Phase Separation in Xanthan Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Phase Separation in Xanthan Solutions CELLULOSE CHEMISTRY AND TECHNOLOGY PHASE SEPARATION IN XANTHAN SOLUTIONS SIMONA MORARIU, MARIA BERCEA and CRISTINA-ELIZA BRUNCHI “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania ✉Corresponding author: Simona Morariu, [email protected] Paper dedicated to Professor Bogdan C. Simionescu on the occasion of his 70th anniversary The effect of ethanol (Et), isopropanol (IP) and NaCl addition on xanthan gum (XG) separation from aqueous solution was investigated by turbidimetry at 25 °C. The turbidity started to increase in the presence of alcohols (above 10% Et and 5% IP), independently of the XG concentration in the initial aqueous solution. In contrast, the NaCl content, which determines an increase of the turbidity, was dependent on the XG quantity according to an established relationship. Upon addition of the alcohols, phase separation into a polymer-poor phase and a polymer‐rich one (with gel-like behaviour) was observed for both XG/water/Et and XG/water/NaCl/IP systems. After one week at rest, the gel-like phase of XG/water/Et system was more structured compared to that of XG/water/NaCl/IP system, in which XG precipitate was observed. NaCl addition reduced the alcohol quantity required to determine the separation of XG due to the enhancement of the polymer–polymer interactions in the presence of salt. The reduced viscosity of XG/water/Et system, higher than those of XG/water/NaCl/IP (at a constant XG/NaCl ratio), has also confirmed that the XG chains present a more compact conformation in the presence of salt. Keywords: xanthan, turbidity, phase separation, salt, alcohol, viscosity INTRODUCTION In the last years, xanthan gum (XG) been developed in order to extend the range of received great attention from both researchers applications of this polysaccharide. The usual and manufacturers due to its non-toxicity, modifications of biochemical parameters and biocompatibility, biodegradability and the morphological changes induced by acceptable cost, which permit its use in various neomycin sulphate can be excluded by its applications. In addition, the high viscosity at administration together with a XG/chitosan low concentrations and the rheological hydrogel complex, resulted from the properties of its solutions make XG applicable interaction of the amino groups of chitosan as a thickener in food,1,2 cosmetics,3,4 with the anionic ones of XG.16 Knowing the pharmaceutical and biomedical products5-7 etc., capacity of XG to improve the viscoelastic as a rheological control agent in aqueous properties of hydrogels and its bioactivity, systems for water-based paints or as a Sehgal et al.17 developed a bioactive tissue- stabilizer for emulsions or suspensions in the engineered scaffold containing xanthan, gellan food industry.8,9 The role of XG as a thickener and chitosan nanoparticles for bone and stabilizing agent in food formulations has regeneration. The eco-friendly hydrogels with been investigated in different combinations superabsorbant properties were prepared by with guar gum,10 rice starch,11 amidated low including different amounts of XG in a methoxyl pectin,12 chitosan,13 gelatin B,14 soy polymer matrix obtained by chemical protein hydrolysate15 etc. crosslinking of cellulose in different Various formulations based on mixtures of allomorphic forms.18 The literature reports XG with neutral or charged polymers have many investigations on the mixtures of XG Cellulose Chem. Technol., 52 (7-8), 569-576 (2018) SIMONA MORARIU et al. with natural (chitosan,19 guar gum,20 formation of two phases: a XG-poor phase and xyloglucan21 etc.) or synthetic (Pluronic a XG-rich one with gel-like properties; 3) for F127,22 poly(ethylene oxide),23 PVA24 etc.) 50%-75% alcohol, a clear separation of the polymers in order to elucidate the nature of the liquid and gel phases was obtained; 4) for an interactions established between the polymer alcohol content higher than 75%, a brittle chains that are responsible for the synergistic precipitate, difficult to separate by properties observed for these systems. centrifugation, is formed.31 XG is an anionic natural polysaccharide The presence of salt in the XG aqueous produced mainly from glucose by solutions decreases the amount of alcohol Xanthomonas campestris bacteria. The required to determine the precipitation of the macromolecules have the main chain with the polymer. The conformational changes and structure of cellulose (β-1,4-linked D-glucose polymer-polymer or polymer-solvent units), to which side chains of trisaccharides interactions from the XG solutions are (two mannose and one glucuronic acid) are influenced by a large number of factors, such attached. Due to its structure, strong polymer- as alcohol structure, pH, temperature, addition polymer interactions are established between of salts and concentration of components in the XG chains or with other polymers in mixture. multicomponent systems. In aqueous solution The study of stability of XG aqueous at 25 °C, the XG backbone is extended, but