® Common Abbreviations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks
ICST Transactions on Mobile Communications and Applications Research Article Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks Jun Li ∗, Mylene` Toulgoat, Yifeng Zhou, and Louise Lamont Communications Research Centre Canada, 3701 Carling Avenue, Ottawa, ON. K2H 8S2 Canada Abstract With recent developments in terrestrial wireless networks and advances in acoustic communications, multichannel technologies have been proposed to be used in underwater networks to increase data transmission rate over bandwidth-limited underwater channels. Due to high bit error rates in underwater networks, an efficient error control technique is critical in the logical link control (LLC) sublayer to establish reliable data communications over intrinsically unreliable underwater channels. In this paper, we propose a novel protocol stack architecture featuring cross-layer design of LLC sublayer and more efficient packet- to-channel scheduling for multichannel underwater sensor networks. In the proposed stack architecture, a selective-repeat automatic repeat request (SR-ARQ) based error control protocol is combined with a dynamic channel scheduling policy at the LLC sublayer. The dynamic channel scheduling policy uses the channel state information provided via cross-layer design. It is demonstrated that the proposed protocol stack architecture leads to more efficient transmission of multiple packets over parallel channels. Simulation studies are conducted to evaluate the packet delay performance of the proposed cross-layer protocol stack architecture with two different scheduling policies: the proposed dynamic channel scheduling and a static channel scheduling. Simulation results show that the dynamic channel scheduling used in the cross-layer protocol stack outperforms the static channel scheduling. It is observed that, when the dynamic channel scheduling is used, the number of parallel channels has only an insignificant impact on the average packet delay. -
DELTA MODULATION CODEC Meets Mil-Std-188-113 Features
DATA BULLETIN DELTA MODULATION CODEC MX629 meets Mil-Std-188-113 Features Applications Meets Mil-Std-188-113 Military Communications Single Chip Full Duplex CVSD CODEC Multiplexers, Switches, & Phones On-chip Input and Output Filters Programmable Sampling Clocks 3- or 4-bit Companding Algorithm Powersave Capabilities Low Power, 5.0V Operation ➤ ➤ ➤ ➤➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤➤➤ ➤ The MX629 is a Continuously Variable Slope Delta Modulation (CVSD) Codec designed for use in military communications systems. This device is suitable for applications in military delta multiplexers, switches, and phones. The MX629 is designed to meet Mil-Std-188-113 specifications. Encoder input and decoder output filters are incorporated on-chip. Sampling clock rates can be programmed to 16, 32, or 64kbps from an internal clock generator or externally injected in the 8 to 64kbps range. The sampling clock frequency is output for the synchronization of external circuits. The encoder has an enable function for use in multiplexer applications. Encoder and Decoder forced idle capabilities are provided forcing 10101010…pattern in encode and a VDD/2 bias in decode. The companding circuit may be operated with an externally selectable 3- or 4-bit algorithm. The device may be placed in standby mode by selecting Powersave. A reference 1.024MHz oscillator uses an external clock or crystal. The MX629 operates with a supply voltage of 5.0V and is available in the following packages: 24-pin PLCC (MX629LH), 22-pin CERDIP (MX629J), and 22-pin PDIP (MX629P). 1998 MX-COM, Inc. www.mxcom.com Tel: 800 638 5577 336 744 5050 Fax: 336 744 5054 Doc. # 20480190.001 4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA All Trademarks and service marks are held by their respective companies. -
List of TCP and UDP Port Numbers from Wikipedia, the Free Encyclopedia
List of TCP and UDP port numbers From Wikipedia, the free encyclopedia This is a list of Internet socket port numbers used by protocols of the Transport Layer of the Internet Protocol Suite for the establishment of host-to-host communications. Originally, these ports number were used by the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP), but are also used for the Stream Control Transmission Protocol (SCTP), and the Datagram Congestion Control Protocol (DCCP). SCTP and DCCP services usually use a port number that matches the service of the corresponding TCP or UDP implementation if they exist. The Internet Assigned Numbers Authority (IANA) is responsible for maintaining the official assignments of port numbers for specific uses.[1] However, many unofficial uses of both well-known and registered port numbers occur in practice. Contents 1 Table legend 2 Well-known ports 3 Registered ports 4 Dynamic, private or ephemeral ports 5 See also 6 References 7 External links Table legend Use Description Color Official Port is registered with IANA for the application white Unofficial Port is not registered with IANA for the application blue Multiple use Multiple applications are known to use this port. yellow Well-known ports The port numbers in the range from 0 to 1023 are the well-known ports. They are used by system processes that provide widely used types of network services. On Unix-like operating systems, a process must execute with superuser privileges to be able to bind a network socket to an IP address using one of the well-known ports. -
