On the Use of Time–Frequency Reassignment in Additive Sound Modeling*

Total Page:16

File Type:pdf, Size:1020Kb

On the Use of Time–Frequency Reassignment in Additive Sound Modeling* PAPERS On the Use of Time–Frequency Reassignment in Additive Sound Modeling* KELLY FITZ, AES Member AND LIPPOLD HAKEN, AES Member Department of Electrical Engineering and Computer Science, Washington University, Pulman, WA 99164 A method of reassignment in sound modeling to produce a sharper, more robust additive representation is introduced. The reassigned bandwidth-enhanced additive model follows ridges in a time–frequency analysis to construct partials having both sinusoidal and noise characteristics. This model yields greater resolution in time and frequency than is possible using conventional additive techniques, and better preserves the temporal envelope of transient signals, even in modified reconstruction, without introducing new component types or cumbersome phase interpolation algorithms. 0INTRODUCTION manipulations [11], [12]. Peeters and Rodet [3] have developed a hybrid analysis/synthesis system that eschews The method of reassignment has been used to sharpen high-level transient models and retains unabridged OLA spectrograms in order to make them more readable [1], [2], (overlap–add) frame data at transient positions. This to measure sinusoidality, and to ensure optimal window hybrid representation represents unmodified transients per- alignment in the analysis of musical signals [3]. We use fectly, but also sacrifices homogeneity. Quatieri et al. [13] time–frequency reassignment to improve our bandwidth- propose a method for preserving the temporal envelope of enhanced additive sound model. The bandwidth-enhanced short-duration complex acoustic signals using a homoge- additive representation is in some way similar to tradi- neous sinusoidal model, but it is inapplicable to sounds of tional sinusoidal models [4]–[6] in that a waveform is longer duration, or sounds having multiple transient events. modeled as a collection of components, called partials, We use the method of reassignment to improve the time having time-varying amplitude and frequency envelopes. and frequency estimates used to define our partial param- Our partials are not strictly sinusoidal, however. We eter envelopes, thereby enhancing the time –frequency employ a technique of bandwidth enhancement to com- resolution of our representation, and improving its phase bine sinusoidal energy and noise energy into a single par- accuracy. The combination of time–frequency reassign- tial having time-varying amplitude, frequency, and band- ment and bandwidth enhancement yields a homogeneous width parameters [7], [8]. model (that is, a model having a single component type) Additive sound models applicable to polyphonic and that is capable of representing at high fidelity a wide vari- nonharmonic sounds employ long analysis windows, which ety of sounds, including nonharmonic, polyphonic, impul- can compromise the time resolution and phase accuracy sive, and noisy sounds. The reassigned bandwidth- needed to preserve the temporal shape of transients. enhanced sound model is robust under transformation, and Various methods have been proposed for representing the fidelity of the representation is preserved even under transient waveforms in additive sound models. Verma and time dilation and other model-domain modifications. The Meng [9] introduce new component types specifically for homogeneity and robustness of the reassigned bandwidth- modeling transients, but this method sacrifices the homo- enhanced model make it particularly well suited for such geneity of the model. A homogeneous model, that is, a manipulations as cross synthesis and sound morphing. model having a single component type, such as the break- Reassigned bandwidth-enhanced modeling and render- point parameter envelopes in our reassigned bandwidth- ing and many kinds of manipulations, including morph- enhanced additive model [10], is critical for many kinds of ing, have been implemented in the open-source Cϩϩ class library Loris [14], and a stream-based, real-time * Manuscript received 2001 December 20; revised 2002 July implementation of bandwidth-enhanced synthesis is avail- 23 and 2002 September 11. able in the Symbolic Sound Kyma environment [15]. J. Audio Eng. Soc., Vol. 50, No. 11, 2002 November 879 FITZ AND HAKEN PAPERS 1TIME–FREQUENCY REASSIGNMENT cantly to the reconstruction, and the maximum contribu- tion (center of gravity) occurs at the point where the phase The discrete short-time Fourier transform is often used is changing most slowly with respect to time and frequency. as the basis for a time–frequency representation of time- In the vicinity of t ϭ τ (that is, for an analysis window varying signals, and