in solutions in the presence of salt or alcohols partially ordered form (randomly broken represents an important topic for research, as helix), due to the two types of possible well as for practical applications, because interactions between the chains: electrostatic many food formulations or personal care repulsive interactions and attractive products include salt and/or alcohol. In this interactions by hydrogen bonds.25 XG context, the purpose of this paper is to undergoes a transition from the ordered to the investigate the phase separation occurrence in disordered conformation as a function of the XG in water/ethanol and external conditions (temperature, addition of water/NaCl/isopropanol mixtures by salt, pH, solvent quality) and the structural turbidimetry and to analyse the viscometric factors (acetate and pyruvate substituent behaviour in the presence of non-solvent or content).26-28 The nature of ordered and salt. In addition, visual observations will be disordered structures, as well as the conditions made to support the conclusions obtained by in which XG chains adopt one or another of turbidimetry and viscometry concerning the these conformations, are still a matter of phase separation in the studied XG solutions. debate. For applications in the food industry, the EXPERIMENTAL knowledge of the effect of different additives Materials (for example, salt or alcohol) on the A xanthan gum (XG) sample was provided by viscoelastic properties and on the stability of Sigma-Aldrich and it was used as received. The viscometric molecular weight of XG, determined the systems containing XG is very important. previously,27 was 1.165 ×106 g/mol. NaCl, ethanol The decrease of xanthan solubility in water can (Et) and isopropanol (IP) were also purchased from be realized by the addition of salts,27,29,30 water 28,31-33 Sigma-Aldrich and were used without further miscible non-solvents (for example, purification. Homogeneous XG aqueous solutions, methanol, ethanol, isopropanol, acetone) or with concentrations between 0.003 g/dL and 0.4 salt/non-solvent mixtures,34,35 and by g/dL, were prepared by the dissolution of the increasing the solution concentration. polymer in Millipore water (obtained from a Milli- By addition of a non-solvent (ethanol, Q PF apparatus) at room temperature under gentle isopropanol or tert-butanol), the direct stirring. precipitation of XG from its aqueous solution does not occur. The following stages were Viscosity measurements The viscometry measurements were carried out observed as a function of the composition of at 25 °C, using an Ubbelohde viscometer of type I the solvent/non-solvent mixture: 1) up to about with a capillary diameter of 0.63 mm, and by 30% alcohol in the alcohol/water mixture XG sequential dilution. The viscometer was connected does not precipitate; 2) between 30% and 40% to an automatic system Lauda LMV 830 alcohol (as a function of the nature of the Instrument, Germany. Two XG solutions, with the alcohol), the solubility decreases leading to the concentration of about 0.02 g/dL in water/Et and 570 Xanthan water/NaCl/IP mixtures, were prepared. One upon adding up to 30% Et into solutions with solution was diluted with water/Et mixture (11% high XG concentration.36 For the total Et) and the second one was diluted with water/IP precipitation of XG from solutions with mixture (6% IP), keeping the XG/NaCl ratio concentrations higher than 0.3 g/dL, an ethanol constant during the viscometric measurements. The volume to solution volume ratio of 6 was quantity of NaCl was calculated by using the relationship between XG and NaCl, as determined necessary. This ratio was found to be independent of the polymer concentration in from the experimental data reported in the present 34 paper. the initial solution. Turbidimetry investigations Effect of IP addition on the turbidity of The turbidity measurements were performed on XG/NaCl/water mixtures a HACH 2100AN turbidimeter in the range of 400- The effect of salt addition on the solubility 600 nm wavelengths. For turbidimetry of XG in water depends on the valence of the measurements, a small quantity of NaCl solution cations. Thereby, the salts with monovalent (with set concentration) or alcohol (Et or IP) was cations (for example, sodium) do not affect the added into XG aqueous solutions and, after each addition, the turbidity in terms of NTU XG solubility, in contrast to the salts (Nephelometric Turbidity Unit) was determined. containing polyvalent cations, such as calcium, aluminum, quaternary ammonium, which 28,37 RESULTS AND DISCUSSION cause XG precipitation. The use of The behaviour of XG in aqueous solution quaternary ammonium salt in food applications and the effect of different non-solvents on the is not indicated because of its toxicity. phase separation represent subjects still In the present study, a slight increase of the discussed in the literature. The establishment turbidity was evidenced upon addition of NaCl of the conditions for XG phase separation into XG solutions with concentrations between requires good knowledge of the solution 0.01 g/dL and 0.10 g/dL (Fig.