Medium Access Control Layer
Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay (historical) ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus (historical) ● Network Infrastructure ● Token Ring (historical) ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● Protocols used to determine who gets next access to the channel Data Link Layer ● Medium Access Control (MAC) sublayer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Range ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access .. -
List of TCP and UDP Port Numbers - Wikipedia, the Free Encyclopedia 6/12/11 3:20 PM
List of TCP and UDP port numbers - Wikipedia, the free encyclopedia 6/12/11 3:20 PM List of TCP and UDP port numbers From Wikipedia, the free encyclopedia (Redirected from TCP and UDP port numbers) This is a list of Internet socket port numbers used by protocols of the Transport Layer of the Internet Protocol Suite for the establishment of host-to-host communications. Originally, these port numbers were used by the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP), but are used also for the Stream Control Transmission Protocol (SCTP), and the Datagram Congestion Control Protocol (DCCP). SCTP and DCCP services usually use a port number that matches the service of the corresponding TCP or UDP implementation if they exist. The Internet Assigned Numbers Authority (IANA) is responsible for maintaining the official assignments of port numbers for specific uses.[1] However, many unofficial uses of both well-known and registered port numbers occur in practice. Contents 1 Table legend 2 Well-known ports: 0–1023 3 Registered ports: 1024–49151 4 Dynamic, private or ephemeral ports: 49152–65535 5 See also 6 References 7 External links Table legend Color coding of table entries Official Port/application combination is registered with IANA Unofficial Port/application combination is not registered with IANA Conflict Port is in use for multiple applications (may be official or unofficial) Well-known ports: 0–1023 The port numbers in the range from 0 to 1023 are the well-known ports. They are used by system processes that provide widely-used types of network services. -
The Mizoram Gazette EXTRA ORDINARY Published by Authority RNI No
- 1 - Ex-59/2012 The Mizoram Gazette EXTRA ORDINARY Published by Authority RNI No. 27009/1973 Postal Regn. No. NE-313(MZ) 2006-2008 Re. 1/- per page VOL - XLI Aizawl, Thursday 9.2.2012 Magha 20, S.E. 1933, Issue No. 59 NOTIFICATION No.A.45011/1/2010-P&AR(GSW), the 3rd February, 20122012. In exercise of the powers conferred by the proviso to Article 309 of the Constitution of India, the Governor of Mizoram is pleased to make the following Regulations relating to the Mizoram Civil Services (Combined Competitive) Examinations, namely:- 1. SHORT TITLE AND COMMENCEMENT: (i) These Regulations may be called the Mizoram Civil Services (Combined Competitive Examination) Regulations, 2011. (ii) They shall come into force from the date of their publication in the Mizoram Gazette. (iii) These Regulations shall cover recruitment examination to the Junior Grade of the Mizoram Civil Service (MCS), the Mizoram Police Service (MPS), the Mizoram Finance & Accounts Service (MF&AS) and the Mizoram Information Service (MIS). 2. DEFINITIONS: In these regulations, unless the context otherwise requires:- (i) ‘Constitution’ means the Constitution of India; (ii) ‘Commission’ means the Mizoram Public Service Commission; (iii) ‘Examination’ means a Combined Competitive Examination for recruitment to the Junior Grade of MCS, MPS, MFAS and MIS; (iv) ‘Government’ means the State Government of Mizoram; (v) ‘Governor’ means the Governor of Mizoram; (vi) ‘List’ means the list of successful candidates in the written examination and selected candidates prepared by the Commission -
Digital Communications GATE Online Coaching Classes
