® Common Abbreviations

Total Page:16

File Type:pdf, Size:1020Kb

® Common Abbreviations ® Common Abbreviations AA auto-answer AAL A TM adaptation layer AAN autonomously attached network ABM asynchronous balanced mode AbMAN Aberdeen MAN ABNF augmented BNF AC access control ACAP application configuration access protocol ACK acknowledge ACL access control list ADC analogue-to-digital converter ADPCM adaptive delta pulse code modulation AES audio engineering society AFI authority and format identifier AGENTX agent extensibility protocol AGP accelerated graphics port AM amplitude modulation AMI alternative mark inversion ANSI American National Standard Institute APCM adaptive pulse code modulation API application program interface ARM asynchronous response mode ARP address resolution protocol ASCII American standard code for information exchange ASK amplitude-shift keying AT attention ATM asynchronous transfer mode AUI attachment unit interface BCC blind carbon copy BCD binary coded decimal BGP border gateway protocol BIOS basic input/output system B-ISDN broadband ISDN BMP bitmapped BNC British Naval Connector BaM beginning of message BOOTP bootstrap protocol BPDU bridge protocol data units bps bits per second BVCP Banyan Vines control protocol CAD computer-aided design 403 CAN concentrated area network CASE common applications service elements CATNIP common architecture for the Internet CC carbon copy CCITT International Telegraph and Telephone Consultative CD carrier detect CD compact disk CDE common desktop environment CDFS CD file system CD-R CD-recordable CD-ROM compact disk - read-only memory CF control field CGI common gateway interface CGM computer graphics metafile CHAP challenge handshake authentication protocol CHARGEN character generator protocol CIF common interface format CMC common mail call CMOS complementary MOS CN common name COM continuation of message CON-MD5 content-MD5 header field CPCS convergence protocol communications sub layer CPI common part indicator CPSR computer professionals for social responsibility CPU central processing unit CRC cyclic redundancy check CRLF carriage return, line feed CRT cathode ray tube CSDN circuit-switched data network CSMA carrier sense multiple access CSMA/CA CSMA with collision avoidance CSMA/CD CSMA with collision detection CS-MUX circuit-switched multiplexer CSPDN circuit-switched public data network CTS clear to send DA destination address DAA digest access authentication DAC digital-to-analogue converter DAC dual attachment concentrator DARPA Defense Advanced Research Projects Agency DAS dual attachment station DASS distributed authentication security DAT digital audio tape DAYTIME daytime protocol dB decibel DBF NetBEUI frame 404 Mastering Networks DC direct current DCC digital compact cassette DCD data carrier detect DCE data circuit-terminating equipment DC-MIB dial control MIB OCT discrete cosine transform DO double density DOE dynamic data exchange DENI Department of Education for Northern Ireland DES data encryption standard DHCP dynamic host configuration program DIB device-independent bitmaps DIB directory information base DISC disconnect DISCARD discard protocol DLC data link control DLL dynamic link library OM disconnect mode DMA direct memory access DNS domain name server DNS-SEC domain name system security extensions DOS disk operating system DPCM differential PCM DPSK differential phase-shift keying DQDB distributed queue dual bus DR dynamic range DRAM dynamic RAM DSN delivery status notifications DSP domain specific part DSS digital signature standard DTE data terminal equipment DTR data terminal ready EASE embedded advanced sampling environment EaStMAN Edinburgh/Stirling MAN EBCDIC extended binary coded decimal interchange code EBU European broadcast union ECHO echo protocol ECP extended communications port EEPROM electrically erasable PROM EF empty flag EFF electronic frontier foundation EFM eight-to- fourteen modulation EGP exterior gateway protocol EIA Electrical Industries Association EISA extended international standard interface EMF enhanced metafile ENQ inquiry Abbreviations 405 EOM end of message EOT end of transmission EPP enhanced parallel port EPROM erasable PROM EPS encapsulated postscript ESP IP encapsulating security payload ETB end of transmitted block ETHER-MIB ethernet MIB ETX end of text FAT file allocation table FA TMAN Fife and Tayside MAN FAX facsimile FC frame control FCS frame check sequence FDDI fiber distributed data interface FDDI-MIB FDDI management information