Recommended publications
  • Modelling and Numerical Simulation of Phase Separation in Polymer Modified Bitumen by Phase- Field Method
    http://www.diva-portal.org Postprint This is the accepted version of a paper published in Materials & design. This paper has been peer- reviewed but does not include the final publisher proof-corrections or journal pagination. Citation for the original published paper (version of record): Zhu, J., Lu, X., Balieu, R., Kringos, N. (2016) Modelling and numerical simulation of phase separation in polymer modified bitumen by phase- field method. Materials & design, 107: 322-332 http://dx.doi.org/10.1016/j.matdes.2016.06.041 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188830 ACCEPTED MANUSCRIPT Modelling and numerical simulation of phase separation in polymer modified bitumen by phase-field method Jiqing Zhu a,*, Xiaohu Lu b, Romain Balieu a, Niki Kringos a a Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Brinellvägen 23, SE-100 44 Stockholm, Sweden b Nynas AB, SE-149 82 Nynäshamn, Sweden * Corresponding author. Email: [email protected] (J. Zhu) Abstract In this paper, a phase-field model with viscoelastic effects is developed for polymer modified bitumen (PMB) with the aim to describe and predict the PMB storage stability and phase separation behaviour. The viscoelastic effects due to dynamic asymmetry between bitumen and polymer are represented in the model by introducing a composition-dependent mobility coefficient. A double-well potential for PMB system is proposed on the basis of the Flory-Huggins free energy of mixing, with some simplifying assumptions made to take into account the complex chemical composition of bitumen.
    [Show full text]
  • Phase Diagrams and Phase Separation
    Phase Diagrams and Phase Separation Books MF Ashby and DA Jones, Engineering Materials Vol 2, Pergamon P Haasen, Physical Metallurgy, G Strobl, The Physics of Polymers, Springer Introduction Mixing two (or more) components together can lead to new properties: Metal alloys e.g. steel, bronze, brass…. Polymers e.g. rubber toughened systems. Can either get complete mixing on the atomic/molecular level, or phase separation. Phase Diagrams allow us to map out what happens under different conditions (specifically of concentration and temperature). Free Energy of Mixing Entropy of Mixing nA atoms of A nB atoms of B AM Donald 1 Phase Diagrams Total atoms N = nA + nB Then Smix = k ln W N! = k ln nA!nb! This can be rewritten in terms of concentrations of the two types of atoms: nA/N = cA nB/N = cB and using Stirling's approximation Smix = -Nk (cAln cA + cBln cB) / kN mix S AB0.5 This is a parabolic curve. There is always a positive entropy gain on mixing (note the logarithms are negative) – so that entropic considerations alone will lead to a homogeneous mixture. The infinite slope at cA=0 and 1 means that it is very hard to remove final few impurities from a mixture. AM Donald 2 Phase Diagrams This is the situation if no molecular interactions to lead to enthalpic contribution to the free energy (this corresponds to the athermal or ideal mixing case). Enthalpic Contribution Assume a coordination number Z. Within a mean field approximation there are 2 nAA bonds of A-A type = 1/2 NcAZcA = 1/2 NZcA nBB bonds of B-B type = 1/2 NcBZcB = 1/2 NZ(1- 2 cA) and nAB bonds of A-B type = NZcA(1-cA) where the factor 1/2 comes in to avoid double counting and cB = (1-cA).
