Integrins and Camp Mediate Netrin-Induced Growth Cone Collapse
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UNIVERSITY of CALIFORNIA, IRVINE Netrin-Mediated Signaling
UNIVERSITY OF CALIFORNIA, IRVINE Netrin-mediated signaling directs central neuron dendrite growth and connectivity in the developing vertebrate visual system DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences by Anastasia Nicole Nagel Dissertation Committee: Professor Susana Cohen-Cory, Chair Associate Professor Karina S. Cramer Professor Georg F. Striedter 2015 © 2015 Anastasia Nicole Nagel DEDICATION To those who have supported me in my pursuit of understanding the natural world: my husband, family, friends and those who we have lost along the way but who remain present in spirit. “There are naive questions, tedious questions, ill-phrased questions, questions put after inadequate self-criticism. But every question is a cry to understand the world. There is no such thing as a dumb question.” Carl Sagan, The Demon-Haunted World: Science as a Candle in the Dark ii TABLE OF CONTENTS Page LIST OF FIGURES iv ACKNOWLEDGMENTS vi CURRICULUM VITAE vii ABSTRACT OF THE DISSERTATION x INTRODUCTION 1 CHAPTER 1: Molecular signals regulate visual system development 4 Netrin regulates neurodevelopment through diverse receptor binding 9 The role of netrin-1 in retinotectal circuit formation 19 Summary and objectives 27 CHAPTER 2: Netrin directs dendrite growth and connectivity in vivo 29 Introduction 29 Materials and Methods 31 Results 36 Discussion 64 CHAPTER 3: DCC and UNC5 Netrin receptor signaling guides dendritogenesis 70 Introduction 70 Materials and Methods 72 Results 77 Discussion 102 CHAPTER 4: Decreases in Netrin signaling impact visual system function 113 Introduction 113 Materials and Methods 114 Results 116 Discussion 121 CHAPTER 5: Summary and Conclusions 122 REFERENCES 129 iii LIST OF FIGURES Page Figure 1.1 Neuron during general developmental processes 5 Figure 1.2 Signaling molecules that direct visual system formation 8 Figure 1.3 Schematic representation of a netrin-1 gradient in the spinal cord 13 Figure 1.4 Diagram of the X. -
Promotion of Neurite Outgrowth and Axon Guidance in Spiral Ganglion Cells by Netrin-1
ORIGINAL ARTICLE Promotion of Neurite Outgrowth and Axon Guidance in Spiral Ganglion Cells by Netrin-1 Kenneth H. Lee, MD, PhD; Mark E. Warchol, PhD Objective: To identify the expression of netrin-1, a Results: Netrin-1 and DCC mRNA expression were found diffusible chemoattractive molecule, and its receptor, in the mouse organ of Corti and spiral ganglion cells by deleted in colorectal carcinoma (DCC), in the devel- RT-PCR. Application of exogenous netrin-1 led to a dos- opmentally mature inner ear, and to determine its age-dependent increase in neurite length in cultured spi- effects on axon length and guidance in cultured auditory ral ganglion cells. Chick acoustic ganglion cells cocul- neurons. tured with netrin-1–secreting cells demonstrated statistically significant preferential extension toward the source of netrin-1 (P =.04). Design: Messenger RNA (mRNA) and protein expres- sion of netrin-1 and DCC were identified in the organ of Conclusions: Netrin-1 and DCC are expressed in the or- Corti and spiral ganglion cells using reverse transcription– gan of Corti and spiral ganglion cells of developmen- polymerase chain reaction (RT-PCR) and fluorescence tally mature mice. Exogenous netrin-1 promotes dosage- immunohistochemical analysis. In vitro experiments ex- dependent neurite growth in vitro. Mature auditory amined the effects of exogenous netrin-1 on spiral gan- neurons preferentially direct neurite extension toward glion cell axon length. Auditory neurons were cocul- netrin-1 released in culture. These findings may lead to tured with a cell line secreting netrin-1 to determine the the development of strategies to optimize the interface effect on direction of axon extension. -
Integrinɑ3 Is Required for Late Postnatal Stability of Dendrite