GATE Online Coaching Classes Digital Communications Online Class-4 By Dr.B.Leela Kumari Assistant Professor, Department of Electronics and Communications Engineering University college of Engineering Kakinada Jawaharlal Nehru Technological University Kakinada 6/24/2020 Dr. B. Leela Kumari UCEK JNTUK Kakinada 1 Session -4 Baseband Transmission • Delta Modulation • advantages and Draw Backs • SNR of DM • Adaptive Delta Modulation • Comparisons • Objective Type questions and Illustrative Problems 6/24/2020 Dr. B. Leela Kumari UCEK JNTUK Kakinada 2 Delta Modulation • By the DM technique an analog signal can be encoded in to bits .hence in one sense a DM is also PCM • IN DM difference signal is encoded into just a single bit ,hence in one sense a DM is also DPCM • A single bit produces just two possibilities that is used to increase or decrease the estimate 6/24/2020 Dr. B. Leela Kumari UCEK JNTUK Kakinada 3 Block diagram of DM 6/24/2020 Dr. B. Leela Kumari UCEK JNTUK Kakinada 4 The DM consists of Comparator Sample and Hold circuit Up-Down Counter D/A Converter 6/24/2020 Dr. B. Leela Kumari UCEK JNTUK Kakinada 5 Comparator makes a comparison between the input base band signal m(t) and its quantized approximation Δ(t) =V(H) =V(L) Up-Down counter increments or decrements its count by one at each active edge of the clock waveform The count direction(incrementing or decrementing ) is determined by the voltage levels t the “count direction command “ input to the counter When this binary input which is also transmitted output S0(t) ,is at level V(H),the counter counts up, When it is at level V(L),the counter counts down The counter serves as accumulator D/ Converter: The digital output of the converter is converted to the analog quantized approximation by the D/ Converter 6/24/2020 Dr. -
Automotive Ethernet: the Definitive Guide
Automotive Ethernet: The Definitive Guide Charles M. Kozierok Colt Correa Robert B. Boatright Jeffrey Quesnelle Illustrated by Charles M. Kozierok, Betsy Timmer, Matt Holden, Colt Correa & Kyle Irving Cover by Betsy Timmer Designed by Matt Holden Automotive Ethernet: The Definitive Guide. Copyright © 2014 Intrepid Control Systems. All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and publisher. Printed in the USA. ISBN-10: 0-9905388-0-X ISBN-13: 978-0-9905388-0-6 For information on distribution or bulk sales, contact Intrepid Control Systems at (586) 731-7950. You can purchase the paperback or electronic version of this book at www.intrepidcs.com or on Amazon. We’d love to hear your feedback about this book—email us at [email protected]. Product and company names mentioned in this book may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the preparation of this book, neither the authors nor Intrepid Control Systems shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in this book. -
The Modeling and Quantification of Rhythmic to Non-Rhythmic
Graduate Institute of Biomedical Electronics and Bioinformatics College of Electrical Engineering and Computer Science National Taiwan University Doctoral Dissertation The Modeling and Quantification of Rhythmic to Non-rhythmic Phenomenon in Electrocardiography during Anesthesia Author : Yu-Ting Lin Advisor : Jenho Tsao, Ph.D. arXiv:1502.02764v1 [q-bio.NC] 10 Feb 2015 February 2015 \All composite things are not constant. Work hard to gain your own enlightenment." Siddh¯arthaGautama Abstract Variations of instantaneous heart rate appears regularly oscillatory in deeper levels of anesthesia and less regular in lighter levels of anesthesia. It is impossible to observe this \rhythmic-to-non-rhythmic" phenomenon from raw electrocardiography waveform in cur- rent standard anesthesia monitors. To explore the possible clinical value, I proposed the adaptive harmonic model, which fits the descriptive property in physiology, and provides adequate mathematical conditions for the quantification. Based on the adaptive har- monic model, multitaper Synchrosqueezing transform was used to provide time-varying power spectrum, which facilitates to compute the quantitative index: \Non-rhythmic- to-Rhythmic Ratio" index (NRR index). I then used a clinical database to analyze the behavior of NRR index and compare it with other standard indices of anesthetic depth. The positive statistical results suggest that NRR index provides addition clinical infor- mation regarding motor reaction, which aligns with current standard tools. Furthermore, the ability to indicates the noxious stimulation is an additional finding. Lastly, I have proposed an real-time interpolation scheme to contribute my study further as a clinical application. Keywords: instantaneous heart rate; rhythmic-to-non-rhythmic; Synchrosqueezing trans- form; time-frequency analysis; time-varying power spectrum; depth of anesthesia; electro- cardiography Acknowledgements First of all, I would like to thank Professor Jenho Tsao for all thoughtful lessons, discus- sions, and guidance he has provided me in the last five years. -
Time-Frequency Analysis of Time-Varying Signals and Non-Stationary Processes