    [Show full text]
  • Phase Separation Phenomena in Solutions of Polysulfone in Mixtures of a Solvent and a Nonsolvent: Relationship with Membrane Formation*
    Phase separation phenomena in solutions of polysulfone in mixtures of a solvent and a nonsolvent: relationship with membrane formation* J. G. Wijmans, J. Kant, M. H. V. Mulder and C. A. Smolders Department of Chemical Technology, Twente University of Technology, PO Box 277, 7500 AE Enschede, The Netherlands (Received 22 October 1984) The phase separation phenomena in ternary solutions of polysulfone (PSI) in mixtures of a solvent and a nonsolvent (N,N-dimethylacetamide (DMAc) and water, in most cases) are investigated. The liquid-liquid demixing gap is determined and it is shown that its location in the ternary phase diagram is mainly determined by the PSf-nonsolvent interaction parameter. The critical point in the PSf/DMAc/water system lies at a high polymer concentration of about 8~o by weight. Calorimetric measurements with very concentrated PSf/DMAc/water solutions (prepared through liquid-liquid demixing, polymer concentration of the polymer-rich phase up to 60%) showed no heat effects in the temperature range of -20°C to 50°C. It is suggested that gelation in PSf systems is completely amorphous. The results are incorporated into a discussion of the formation of polysulfone membranes. (Keywords: polysulfone; solutions; liquid-liquid demixing; crystallization; membrane structures; membrane formation) INTRODUCTION THEORY The field of membrane filtration covers a broad range of Membrane formation different separation techniques such as: hyperfiltration, In the phase inversion process a membrane is made by reverse osmosis, ultrafiltration, microfiltration, gas sepa- casting a polymer solution on a support and then bringing ration and pervaporation. Each process makes use of the solution to phase separation by means of solvent specific membranes which must be suited for the desired outflow and/or nonsolvent inflow.
    [Show full text]
  • Partition Coefficients in Mixed Surfactant Systems
    Partition coefficients in mixed surfactant systems Application of multicomponent surfactant solutions in separation processes Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation von Tanja Mehling aus Lohr am Main 2013 Gutachter 1. Gutachterin: Prof. Dr.-Ing. Irina Smirnova 2. Gutachterin: Prof. Dr. Gabriele Sadowski Prüfungsausschussvorsitzender Prof. Dr. Raimund Horn Tag der mündlichen Prüfung 20. Dezember 2013 ISBN 978-3-86247-433-2 URN urn:nbn:de:gbv:830-tubdok-12592 Danksagung Diese Arbeit entstand im Rahmen meiner Tätigkeit als wissenschaftliche Mitarbeiterin am Institut für Thermische Verfahrenstechnik an der TU Hamburg-Harburg. Diese Zeit wird mir immer in guter Erinnerung bleiben. Deshalb möchte ich ganz besonders Frau Professor Dr. Irina Smirnova für die unermüdliche Unterstützung danken. Vielen Dank für das entgegengebrachte Vertrauen, die stets offene Tür, die gute Atmosphäre und die angenehme Zusammenarbeit in Erlangen und in Hamburg. Frau Professor Dr. Gabriele Sadowski danke ich für das Interesse an der Arbeit und die Begutachtung der Dissertation, Herrn Professor Horn für die freundliche Übernahme des Prüfungsvorsitzes. Weiterhin geht mein Dank an das Nestlé Research Center, Lausanne, im Besonderen an Herrn Dr. Ulrich Bobe für die ausgezeichnete Zusammenarbeit und der Bereitstellung von LPC. Den Studenten, die im Rahmen ihrer Abschlussarbeit einen wertvollen Beitrag zu dieser Arbeit geleistet haben, möchte ich herzlichst danken. Für den außergewöhnlichen Einsatz und die angenehme Zusammenarbeit bedanke ich mich besonders bei Linda Kloß, Annette Zewuhn, Dierk Claus, Pierre Bräuer, Heike Mushardt, Zaineb Doggaz und Vanya Omaynikova. Für die freundliche Arbeitsatmosphäre, erfrischenden Kaffeepausen und hilfreichen Gespräche am Institut danke ich meinen Kollegen Carlos, Carsten, Christian, Mohammad, Krishan, Pavel, Raman, René und Sucre.