base FDM frequency division multiplexing FDX full duplex FEC forward error correction FF full flag FFIF file format for internet fax FIFO first in, first out FINGER finger protocol FM frequency modulation FRMR frame reject FS frame status FSK frequency-shift keying FTP file transfer protocol FTP file transfer protocol FYI for your information GFI group format identifier GGP gateway-gateway protocol GIF graphics interface format GQOS guaranteed quality of service GSSAP generic security service application GUI graphical user interface HAL hardware abstraction layer HD high density HDB3 high-density bipolar code no. 3 HDLC high-level data link control HDTV high-definition television HDX half duplex HEFCE Higher Education Funding Councils of England HEFCW Higher Education Funding Councils of Wales HF high frequency HMUX hybrid multiplexer HPFS high performance file system 406 Mastering Networks HTML hypertext mark-up language HTTP hypertext transfer protocol Hz Hertz 1/0 input/output IA5 international alphabet no. 5 lAB internet advisory board lAP internet access provider IARP inverse ARP IBM International Business Machines ICMP internet control message protocol ICP internet connectivity provider IDEA international data encryption algorithm IDENT identification Protocol IDI initial domain identifier IDP initial domain part IDPR inter-domain policy routing IEEE Institute of Electrical and Electronic Engineers IEFF internet engineering task force IFS installable file system IGMP internet group management protocol IGMP internet group multicast protocol IGP interior gateway protocol ILD injector laser diode IMAC isochronous MAC IMAP internet message access protocol lOS input/output supervisor IP internet protocol IP-ARC IP over ARCNET networks IP-ARP A IP over ARPANET IP-A TM IP over ATM IP-CMPRS IP with compressed headers IP-DC IP over DC Networks IP-E IP over ethernet networks IP-EE IP over experimental ethernet networks IP-FDOI IP over FDOI networks IP-FR IP over frame relay IP-HC IP over hyperchannel IP-HIPPI IP over HIPPI IP-IEEE IP over IEEE 802 IP-IPX IP over IPX networks IP-MTU path MTU discovery IP-NETBIOS IP over NETBIOS IPNG IP next generation IPP internet presence provider IP-SLIP IP over serial lines IP-SMDS IP datagrams over SMDS IP-TR-MC IP Multicast over token-ring LANs Abbreviations 407 IPV6-FDDI IPv6 over FDDI IPv6-Jumbo IPv6 Jumbograms IPV6-PPP IPv6 over PPP IP-WB IP over wide band network IPX internet packet exchange IP-X.25 IP over ISDN IPX-IP IPX over IP IRQ interrupt request ISA international standard interface ISDN integrated services digital network IS-IS immediate system to intermediate system ISO International Standards Organization ISP internet service provider ITOT ISO transport service on top of TCP ITU International Telecommunications Union JANET joint academic network JFIF jpeg file interchange format JISC Joint Information Systems Committee JPEG Joint Photographic Expert Group KDC key distribution centre KERBEROS Kerberos network authentication service LAN local area network LAPB link access procedure balanced LAPD link access procedure LCN logical channel number LDAP-URL LDAP URL Format LD-CELP low-delay code excited linear prediction LED light emitting diode LGN logical group number LIP large IPX packets LLC logical link control LRC longitudinal redundancy check LSL link support level LSP link state protocol LSRR loose source and record route LZ Lempel-Ziv LZW LZ-Welsh MAC media access control MAIL-MIS mail monitoring MIS MAN metropolitan area network MAP messaging API MAU multi-station access unit MD message digest MDCT modified discrete cosine transform MDI media dependent interface MHS message handling service MIS-II management information base-II 408 Mastering Networks MIC media interface connector MIME multi-purpose internet mail extension MUD multi-link interface driver MODEM modulation/demodulator MaS metal oxide semiconductor MPEO motion picture experts group MPI multi-precision integer MSL maximum segment lifetime MTP multicast transport protocol NAK negative acknowledge NCP netware control protocols NCSA National Center for Supercomputer Applications NDIS network device interface standard NDS Novell Directory Services NETBEUI NetBIOS extended user interface NETFAX network file format for the exchange of images NHRP next hop resolution protocol NIC network interface card NICNAME whois protocol NIS network information system NLSP netware link-state routing protocol NNTP network news transfer protocol NRZI non-return to zero with inversion NSAP network service access point NSCA National Center for Supercomputing Applications NSM-MIB network services monitoring MIB NSS named service server NTE network terminal equipment NTFS NT file system NTP network time protocol NTSC National Television Standards Committee ODI open data-link interface OH off-hook ONE-PASS one-time password system OSI open systems interconnection OSI-UDP OSI TS on UDP OSPF open shortest path first OUI originators unique identifier PA point of attachment PAL phase alternation line PAP password authentication protocol PC personal computer PCM pulse code