Time-Frequency Analysis of Time-Varying Signals and Non-Stationary Processes An Introduction Maria Sandsten 2020 CENTRUM SCIENTIARUM MATHEMATICARUM Centre for Mathematical Sciences Contents 1 Introduction 3 1.1 Spectral analysis history . 3 1.2 A time-frequency motivation example . 5 2 The spectrogram 9 2.1 Spectrum analysis . 9 2.2 The uncertainty principle . 10 2.3 STFT and spectrogram . 12 2.4 Gabor expansion . 14 2.5 Wavelet transform and scalogram . 17 2.6 Other transforms . 19 3 The Wigner distribution 21 3.1 Wigner distribution and Wigner spectrum . 21 3.2 Properties of the Wigner distribution . 23 3.3 Some special signals. 24 3.4 Time-frequency concentration . 25 3.5 Cross-terms . 27 3.6 Discrete Wigner distribution . 29 4 The ambiguity function and other representations 35 4.1 The four time-frequency domains . 35 4.2 Ambiguity function . 39 4.3 Doppler-frequency distribution . 44 5 Ambiguity kernels and the quadratic class 45 5.1 Ambiguity kernel . 45 5.2 Properties of the ambiguity kernel . 46 5.3 The Choi-Williams distribution . 48 5.4 Separable kernels . 52 1 Maria Sandsten CONTENTS 5.5 The Rihaczek distribution . 54 5.6 Kernel interpretation of the spectrogram . 57 5.7 Multitaper time-frequency analysis . 58 6 Optimal resolution of time-frequency spectra 61 6.1 Concentration measures . 61 6.2 Instantaneous frequency . 63 6.3 The reassignment technique . 65 6.4 Scaled reassigned spectrogram . 69 6.5 Other modern techniques for optimal resolution . 72 7 Stochastic time-frequency analysis 75 7.1 Definitions of non-stationary processes . -
(12) United States Patent (10) Patent No.: US 8,862,870 B2 Reddy Et Al
USOO886287OB2 (12) United States Patent (10) Patent No.: US 8,862,870 B2 Reddy et al. (45) Date of Patent: Oct. 14, 2014 (54) SYSTEMS AND METHODS FOR USPC .......... 713/152–154, 168, 170; 709/223, 224, MULTI-LEVELTAGGING OF ENCRYPTED 709/225 ITEMIS FOR ADDITIONAL SECURITY AND See application file for complete search history. EFFICIENT ENCRYPTED ITEM (56) References Cited DETERMINATION U.S. PATENT DOCUMENTS (75) Inventors: Anoop Reddy, Santa Clara, CA (US); 5,867,494 A 2/1999 Krishnaswamy et al. Craig Anderson, Santa Clara, CA (US) 5,909,559 A 6, 1999 SO (73) Assignee: Citrix Systems, Inc., Fort Lauderdale, (Continued) FL (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 CN 1478348 A 2, 2004 U.S.C. 154(b) by 0 days. EP 1422.907 A2 5, 2004 (Continued) (21) Appl. No.: 13/337.735 OTHER PUBLICATIONS (22) Filed: Dec. 27, 2011 Australian Examination Report on 200728.1083 dated Nov.30, 2010. (65) Prior Publication Data (Continued) US 2012/O17387OA1 Jul. 5, 2012 Primary Examiner — Abu Sholeman (74) Attorney, Agent, or Firm — Foley & Lardner LLP: Related U.S. Application Data Christopher J. McKenna (60) Provisional application No. 61/428,138, filed on Dec. (57) ABSTRACT 29, 2010. The present disclosure is directed towards systems and meth ods for performing multi-level tagging of encrypted items for (51) Int. Cl. additional security and efficient encrypted item determina H04L 9M32 (2006.01) tion. A device intercepts a message from a server to a client, H04L 2L/00 (2006.01) parses the message and identifies a cookie. -
On the Use of Time–Frequency Reassignment in Additive Sound Modeling*
PAPERS On the Use of Time–Frequency Reassignment in Additive Sound Modeling* KELLY FITZ, AES Member AND LIPPOLD HAKEN, AES Member Department of Electrical Engineering and Computer Science, Washington University, Pulman, WA 99164 A method of reassignment in sound modeling to produce a sharper, more robust additive representation is introduced. The reassigned bandwidth-enhanced additive model follows ridges in a time–frequency analysis to construct partials having both sinusoidal and noise characteristics. This model yields greater resolution in time and frequency than is possible using conventional additive techniques, and better preserves the temporal envelope of transient signals, even in modified reconstruction, without introducing new component types or cumbersome phase interpolation algorithms. 0INTRODUCTION manipulations [11], [12]. Peeters and Rodet [3] have developed a hybrid analysis/synthesis system that eschews The method of reassignment has been used to sharpen high-level transient models and retains unabridged OLA spectrograms in order to make them more readable [1], [2], (overlap–add) frame data at transient positions. This to measure sinusoidality, and to ensure optimal window hybrid representation represents unmodified transients per- alignment in the analysis of musical signals [3]. We use fectly, but also sacrifices homogeneity. Quatieri et al. [13] time–frequency reassignment to improve our bandwidth- propose a method for preserving the temporal envelope of enhanced additive sound model. The bandwidth-enhanced short-duration complex acoustic signals using a homoge- additive representation is in some way similar to tradi- neous sinusoidal model, but it is inapplicable to sounds of tional sinusoidal models [4]–[6] in that a waveform is longer duration, or sounds having multiple transient events.