    [Show full text]
  • Chapter 9: Other Topics in Phase Equilibria
    Chapter 9: Other Topics in Phase Equilibria This chapter deals with relations that derive in cases of equilibrium between combinations of two co-existing phases other than vapour and liquid, i.e., liquid-liquid, solid-liquid, and solid- vapour. Each of these phase equilibria may be employed to overcome difficulties encountered in purification processes that exploit the difference in the volatilities of the components of a mixture, i.e., by vapour-liquid equilibria. As with the case of vapour-liquid equilibria, the objective is to derive relations that connect the compositions of the two co-existing phases as functions of temperature and pressure. 9.1 Liquid-liquid Equilibria (LLE) 9.1.1 LLE Phase Diagrams Unlike gases which are miscible in all proportions at low pressures, liquid solutions (binary or higher order) often display partial immiscibility at least over certain range of temperature, and composition. If one attempts to form a solution within that certain composition range the system splits spontaneously into two liquid phases each comprising a solution of different composition. Thus, in such situations the equilibrium state of the system is two phases of a fixed composition corresponding to a temperature. The compositions of two such phases, however, change with temperature. This typical phase behavior of such binary liquid-liquid systems is depicted in fig. 9.1a. The closed curve represents the region where the system exists Fig. 9.1 Phase diagrams for a binary liquid system showing partial immiscibility in two phases, while outside it the state is a homogenous single liquid phase. Take for example, the point P (or Q).
    [Show full text]
  • Phase Separation in Mixtures
    Phase Separation in Mixtures 0.05 0.05 0.04 Stable 0.04 concentrations 0.03 0.03 G G ∆ 0.02 ∆ 0.02 0.01 0.01 Unstable Unstable concentration concentration 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x x Separation onto phases will lower the average Gibbs energy and thus the equilibrium state is phase separated Notes Phase Separation versus Temperature Note that at higher temperatures the region of concentrations where phase separation takes place shrinks and G eventually disappears T increases ∆G = ∆U −T∆S This is because the term -T∆S becomes large at high temperatures. You can say that entropy “wins” over the potential energy cost at high temperatures Microscopically, the kinetic energy becomes x much larger than potential at high T, and the 1 x2 molecules randomly “run around” without noticing potential energy and thus intermix Oil and water mix at high temperature Notes Liquid-Gas Phase Separation in a Mixture A binary mixture can exist in liquid or gas phases. The liquid and gas phases have different Gibbs potentials as a function of mole fraction of one of the components of the mixture At high temperatures the Ggas <Gliquid because the entropy of gas is greater than that of liquid Tb2 T At lower temperatures, the two Gibbs b1 potentials intersect and separation onto gas and liquid takes place. Notes Boiling of a binary mixture Bubble point curve Dew point If we have a liquid at pint A that contains F A gas curve a molar fraction x1 of component 1 and T start heating it: E D - First the liquid heats to a temperature T’ C at constant x A and arrives to point B.
    [Show full text]
  • Liquid-Liquid Phase Separation in Concentrated Solutions of Non-Crystallizable Polymers by Spinodal Decomposition by C
    Kolloid-Z. u. Z. Polymere 243, 14-20 (1971 ) From the AKZO Research Laboratories Arnhem (The ~Vetherlands) Liquid-liquid phase separation in concentrated solutions of non-crystallizable polymers by spinodal decomposition By C. A. Smolders, J. J. van Aartsen, and A. Steenbergen With 11 figures (Received June 15, 1970) Introduction We will describe here under what condi- In the past, investigations of phase separa- tions spinodal decomposition can be expect- tion in concentrated polymer solutions cen- ed for polymer solutions. A number of ob- tered first of all on the crystallization kinet- servations on phase separation in concen- ics (1) and morphology (2) of polymer crys- trated solutions of poly(2,6-dimethyl-l,4- tals growing from solutions and, secondly, phenylene ether), (PPO| Tg = 210 ~ and on the equilibrium thermodynamic proper- of an ethylene-vinyl acetate copolymer ties of liquid-liquid phase separation phe- (Elvax-40), Tg ~ 0 ~ will be reported, which nomena (3). will make it clear that spinodal decompo- Papkov and Yefimova (4) have recently sition can be realized in polymer solutions. given a classification of different types of phase separation for polymer solutions, essen- Thermodynamic considerations tially the two types mentioned above, in which they also pay some attention to the Fig. 1 a and b, gives a schematic represen- difference in final state of separation (i. e. tation of the thermodynamics of liquid- "gel" or two liquid layers) and to the mechanism of separation itself. For liquid- A Fm [~_ liquid phase separation of solutions of non- crystallizable polymers the difference in I LE -r final state is ascribed to a combined effect of the thermodynamics of the system (the width of the miscibility gap in the temperature-com- position diagram) and the flow properties of the concentrated polymer phase.