6742 • The Journal of Neuroscience, April 17, 2013 • 33(16):6742–6752 Cellular/Molecular Integrin ␣3 Is Required for Late Postnatal Stability of Dendrite Arbors, Dendritic Spines and Synapses, and Mouse Behavior Meghan E. Kerrisk,1 Charles A. Greer,2,3,4 and Anthony J. Koleske1,2,4,5 Departments of 1Molecular Biophysics and Biochemistry, 2Neurobiology, and 3Neurosurgery, and 4Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520, and 5Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University, New Haven, Connecticut 06536 Most dendrite branches and a large fraction of dendritic spines in the adult rodent forebrain are stable for extended periods of time. Destabilization of these structures compromises brain function and is a major contributing factor to psychiatric and neurodegenerative diseases. Integrins are a class of transmembrane extracellular matrix receptors that function as ␣ heterodimers and activate signaling cascades regulating the actin cytoskeleton. Here we identify integrin ␣3 as a key mediator of neuronal stability. Dendrites, dendritic spines, and synapses develop normally in mice with selective loss of integrin ␣3 in excitatory forebrain neurons, reaching their mature sizes and densities through postnatal day 21 (P21). However, by P42, integrin ␣3 mutant mice exhibit significant reductions in hippocam- pal dendrite arbor size and complexity, loss of dendritic spine and synapse densities, and impairments in hippocampal-dependent behavior. Furthermore, gene-dosage experiments demonstrate that integrin ␣3 interacts functionally with the Arg nonreceptor tyrosine kinase to activate p190RhoGAP, which inhibits RhoA GTPase and regulates hippocampal dendrite and synapse stability and mouse behavior. Together, our data support a fundamental role for integrin ␣3 in regulating dendrite arbor stability, synapse maintenance, and proper hippocampal function. -
Turning of Retinal Growth Cones in a Netrin-1 Gradient Mediated by the Netrin Receptor DCC
Neuron, Vol. 19, 1211±1224, December, 1997, Copyright 1997 by Cell Press Turning of Retinal Growth Cones in a Netrin-1 Gradient Mediated by the Netrin Receptor DCC Jose R. de la Torre,* Veit H. HoÈ pker,² Guo-li Ming,² project to the midline (Harris et al., 1996; Mitchell et al., Mu-ming Poo,² Marc Tessier-Lavigne,*§ 1996). In addition to their apparent roles in attraction, ³ ² Ali Hemmati-Brivanlou, and Christine E. Holt k the netrins have been implicated as repellents of axons *Howard Hughes Medical Institute that migrate away from the midline in both C. elegans Departments of Anatomy and vertebrates (Colamarino and Tessier-Lavigne, 1995; and of Biochemistry and Biophysics Wadsworth et al., 1996; Varela-Echavarria et al., 1997). University of California Furthermore, genetic and biochemical evidence sug- San Francisco, California 94143-0452 gests that the attractive and repulsive actions of netrin ² Department of Biology proteins might involve different functional domains of University of California the netrin molecules and may be mediated by distinct San Diego, California 92039 receptor mechanisms (Hedgecock et al., 1990; Leung- ³ The Rockefeller University Hagesteijn et al., 1992; Chan et al., 1996; Keino-Masu New York, New York 10021-6399 et al., 1996; Kolodziej et al., 1996; Wadsworth et al., 1996; Ackerman et al., 1997; Leonardo et al., 1997). In addition to this role in midline guidance, studies in a Summary variety of vertebrate species have implicated netrins in guidance in many different regions of the nervous sys- Netrin-1 promotes outgrowth of axons in vitro through tem apart from midline regions (Kennedy et al., 1994; the receptor Deleted in Colorectal Cancer (DCC) and Serafini et al., 1996; Shirasaki et al., 1996; Lauderdale elicits turning of axons within embryonic explants et al., 1997; Livesey and Hunt, 1997; Me tin et al., 1997; when presented as a point source. -
Phosphorylation of DCC by ERK2 Is Facilitated By&Nbsp;Direct Docking of the Receptor P1 Domain To&Nbsp;The&Nbsp;Kina
Structure Article Phosphorylation of DCC by ERK2 Is Facilitated by Direct Docking of the Receptor P1 Domain to the Kinase Wenfu Ma,1,2 Yuan Shang,3 Zhiyi Wei,3 Wenyu Wen,1,2 Wenning Wang,1,2,* and Mingjie Zhang1,2,3,* 1Department of Chemistry 2Institute of Biomedical Sciences Fudan University, Shanghai, P.R. China 3Division of Life Science, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, P. R. China *Correspondence: [email protected] (W.W.), [email protected] (M.Z.) DOI 10.1016/j.str.2010.08.011 SUMMARY domains or catalytic activity have been identified thus far for the DCC cytoplasmic domain. Both in vitro and in vivo studies Netrin receptor DCC plays critical roles in many have demonstrated