Recommended publications
  • Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks
    ICST Transactions on Mobile Communications and Applications Research Article Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks Jun Li ∗, Mylene` Toulgoat, Yifeng Zhou, and Louise Lamont Communications Research Centre Canada, 3701 Carling Avenue, Ottawa, ON. K2H 8S2 Canada Abstract With recent developments in terrestrial wireless networks and advances in acoustic communications, multichannel technologies have been proposed to be used in underwater networks to increase data transmission rate over bandwidth-limited underwater channels. Due to high bit error rates in underwater networks, an efficient error control technique is critical in the logical link control (LLC) sublayer to establish reliable data communications over intrinsically unreliable underwater channels. In this paper, we propose a novel protocol stack architecture featuring cross-layer design of LLC sublayer and more efficient packet- to-channel scheduling for multichannel underwater sensor networks. In the proposed stack architecture, a selective-repeat automatic repeat request (SR-ARQ) based error control protocol is combined with a dynamic channel scheduling policy at the LLC sublayer. The dynamic channel scheduling policy uses the channel state information provided via cross-layer design. It is demonstrated that the proposed protocol stack architecture leads to more efficient transmission of multiple packets over parallel channels. Simulation studies are conducted to evaluate the packet delay performance of the proposed cross-layer protocol stack architecture with two different scheduling policies: the proposed dynamic channel scheduling and a static channel scheduling. Simulation results show that the dynamic channel scheduling used in the cross-layer protocol stack outperforms the static channel scheduling. It is observed that, when the dynamic channel scheduling is used, the number of parallel channels has only an insignificant impact on the average packet delay.
    [Show full text]
  • DELTA MODULATION CODEC Meets Mil-Std-188-113 Features
    DATA BULLETIN DELTA MODULATION CODEC MX629 meets Mil-Std-188-113 Features Applications Meets Mil-Std-188-113 Military Communications Single Chip Full Duplex CVSD CODEC Multiplexers, Switches, & Phones On-chip Input and Output Filters Programmable Sampling Clocks 3- or 4-bit Companding Algorithm Powersave Capabilities Low Power, 5.0V Operation ➤ ➤ ➤ ➤➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤➤➤ ➤ The MX629 is a Continuously Variable Slope Delta Modulation (CVSD) Codec designed for use in military communications systems. This device is suitable for applications in military delta multiplexers, switches, and phones. The MX629 is designed to meet Mil-Std-188-113 specifications. Encoder input and decoder output filters are incorporated on-chip. Sampling clock rates can be programmed to 16, 32, or 64kbps from an internal clock generator or externally injected in the 8 to 64kbps range. The sampling clock frequency is output for the synchronization of external circuits. The encoder has an enable function for use in multiplexer applications. Encoder and Decoder forced idle capabilities are provided forcing 10101010…pattern in encode and a VDD/2 bias in decode. The companding circuit may be operated with an externally selectable 3- or 4-bit algorithm. The device may be placed in standby mode by selecting Powersave. A reference 1.024MHz oscillator uses an external clock or crystal. The MX629 operates with a supply voltage of 5.0V and is available in the following packages: 24-pin PLCC (MX629LH), 22-pin CERDIP (MX629J), and 22-pin PDIP (MX629P). 1998 MX-COM, Inc. www.mxcom.com Tel: 800 638 5577 336 744 5050 Fax: 336 744 5054 Doc. # 20480190.001 4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA All Trademarks and service marks are held by their respective companies.