    [Show full text]
  • Pak 2016, Sequence Determinants of Intracellular Phase Separation By
    Article Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein Graphical Abstract Authors Chi W. Pak, Martyna Kosno, Alex S. Holehouse, ..., David R. Liu, Rohit V. Pappu, Michael K. Rosen Correspondence [email protected] (R.V.P.), [email protected] (M.K.R.) In Brief Pak et al. describe cellular liquid-liquid phase separation of a negatively charged intrinsically disordered protein, the Nephrin intracellular domain. Phase separation is driven by co-assembly with positively charged partners, a process termed complex coacervation. Disordered regions with NICD-like sequence features are common in the human proteome, suggesting complex coacervation may be widespread. Highlights d Disordered Nephrin intracellular domain (NICD) forms phase- separated nuclear bodies d NICD phase separates via complex coacervation d Aromatic/hydrophobic residues and high (À) charge density promote phase separation d Disordered regions with NICD-like sequence features are common in human proteome Pak et al., 2016, Molecular Cell 63, 72–85 July 7, 2016 ª 2016 Elsevier Inc. http://dx.doi.org/10.1016/j.molcel.2016.05.042 Molecular Cell Article Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein Chi W. Pak,1 Martyna Kosno,1 Alex S. Holehouse,2,3 Shae B. Padrick,1 Anuradha Mittal,3 Rustam Ali,1 Ali A. Yunus,1 David R. Liu,4 Rohit V. Pappu,3,* and Michael K. Rosen1,* 1Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA 2Computational and Molecular Biophysics Graduate Program, Washington University in St. Louis, St. Louis, MO 63130, USA 3Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St.
    [Show full text]
  • Lecture 9: Polymer Solutions – Phase Behavior
    Prof. Tibbitt Lecture 9 Networks & Gels Lecture 9: Polymer solutions { Phase behavior Prof. Mark W. Tibbitt { ETH Z¨urich { 17 March 2020 1 Suggested reading • Molecular Driving Forces { Dill and Bromberg: Chapter 32 • Polymer Physics { Rubinstein and Colby: Chapters 4,5 • Soft Condensed Matter { Jones: Chapters 3,9 2 Flory-Huggins Theory In the last lecture, we derived the Flory-Huggins Theory for the Free Energy of mixing of polymer solutions. The derivation was general for species 1 and 2 with degree of polymerization x1 and x2 and is a more general expression of regular solution theory. In this discussion, we will look at what the Flory-Huggins theory tells us about phase behavior of polymers and how this differs from the behavior of small molecules. As we are no longer considering a lattice with N sites, we will revert back to using the term N as the degree of polymerization of our two species. Again we will consider two generic species A and B with degrees of polymerization NA and NB. Recall the form of the Free Energy of mixing per site from Flory-Huggins Theory: M ∆F M φA φB = ∆F¯ = ln φA + ln φB + χφAφB : (1) NkBT NA NB We will now use the term ∆F¯M as the Free Energy of mixing per site. 3 Phase behavior of polymer solutions In order to work with polymer solutions for industrial and biomedical applications, it is essential to understand the phase behavior of the systems. For example, we need to know under which conditions a polymer will dissolve in a solvent or if two polymers will be miscible.
    [Show full text]
  • Critical Phenomena of Liquid-Liquid Phase Separation in Biomolecular Condensates
    Critical Phenomena of Liquid-Liquid Phase Separation in Biomolecular Condensates Junlang Liu Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138 [email protected] (Dated: May 21, 2021) Biomolecular condensates, an important class of intracellular organelles, is considered to be formed by Liquid-Liquid Phase Separation (LLPS) in vivo. Here, in this report, we focus on the critical region of LLPS, where we believe is the state that most cells live for spatiotemporally-resolved physiological activities. First, a brief introduction of LLPS and recent progress is presented. We then discuss critical phenomena of passive LLPS and active LLPS respectively from mean-field perspective with the help of some reported results. Current descriptions of passive LLPS are mainly based on Flory-Huggins model, which is still within the framework of mean-field Landau-Ginzburg model. For active LLPS, the application of external fields do affect the critical behaviour. This not only implies the importance of taking external energy/biochemical reactions into account for more precise description of in vivo LLPS, but also could be the origins of such rich intracellular activities. I. INTRODUCTION (such as ATP or post-translational modifications) influ- ence LLPS (i.e., out-of-equilibrium active process)? [4] Intracellular compartmentalization enables dynamical 3) How does heterogeneous cellular environments inter- and accurate information processes during the growth act with condensates? [5] and development of lives. Compared with well-studied membrane-bound organelles, researches on membrane- Although huge amounts of researches have been done, less organelles are still in its infancy. It has been well very few of them took a serious investigation on criticality established during the past decade that membrane-less or universality of LLPS/liquid-gel-solid transition.