that the attractive response of DCC to cellular processes, including axonal outgrowth and netrins specifically originates from the cytoplasmic domain of migration, angiogenesis, and apoptosis, but the the receptor, as a chimera DCC in which the extracellular portion molecular basis of DCC-mediated signaling is largely of DCC is fused with the cytoplasmic part of UNC5 elicited unclear. ERK2, a member of the MAPK family, is one repulsive responses to netrin (Hong et al., 1999; Keleman and of the few proteins known to be involved in DCC- Dickson, 2001). Due to the lack of catalytic motifs in its intracel- lular domain, DCC is thought to transmit its signal by binding to mediated signaling. Here, we report that ERK2 its downstream proteins. Identification of DCC intracellular directly interacts with DCC, and the ERK2-binding domain binding partners has helped in understanding netrin/ region was mapped to the conserved intracellular DCC downstream signaling events. -
TACI:Fc Scavenging B Cell Activating Factor (BAFF) Alleviates Ovalbumin-Induced Bronchial Asthma in Mice
EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 39, No. 3, 343-352, June 2007 TACI:Fc scavenging B cell activating factor (BAFF) alleviates ovalbumin-induced bronchial asthma in mice 1,2,3 2 Eun-Yi Moon and Sook-Kyung Ryu the percentage of non-lymphoid cells and no changes were detected in lymphoid cell population. 1 Department of Bioscience and Biotechnology Hypodiploid cell formation in BALF was decreased Sejong University by OVA-challenge but it was recovered by TACI:Fc Seoul 143-747, Korea treatment. Collectively, data suggest that asthmatic 2 Laboratory of Human Genomics symptom could be alleviated by scavenging BAFF Korea Research Institute of Bioscience and Biotechnology (KRIBB) and then BAFF could be a novel target for the Daejeon 305-806, Korea develpoment of anti-asthmatic agents. 3 Corresponding author: Tel, 82-2-3408-3768; Fax, 82-2-466-8768; E-mail, [email protected] Keywords: asthma; B-cell activating factor; ovalbu- and [email protected] min; transmembrane activator and CAML interactor protein Accepted 28 March 2007 Introduction Abbreviations: BAFF, B cell activating factor belonging to TNF- family; BALF, bronchoalveolar lavage fluid; OVA, ovalbumin; PAS, Mature B cell generation and maintenance are regu- periodic acid-Schiff; Prx, peroxiredoxin; TACI, transmembrane lated by B-cell activating factor (BAFF). BAFF is pro- activator and calcium modulator and cyclophilin ligand interactor duced by macrophages or dendritic cells upon stim- ulation with LPS or IFN- . BAFF belongs to the TNF family. Its biological role is mediated by the specific Abstract receptors, B-cell maturation antigen (BCMA), trans- membrane activator and calcium modulator and cy- Asthma was induced by the sensitization and chal- clophilin ligand interactor (TACI) and BAFF receptor, lenge with ovalbumin (OVA) in mice. -
Aggrecan (A1960)
Aggrecan from bovine articular cartilage Catalog Number A1960 Storage Temperature –20 °C Product Description References Aggrecan is the major structural proteoglycan found in 1. Hardingham, T.E., and Muir, H., Biochim. Biophys. the extracellular matrix of cartilage. It has a molecular Acta, 279, 401-405 (1972). mass >2,500 kDa. The core protein (210–250 kDa) has 2. Hedlund, H., et al., Association of the aggrecan 100–150 glycosaminoglycan (GAG) chains attached to keratan sulfate-rich region with collagen in bovine it. The majority of the GAG chains are chondroitin/ articular cartilage. J. Biol. Chem., 274, 5777-5781 dermatan sulfate with the remainder being keratan (1999). sulfate. This structural molecule produces a rigid, 3. Cao, L., and Yang, B.B., Chondrocyte apoptosis reversibly deformable gel that resists compression. It induced by aggrecan G1 domain as a result of combines with hyaluronic acid to form very large decreased cell adhesion. Exp. Cell Res., 246, 527- macromolecular complexes. Addition of small amounts 537 (1999). (0.1–2% w/w) of hyaluronic acid to a solution of 4. Bolton, M.C., et al., Age-related changes in the aggrecan (2 mg/ml) results in the formation of a synthesis of link protein and aggrecan in human complex with an increased hydrodynamic volume and articular cartilage: implications for aggregate in a significant increase (30–40%) in the relative stability. Biochem. J., 337, 77-82 (1999). viscosity of the solution. 5. Arner, E.C., et al., Generation and Characterization of Aggrecanase. A soluble, cartilage-derived Aggrecan is a critical component for cartilage structure aggrecan-degrading activity. -