    [Show full text]
  • List of TCP and UDP Port Numbers from Wikipedia, the Free Encyclopedia
    List of TCP and UDP port numbers From Wikipedia, the free encyclopedia This is a list of Internet socket port numbers used by protocols of the Transport Layer of the Internet Protocol Suite for the establishment of host-to-host communications. Originally, these ports number were used by the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP), but are also used for the Stream Control Transmission Protocol (SCTP), and the Datagram Congestion Control Protocol (DCCP). SCTP and DCCP services usually use a port number that matches the service of the corresponding TCP or UDP implementation if they exist. The Internet Assigned Numbers Authority (IANA) is responsible for maintaining the official assignments of port numbers for specific uses.[1] However, many unofficial uses of both well-known and registered port numbers occur in practice. Contents 1 Table legend 2 Well-known ports 3 Registered ports 4 Dynamic, private or ephemeral ports 5 See also 6 References 7 External links Table legend Use Description Color Official Port is registered with IANA for the application white Unofficial Port is not registered with IANA for the application blue Multiple use Multiple applications are known to use this port. yellow Well-known ports The port numbers in the range from 0 to 1023 are the well-known ports. They are used by system processes that provide widely used types of network services. On Unix-like operating systems, a process must execute with superuser privileges to be able to bind a network socket to an IP address using one of the well-known ports.
    [Show full text]
  • Medium Access Control Layer
    Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay (historical) ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus (historical) ● Network Infrastructure ● Token Ring (historical) ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● Protocols used to determine who gets next access to the channel Data Link Layer ● Medium Access Control (MAC) sublayer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Range ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access ..
    [Show full text]
  • List of TCP and UDP Port Numbers - Wikipedia, the Free Encyclopedia 6/12/11 3:20 PM
    List of TCP and UDP port numbers - Wikipedia, the free encyclopedia 6/12/11 3:20 PM List of TCP and UDP port numbers From Wikipedia, the free encyclopedia (Redirected from TCP and UDP port numbers) This is a list of Internet socket port numbers used by protocols of the Transport Layer of the Internet Protocol Suite for the establishment of host-to-host communications. Originally, these port numbers were used by the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP), but are used also for the Stream Control Transmission Protocol (SCTP), and the Datagram Congestion Control Protocol (DCCP). SCTP and DCCP services usually use a port number that matches the service of the corresponding TCP or UDP implementation if they exist. The Internet Assigned Numbers Authority (IANA) is responsible for maintaining the official assignments of port numbers for specific uses.[1] However, many unofficial uses of both well-known and registered port numbers occur in practice. Contents 1 Table legend 2 Well-known ports: 0–1023 3 Registered ports: 1024–49151 4 Dynamic, private or ephemeral ports: 49152–65535 5 See also 6 References 7 External links Table legend Color coding of table entries Official Port/application combination is registered with IANA Unofficial Port/application combination is not registered with IANA Conflict Port is in use for multiple applications (may be official or unofficial) Well-known ports: 0–1023 The port numbers in the range from 0 to 1023 are the well-known ports. They are used by system processes that provide widely-used types of network services.