    [Show full text]
  • Relevance of Liquid-Liquid Phase Separation of Supersaturated Solution in Oral Absorption of Albendazole from Amorphous Solid Dispersions
    pharmaceutics Article Relevance of Liquid-Liquid Phase Separation of Supersaturated Solution in Oral Absorption of Albendazole from Amorphous Solid Dispersions Kyosuke Suzuki 1,*, Kohsaku Kawakami 2,* , Masafumi Fukiage 3, Michinori Oikawa 4, Yohei Nishida 5, Maki Matsuda 6 and Takuya Fujita 7 1 Pharmaceutical and ADMET Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan 2 Research Center for Functionals Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan 3 Pharmaceutical R&D, Ono Pharmaceutical Co., Ltd., 3-3-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan; [email protected] 4 Pharmaceutical Development Department, Sawai Pharmaceutical Co., Ltd., 5-2-30, Miyahara, Yodogawa-ku, Osaka 532-0003, Japan; [email protected] 5 Technology Research & Development, Sumitomo Dainippon Pharma Co., Ltd., 33-94, Enoki-cho, Suita, Osaka 564-0053, Japan; [email protected] 6 Research & Development Division, Towa Pharmaceutical Co., Ltd., 134, Chudoji Minami-machi, Shimogyo-ku, Kyoto 600-8813, Japan; [email protected] 7 College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan; [email protected] * Correspondence: [email protected] (K.S.); [email protected] (K.K.); Tel.: +81-80-4383-5853 (K.S.); +81-29-860-4424 (K.K.) Citation: Suzuki, K.; Kawakami, K.; Fukiage, M.; Oikawa, M.; Nishida, Y.; Abstract: Amorphous solid dispersion (ASD) is one of the most promising formulation technologies Matsuda, M.; Fujita, T. Relevance of for improving the oral absorption of poorly soluble drugs, where the maintenance of supersaturation Liquid-Liquid Phase Separation of plays a key role in enhancing the absorption process.
    [Show full text]
  • Thermovid 10 10
    Statistical Molecular Thermodynamics Christopher J. Cramer Video 10.10 Review of Module 10 Critical Concepts from Module 10 • The free energy of a multicomponent system is the sum of the chemical potentials of the different components. • Partial molar quantities are defined as " ∂Z % Z j = $ ' #∂n j & ni≠ j ,P,T where for a pure substance, the value is that for one mole of that substance, while the value in a mixture will be dependent on the composition. • All extensive thermodynamic quantities have partial molar equivalents. Critical Concepts from Module 10 • The Gibbs-Duhem equation establishes a relationship between the chemical potentials of two substances in a mixture as a function of composition: Gibbs-Duhem Equation x1dµ1 + x2dµ2 = 0 (constant T and P) • At equilibrium, a given component has the same chemical potential€ in all phases in which it is present. • For systems having liquid and vapor phases in equilibrium, the chemical potential (1 bar standard state) can be expressed as vap vap,! sol µ j = µ j (T)+ RT ln Pj = µ j Critical Concepts from Module 10 • An alternative expression for the chemical potential in the mole fraction standard state is sol * Pj µ j = µ j (l) + RT ln * Pj • For an ideal solution, Raoult’s law holds, which states that for all components Pj = xjPj* where xj is the mole fraction of component j. • The chemical€ potential in an ideal solution is then sol * µ j = µ j (l) + RT ln x j • Mixing to form an ideal solution is always favorable and is driven entirely by entropy € Critical Concepts from Module 10 • Differing compositions in liquid and vapor phases in equilibrium at a given temperature permit fractional distillation of ideal solutions.
    [Show full text]