Complete Loss of Netrin-1 Results in Embryonic Lethality and Severe Axon Guidance Defects Without Increased Neural Cell Death
Report Complete Loss of Netrin-1 Results in Embryonic Lethality and Severe Axon Guidance Defects without Increased Neural Cell Death Graphical Abstract Authors Jenea M. Bin, Dong Han, Karen Lai Wing Sun, ..., Jean-Francois Cloutier, Artur Kania, Timothy E. Kennedy Correspondence [email protected] In Brief Bin et al. have generated a netrin-1 null mouse that displays phenotypes more severe than those of the reported netrin-1 gene-trap mouse, including embryonic lethality and exacerbated axon guidance defects. No increased apoptosis was detected, indicating that netrin-1 is not an essential dependence ligand, despite increased DCC and neogenin in netrin-1 nulls. Highlights d Generated netrin-1 floxed allele and complete netrin-1 null mouse lines d Complete netrin-1 loss-of-function causes embryonic lethality d Absence of netrin-1 increases DCC and neogenin protein expression d Netrin-1 is not an essential dependence ligand in the developing spinal cord Bin et al., 2015, Cell Reports 12, 1099–1106 August 18, 2015 ª2015 The Authors http://dx.doi.org/10.1016/j.celrep.2015.07.028 Cell Reports Report Complete Loss of Netrin-1 Results in Embryonic Lethality and Severe Axon Guidance Defects without Increased Neural Cell Death Jenea M. Bin,1,3,6 Dong Han,1,6 Karen Lai Wing Sun,1,3 Louis-Philippe Croteau,2,3,4,5 Emilie Dumontier,1 Jean-Francois Cloutier,1,3 Artur Kania,2,3,4,5 and Timothy E. Kennedy1,3,* 1Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montre´ al, QC H3A 2B4, Canada 2Institut -
The Brain Chondroitin Sulfate Proteoglycan Brevican Associates with Astrocytes Ensheathing Cerebellar Glomeruli and Inhibits Neurite Outgrowth from Granule Neurons
The Journal of Neuroscience, October 15, 1997, 17(20):7784–7795 The Brain Chondroitin Sulfate Proteoglycan Brevican Associates with Astrocytes Ensheathing Cerebellar Glomeruli and Inhibits Neurite Outgrowth from Granule Neurons Hidekazu Yamada, Barbara Fredette, Kenya Shitara, Kazuki Hagihara, Ryu Miura, Barbara Ranscht, William B. Stallcup, and Yu Yamaguchi The Burnham Institute, La Jolla, California 92037 Brevican is a nervous system-specific chondroitin sulfate surface of these cells. Binding assays with exogenously proteoglycan that belongs to the aggrecan family and is one added brevican revealed that primary astrocytes and several of the most abundant chondroitin sulfate proteoglycans in immortalized neural cell lines have cell surface binding sites adult brain. To gain insights into the role of brevican in brain for brevican core protein. These cell surface brevican binding development, we investigated its spatiotemporal expression, sites recognize the C-terminal portion of the core protein and cell surface binding, and effects on neurite outgrowth, using are independent of cell surface hyaluronan. These results rat cerebellar cortex as a model system. Immunoreactivity of indicate that brevican is synthesized by astrocytes and re- brevican occurs predominantly in the protoplasmic islet in tained on their surface by an interaction involving its core the internal granular layer after the third postnatal week. protein. Purified brevican inhibits neurite outgrowth from Immunoelectron microscopy revealed that brevican is local- cerebellar granule neurons in vitro, an activity that requires ized in close association with the surface of astrocytes that chondroitin sulfate chains. We suggest that brevican pre- form neuroglial sheaths of cerebellar glomeruli where incom- sented on the surface of neuroglial sheaths may be control- ing mossy fibers interact with dendrites and axons from ling the infiltration of axons and dendrites into maturing resident neurons. -
T Cell Reactivity + Autoantibodies and CD4 Therapy Is Mediated By