    [Show full text]
  • The Mizoram Gazette EXTRA ORDINARY Published by Authority RNI No
    - 1 - Ex-59/2012 The Mizoram Gazette EXTRA ORDINARY Published by Authority RNI No. 27009/1973 Postal Regn. No. NE-313(MZ) 2006-2008 Re. 1/- per page VOL - XLI Aizawl, Thursday 9.2.2012 Magha 20, S.E. 1933, Issue No. 59 NOTIFICATION No.A.45011/1/2010-P&AR(GSW), the 3rd February, 20122012. In exercise of the powers conferred by the proviso to Article 309 of the Constitution of India, the Governor of Mizoram is pleased to make the following Regulations relating to the Mizoram Civil Services (Combined Competitive) Examinations, namely:- 1. SHORT TITLE AND COMMENCEMENT: (i) These Regulations may be called the Mizoram Civil Services (Combined Competitive Examination) Regulations, 2011. (ii) They shall come into force from the date of their publication in the Mizoram Gazette. (iii) These Regulations shall cover recruitment examination to the Junior Grade of the Mizoram Civil Service (MCS), the Mizoram Police Service (MPS), the Mizoram Finance & Accounts Service (MF&AS) and the Mizoram Information Service (MIS). 2. DEFINITIONS: In these regulations, unless the context otherwise requires:- (i) ‘Constitution’ means the Constitution of India; (ii) ‘Commission’ means the Mizoram Public Service Commission; (iii) ‘Examination’ means a Combined Competitive Examination for recruitment to the Junior Grade of MCS, MPS, MFAS and MIS; (iv) ‘Government’ means the State Government of Mizoram; (v) ‘Governor’ means the Governor of Mizoram; (vi) ‘List’ means the list of successful candidates in the written examination and selected candidates prepared by the Commission
    [Show full text]
  • Digital Communications GATE Online Coaching Classes
    GATE Online Coaching Classes Digital Communications Online Class-4 By Dr.B.Leela Kumari Assistant Professor, Department of Electronics and Communications Engineering University college of Engineering Kakinada Jawaharlal Nehru Technological University Kakinada 6/24/2020 Dr. B. Leela Kumari UCEK JNTUK Kakinada 1 Session -4 Baseband Transmission • Delta Modulation • advantages and Draw Backs • SNR of DM • Adaptive Delta Modulation • Comparisons • Objective Type questions and Illustrative Problems 6/24/2020 Dr. B. Leela Kumari UCEK JNTUK Kakinada 2 Delta Modulation • By the DM technique an analog signal can be encoded in to bits .hence in one sense a DM is also PCM • IN DM difference signal is encoded into just a single bit ,hence in one sense a DM is also DPCM • A single bit produces just two possibilities that is used to increase or decrease the estimate 6/24/2020 Dr. B. Leela Kumari UCEK JNTUK Kakinada 3 Block diagram of DM 6/24/2020 Dr. B. Leela Kumari UCEK JNTUK Kakinada 4 The DM consists of Comparator Sample and Hold circuit Up-Down Counter D/A Converter 6/24/2020 Dr. B. Leela Kumari UCEK JNTUK Kakinada 5 Comparator makes a comparison between the input base band signal m(t) and its quantized approximation Δ(t) =V(H) =V(L) Up-Down counter increments or decrements its count by one at each active edge of the clock waveform The count direction(incrementing or decrementing ) is determined by the voltage levels t the “count direction command “ input to the counter When this binary input which is also transmitted output S0(t) ,is at level V(H),the counter counts up, When it is at level V(L),the counter counts down The counter serves as accumulator D/ Converter: The digital output of the converter is converted to the analog quantized approximation by the D/ Converter 6/24/2020 Dr.
    [Show full text]
  • Automotive Ethernet: the Definitive Guide
    Automotive Ethernet: The Definitive Guide Charles M. Kozierok Colt Correa Robert B. Boatright Jeffrey Quesnelle Illustrated by Charles M. Kozierok, Betsy Timmer, Matt Holden, Colt Correa & Kyle Irving Cover by Betsy Timmer Designed by Matt Holden Automotive Ethernet: The Definitive Guide. Copyright © 2014 Intrepid Control Systems. All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and publisher. Printed in the USA. ISBN-10: 0-9905388-0-X ISBN-13: 978-0-9905388-0-6 For information on distribution or bulk sales, contact Intrepid Control Systems at (586) 731-7950. You can purchase the paperback or electronic version of this book at www.intrepidcs.com or on Amazon. We’d love to hear your feedback about this book—email us at [email protected]. Product and company names mentioned in this book may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the preparation of this book, neither the authors nor Intrepid Control Systems shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in this book.
