl Bogoch,t and A.
    [Show full text]
  • Cartilage Proteoglycans
    seminars in CELL & DEVELOPMENTAL BIOLOGY, Vol. 12, 2001: pp. 69–78 doi:10.1006/scdb.2000.0243, available online at http://www.idealibrary.com on Cartilage proteoglycans Cheryl B. Knudson∗ and Warren Knudson The predominant proteoglycan present in cartilage is the tural analysis. The predominate glycosaminoglycan large chondroitin sulfate proteoglycan ‘aggrecan’. Following present in cartilage has long been known to be its secretion, aggrecan self-assembles into a supramolecular chondroitin sulfate. 2 However, extraction of the structure with as many as 50 monomers bound to a filament chondroitin sulfate in a more native form, as a of hyaluronan. Aggrecan serves a direct, primary role pro- proteoglycan, proved to be a daunting task. The viding the osmotic resistance necessary for cartilage to resist revolution in the field came about through the compressive loads. Other proteoglycans expressed during work of Hascall and Sajdera. 3 With the use of the chondrogenesis and in cartilage include the cell surface strong chaotropic agent guanidinium hydrochlo- syndecans and glypican, the small leucine-rich proteoglycans ride, the proteoglycans of cartilage could now be decorin, biglycan, fibromodulin, lumican and epiphycan readily extracted and separated into relatively pure and the basement membrane proteoglycan, perlecan. The monomers through the use of CsCl density gradient emerging functions of these proteoglycans in cartilage will centrifugation. This provided the means to identify enhance our understanding of chondrogenesis and cartilage and characterize the major chondroitin sulfate pro- degeneration. teoglycan of cartilage, later to be termed ‘aggrecan’ following the cloning and sequencing of its core Key words: aggrecan / cartilage / CD44 / chondrocytes / protein. 4 From this start, aggrecan has gone on to hyaluronan serve as the paradigm for much of proteoglycan c 2001 Academic Press research.
    [Show full text]
  • The Interaction of Versican with Its Binding Partners
    YaoREVIEW Jiong WU et al The interaction of versican with its binding partners Yao Jiong WU1,3, David P. LA PIERRE1,3, Jin WU2, Albert J. YEE1, Burton B. YANG1,3,* 1Sunnybrook & Women’s College Health Sciences Centre, 2075 Bayview Avenue, Toronto M4N 3M5 Canada 2School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, China 3Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada ABSTRACT Versican belongs to the family of the large aggregating chondroitin sulfate proteoglycans located primarily within the extracellular matrix (ECM). Versican, like other members of its family, has unique N- and C-terminal globular regions, each with multiple motifs. A large glycosaminoglycan-binding region lies between them. This review will begin by outlining these structures, in the context of ECM proteoglycans. The diverse binding partners afforded to versican by virtue of its modular design will then be examined. These include ECM components, such as hyaluronan, type I collagen, tenascin-R, fibulin-1, and -2, fibrillin-1, fibronectin, P- and L-selectins, and chemokines. Versican also binds to the cell surface proteins CD44, integrin β1, epidermal growth factor receptor, and P-selectin glycoprotein ligand-1. These multiple interactors play important roles in cell behaviour, and the roles of versican in modulating such processes are discussed. Keywords: extracellular matrix, proteoglycan, G3 domain, glycosaminoglycan, interaction. INTRODUCTION sub-group of the former, the large aggregating chondroitin The extracellular matrix (ECM) is a highly-ordered sulfate proteoglycans (which includes aggrecan, versican, supramacromolecular structure with many physiological neurocan and brevican), has been studied extensively [1-11]. and pathophysiological roles.
    [Show full text]
  • Evidence for Lysosomal Exocytosis and Release of Aggrecan-Degrading Hydrolases from Hypertrophic Chondrocytes, in Vitro and in Vivo
    318 Research Article Evidence for lysosomal exocytosis and release of aggrecan-degrading hydrolases from hypertrophic chondrocytes, in vitro and in vivo Edward R. Bastow1, Karena Last1, Sue Golub1, Jennifer L. Stow2, Amanda C. Stanley2 and Amanda J. Fosang1,* 1University of Melbourne Department of Paediatrics and Murdoch Childrens Research Institute, Royal Children’s Hospital, Flemington Road, Parkville, VIC 3052, Australia 2Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia *Author for correspondence ([email protected]) Biology Open 1, 318–328 doi: 10.1242/bio.2012547 Summary The abundant proteoglycan, aggrecan, is resorbed from growth b-hexosaminidase, ionomycin induces release of aggrecan- and plate cartilage during endochondral bone ossification, yet mice hyaluronan-degrading activity from cultured epiphyseal with genetically-ablated aggrecan-degrading activity have no chondrocytes. We identify VAMP-8 and VAMP7 as v-SNARE defects in bone formation. To account for this apparent proteins with potential roles in lysosomal exocytosis in anomaly, we propose that lysosomal hydrolases degrade hypertrophic chondrocytes, based on their colocalisation with extracellular, hyaluronan-bound aggrecan aggregates in LAMP1 at the cell surface in secondary ossification centers in growth plate cartilage, and that lysosomal hydrolases are mouse tibiae. We propose that resorbing growth plate cartilage released from hypertrophic chondrocytes into growth plate involves release of destructive hydrolases from hypertrophic cartilage via Ca2+-dependent lysosomal exocytosis. In this study chondrocytes, via lysosomal exocytosis. we confirm that hypertrophic chondrocytes release hydrolases via lysosomal exocytosis in vitro and we show in vivo evidence ß 2012. Published by The Company of Biologists Ltd. This is for lysosomal exocytosis in hypertrophic chondrocytes during an Open Access article distributed under the terms of the skeletal development.
    [Show full text]
  • Protective Role of the Alpha-1-Antitrypsin in Intervertebral Disc Degeneration Weikun Liu1 and Yanfu Wang2*
    Liu and Wang Journal of Orthopaedic Surgery and Research (2021) 16:516 https://doi.org/10.1186/s13018-021-02668-z RESEARCH ARTICLE Open Access Protective role of the alpha-1-antitrypsin in intervertebral disc degeneration Weikun Liu1 and Yanfu Wang2* Abstract Background: Intervertebral disc degeneration is a complex disease with high prevalence. It suggests that cell death, senescence, and extracellular matrix degradation are involved in the pathogenesis. Alpha-1 antitrypsin (AAT), a serine protease inhibitor, was previously correlated with inflammation-related diseases. However, its function on intervertebral disc degeneration remains unclear. Methods: A latex-enhanced immunoturbidimetric assay measured the serum level of AAT. Real-time polymerase chain reaction (RT-qPCR) and western blot were used to testify the expression of RNA and proteins related to cell apoptosis and the Wnt/β-catenin pathway. The animal model for intervertebral disc degeneration was built by disc puncture. The degeneration grades were analyzed by safranin o staining. Results: We showed that alpha-1 antitrypsin could ameliorate intervertebral disc degeneration in vitro and in vivo. We also found that the serum alpha-1 antitrypsin level in Intervertebral disc degeneration patients is negative related to the severity of intervertebral disc degeneration. Moreover, alpha-1 antitrypsin was also showed to suppress tumor necrosis factor-alpha (TNF-α) induced WNT/β-catenin signaling pathway activation in human nucleus pulposus cells. Conclusions: Our study provides evidence for AAT to serve as a potential therapeutic reagent for the treatment of intervertebral disc degeneration. Keywords: Intervertebral disc degeneration, Alpha-1 antitrypsin, Apoptosis, Extracellular matrix degradation, WNT/β-catenin signaling Introduction mechanism remain incompletely understood.
    [Show full text]