Suppression of Proteoglycan-Induced Arthritis by Anti-CD20 B Cell Depletion Therapy Is Mediated by Reduction in Autoantibodies and CD4 + T Cell Reactivity This information is current as of September 27, 2021. Keith Hamel, Paul Doodes, Yanxia Cao, Yumei Wang, Jeffrey Martinson, Robert Dunn, Marilyn R. Kehry, Balint Farkas and Alison Finnegan J Immunol 2008; 180:4994-5003; ; doi: 10.4049/jimmunol.180.7.4994 Downloaded from http://www.jimmunol.org/content/180/7/4994 References This article cites 48 articles, 20 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/180/7/4994.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Suppression of Proteoglycan-Induced Arthritis by Anti-CD20 B Cell Depletion Therapy Is Mediated by Reduction in Autoantibodies and CD4؉ T Cell Reactivity1 Keith Hamel,* Paul Doodes,* Yanxia Cao,† Yumei Wang,† Jeffrey Martinson,* Robert Dunn,§ Marilyn R. -
Syndecan - Regulation and Function of Its Glycosaminoglycan Chains
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 884 Syndecan - Regulation and Function of its Glycosaminoglycan Chains ANNA S. ERIKSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-8637-2 UPPSALA urn:nbn:se:uu:diva-197691 2013 Dissertation presented at Uppsala University to be publicly examined in A1:107a, BMC, Husargatan 3, Uppsala, Friday, May 17, 2013 at 13:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Abstract Eriksson, A. S. 2013. Syndecan - Regulation and Function of its Glycosaminoglycan Chains. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 884. 54 pp. Uppsala. ISBN 978-91-554-8637-2. The cell surface is an active area where extracellular molecules meet their receptors and affect the cellular fate by inducing for example cell proliferation and adhesion. Syndecans and integrins are two transmembrane molecules that have been suggested to fine-tune these activities, possibly in cooperation. Syndecans are proteoglycans, i.e. proteins with specific types of carbohydrate chains attached. These chains are glycosaminoglycans and either heparan sulfate (HS) or chondroitin sulfate (CS). Syndecans are known to influence cell adhesion and signaling. Integrins in turn, are important adhesion molecules that connect the extracellular matrix with the cytoskeleton, and hence can regulate cell motility. In an attempt to study how the two types of glycosaminoglycans attached to syndecan-1 can interact with integrins, a cell based model system was used and functional motility assays were performed. The results showed that HS, but not CS, on the cell surface was capable of regulating integrin-mediated cell motility. -
Netrin-1 Is a Novel Myelin-Associated Inhibitor to Axon Growth
The Journal of Neuroscience, January 30, 2008 • 28(5):1099–1108 • 1099 Cellular/Molecular Netrin-1 Is a Novel Myelin-Associated Inhibitor to Axon Growth Karin Lo¨w,1 Maya Culbertson,1 Frank Bradke,2 Marc Tessier-Lavigne,2 and Mark H. Tuszynski1,3 1Department of Neurosciences, University of California-San Diego, La Jolla, California 92093, 2Department of Biological Sciences, Howard Hughes Medical Institute, Stanford University, Palo Alto, California 94305, and 3Veterans Affairs Medical Center, San Diego, California 92161 We investigated the influence of the bifunctional guidance molecule netrin-1 on axonal growth in the injured adult spinal cord. In the adult, netrin-1 is expressed on mature oligodendrocytes, cells of the central canal, and the meninges. Netrin-1 protein in white matter is selectively enriched adjacent to paranodal loops of myelin in nodes of Ranvier. The repulsion-mediating netrin-1 uncoordinated-5 (UNC5) receptors are expressed by neurons of the corticospinal and rubrospinal projections, and by intrinsic neurons of the spinal cord, both before and after spinal cord injury. Neutralization of netrin-1 in myelin prepared from adult rat spinal cord using UNC5 receptor bodies increases neurite outgrowth from UNC5-expressing spinal motor neurons in vitro. Furthermore, axon regeneration is inhibited in a netrin-1-enriched zone, devoid of other myelin-associated inhibitors, within spinal cord lesion sites in vivo. We conclude that netrin-1 is a novel oligodendrocyte-associated inhibitor that can contribute to axonal growth failure after adult spinal cord injury. Key words: spinal cord injury; axon regeneration; white matter inhibition; netrin-1; UNC5; DCC; nogo; MAG; OMgp; retrovirus; plasticity; corticospinal; rubrospinal; intraspinal Introduction nation of both UNC5 and DCC receptors is required to mediate Netrin-1 is a bifunctional ligand that can either attract or repel long range repulsion of axons in the presence of low concentra- axons.