    [Show full text]
  • The Modeling and Quantification of Rhythmic to Non-Rhythmic
    Graduate Institute of Biomedical Electronics and Bioinformatics College of Electrical Engineering and Computer Science National Taiwan University Doctoral Dissertation The Modeling and Quantification of Rhythmic to Non-rhythmic Phenomenon in Electrocardiography during Anesthesia Author : Yu-Ting Lin Advisor : Jenho Tsao, Ph.D. arXiv:1502.02764v1 [q-bio.NC] 10 Feb 2015 February 2015 \All composite things are not constant. Work hard to gain your own enlightenment." Siddh¯arthaGautama Abstract Variations of instantaneous heart rate appears regularly oscillatory in deeper levels of anesthesia and less regular in lighter levels of anesthesia. It is impossible to observe this \rhythmic-to-non-rhythmic" phenomenon from raw electrocardiography waveform in cur- rent standard anesthesia monitors. To explore the possible clinical value, I proposed the adaptive harmonic model, which fits the descriptive property in physiology, and provides adequate mathematical conditions for the quantification. Based on the adaptive har- monic model, multitaper Synchrosqueezing transform was used to provide time-varying power spectrum, which facilitates to compute the quantitative index: \Non-rhythmic- to-Rhythmic Ratio" index (NRR index). I then used a clinical database to analyze the behavior of NRR index and compare it with other standard indices of anesthetic depth. The positive statistical results suggest that NRR index provides addition clinical infor- mation regarding motor reaction, which aligns with current standard tools. Furthermore, the ability to indicates the noxious stimulation is an additional finding. Lastly, I have proposed an real-time interpolation scheme to contribute my study further as a clinical application. Keywords: instantaneous heart rate; rhythmic-to-non-rhythmic; Synchrosqueezing trans- form; time-frequency analysis; time-varying power spectrum; depth of anesthesia; electro- cardiography Acknowledgements First of all, I would like to thank Professor Jenho Tsao for all thoughtful lessons, discus- sions, and guidance he has provided me in the last five years.
    [Show full text]
  • Time-Frequency Analysis of Time-Varying Signals and Non-Stationary Processes
    Time-Frequency Analysis of Time-Varying Signals and Non-Stationary Processes An Introduction Maria Sandsten 2020 CENTRUM SCIENTIARUM MATHEMATICARUM Centre for Mathematical Sciences Contents 1 Introduction 3 1.1 Spectral analysis history . 3 1.2 A time-frequency motivation example . 5 2 The spectrogram 9 2.1 Spectrum analysis . 9 2.2 The uncertainty principle . 10 2.3 STFT and spectrogram . 12 2.4 Gabor expansion . 14 2.5 Wavelet transform and scalogram . 17 2.6 Other transforms . 19 3 The Wigner distribution 21 3.1 Wigner distribution and Wigner spectrum . 21 3.2 Properties of the Wigner distribution . 23 3.3 Some special signals. 24 3.4 Time-frequency concentration . 25 3.5 Cross-terms . 27 3.6 Discrete Wigner distribution . 29 4 The ambiguity function and other representations 35 4.1 The four time-frequency domains . 35 4.2 Ambiguity function . 39 4.3 Doppler-frequency distribution . 44 5 Ambiguity kernels and the quadratic class 45 5.1 Ambiguity kernel . 45 5.2 Properties of the ambiguity kernel . 46 5.3 The Choi-Williams distribution . 48 5.4 Separable kernels . 52 1 Maria Sandsten CONTENTS 5.5 The Rihaczek distribution . 54 5.6 Kernel interpretation of the spectrogram . 57 5.7 Multitaper time-frequency analysis . 58 6 Optimal resolution of time-frequency spectra 61 6.1 Concentration measures . 61 6.2 Instantaneous frequency . 63 6.3 The reassignment technique . 65 6.4 Scaled reassigned spectrogram . 69 6.5 Other modern techniques for optimal resolution . 72 7 Stochastic time-frequency analysis 75 7.1 Definitions of non-stationary processes .
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,862,870 B2 Reddy Et Al
    USOO886287OB2 (12) United States Patent (10) Patent No.: US 8,862,870 B2 Reddy et al. (45) Date of Patent: Oct. 14, 2014 (54) SYSTEMS AND METHODS FOR USPC .......... 713/152–154, 168, 170; 709/223, 224, MULTI-LEVELTAGGING OF ENCRYPTED 709/225 ITEMIS FOR ADDITIONAL SECURITY AND See application file for complete search history. EFFICIENT ENCRYPTED ITEM (56) References Cited DETERMINATION U.S. PATENT DOCUMENTS (75) Inventors: Anoop Reddy, Santa Clara, CA (US); 5,867,494 A 2/1999 Krishnaswamy et al. Craig Anderson, Santa Clara, CA (US) 5,909,559 A 6, 1999 SO (73) Assignee: Citrix Systems, Inc., Fort Lauderdale, (Continued) FL (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 CN 1478348 A 2, 2004 U.S.C. 154(b) by 0 days. EP 1422.907 A2 5, 2004 (Continued) (21) Appl. No.: 13/337.735 OTHER PUBLICATIONS (22) Filed: Dec. 27, 2011 Australian Examination Report on 200728.1083 dated Nov.30, 2010. (65) Prior Publication Data (Continued) US 2012/O17387OA1 Jul. 5, 2012 Primary Examiner — Abu Sholeman (74) Attorney, Agent, or Firm — Foley & Lardner LLP: Related U.S. Application Data Christopher J. McKenna (60) Provisional application No. 61/428,138, filed on Dec. (57) ABSTRACT 29, 2010. The present disclosure is directed towards systems and meth ods for performing multi-level tagging of encrypted items for (51) Int. Cl. additional security and efficient encrypted item determina H04L 9M32 (2006.01) tion. A device intercepts a message from a server to a client, H04L 2L/00 (2006.01) parses the message and identifies a cookie.
    [Show full text]
  • On the Use of Time–Frequency Reassignment in Additive Sound Modeling*
    PAPERS On the Use of Time–Frequency Reassignment in Additive Sound Modeling* KELLY FITZ, AES Member AND LIPPOLD HAKEN, AES Member Department of Electrical Engineering and Computer Science, Washington University, Pulman, WA 99164 A method of reassignment in sound modeling to produce a sharper, more robust additive representation is introduced. The reassigned bandwidth-enhanced additive model follows ridges in a time–frequency analysis to construct partials having both sinusoidal and noise characteristics. This model yields greater resolution in time and frequency than is possible using conventional additive techniques, and better preserves the temporal envelope of transient signals, even in modified reconstruction, without introducing new component types or cumbersome phase interpolation algorithms. 0INTRODUCTION manipulations [11], [12]. Peeters and Rodet [3] have developed a hybrid analysis/synthesis system that eschews The method of reassignment has been used to sharpen high-level transient models and retains unabridged OLA spectrograms in order to make them more readable [1], [2], (overlap–add) frame data at transient positions. This to measure sinusoidality, and to ensure optimal window hybrid representation represents unmodified transients per- alignment in the analysis of musical signals [3]. We use fectly, but also sacrifices homogeneity. Quatieri et al. [13] time–frequency reassignment to improve our bandwidth- propose a method for preserving the temporal envelope of enhanced additive sound model. The bandwidth-enhanced short-duration complex acoustic signals using a homoge- additive representation is in some way similar to tradi- neous sinusoidal model, but it is inapplicable to sounds of tional sinusoidal models [4]–[6] in that a waveform is longer duration, or sounds having multiple transient events.
    [Show full text]