is defined as a function of time index centered at time t ϭ τ), the point of maximum spectral n and frequency index k as energy contribution has time–frequency coordinates that satisfy the stationarity conditions 3 RϪϪV S j2π ^lnkh W Xkn ^^^hhhϭϪ hlnxlexp (1) ! S N W 2 lϭϪ3 8φτω^^, hhϩϪϭ ωt τB 0 (3) T X 2ω NϪ1 2 2 ϩϪϭ Ϫj2πlk 8φτω^^, hh ωt τB 0 (4) ϭϩ!hlxn^^hh l exp e o (2) 2τ NϪ1 N lϭϪ where ( , ) is the continuous short-time phase spec- 2 φ τ ω trum and ω(t Ϫ τ) is the phase travel due to periodic where h(n) is a sliding window function equal to 0 for n < oscillation [18]. The stationarity conditions are satisfied Ϫ Ϫ Ϫ (N 1)/2 and n > (N 1)/2 (for N odd), so that Xn(k) at the coordinates is the N-point discrete Fourier transform of a short-time 2φτω^ , h waveform centered at time n. t ϭϪτ (5) Short-time Fourier transform data are sampled at a rate 2ω equal to the analysis hop size, so data in derivative 2φτω^ , h time–frequency representations are reported on a regular ωt ϭ (6) 2τ temporal grid, corresponding to the centers of the short- time analysis windows. The sampling of these so-called representing group delay and instantaneous frequency, frame-based representations can be made as dense as respectively. desired by an appropriate choice of hop size. However, Discretizing Eqs. (5) and (6) to compute the time and temporal smearing due to long analysis windows needed frequency coordinates numerically is difficult and unreli- to achieve high-frequency resolution cannot be relieved by able, because the partial derivatives must be approxi- denser sampling. mated. These formulas can be rewritten in the form of Though the short-time phase spectrum is known to con- ratios of discrete Fourier transforms [1]. Time and fre- tain important temporal information, typically only the quency coordinates can be computed using two additional short-time magnitude spectrum is considered in the short-time Fourier transforms, one employing a time- time–frequency representation. The short-time phase weighted window function and one a frequency-weighted spectrum is sometimes used to improve the frequency esti- window function. mates in the time–frequency representation of quasi- Since time estimates correspond to the temporal center harmonic sounds [16], but it is often omitted entirely, or of the short-time analysis window, the time-weighted win- used only in unmodified reconstruction, as in the basic dow is computed by scaling the analysis window function Ϫ Ϫ Ϫ sinusoidal model, described by McAulay and Quatieri [4]. by a time ramp from (N 1)/2 to (N 1)/2 for a win- The so-called method of reassignment computes sharp- dow of length N. The frequency-weighted window is ened time and frequency estimates for each spectral com- computed by wrapping the Fourier transform of the analy- Ϫ ponent from partial derivatives of the short-time phase sis window to the frequency range [ π, π], scaling the Ϫ Ϫ Ϫ spectrum. Instead of locating time–frequency compo- transform by a frequency ramp from (N 1)/2 to (N 1)/2, and inverting the scaled transform to obtain a (real) nents at the geometrical center of the analysis window (tn, frequency-scaled window. Using these weighted win- ωk), as in traditional short-time spectral analysis, the com- ponents are reassigned to the center of gravity of their dows, the method of reassignment computes corrections complex spectral energy distribution, computed from the to the time and frequency estimates in fractional sample Ϫ Ϫ Ϫ short-time phase spectrum according to the principle of units between (N 1)/2 to (N 1)/2. The three analy- stationary phase [17, ch. 7.3]. This method was first devel- sis windows employed in reassigned short-time Fourier oped in the context of the spectrogram and called the mod- analysis are shown in Fig. 1. ˆ ified moving window method [18], but it has since been The reassigned time tk,n for the kth spectral component applied to a variety of time–frequency and time-scale from the short-time analysis window centered at time n (in transforms [1]. samples, assuming odd-length analysis windows) is [1] The principle of stationary phase states that the variation R V of the Fourier phase spectrum not attributable to periodic S * W S XkXktn; ^^hhn W tntkn, ϭϪ0 (7) oscillation is slow with respect to frequency in certain S 2 W spectral regions, and in surrounding regions the variation is S Xkn ^ h W relatively rapid. In Fourier reconstruction, positive and T X negative contributions to the waveform cancel in frequency where Xt;n(k) denotes the short-time transform computed regions of rapid phase variation. Only regions of slow using the time-weighted window function and 0 [·] phase variation (stationary phase) will contribute signifi- denotes the real part of the bracketed ratio. 880 J. Audio Eng. Soc., Vol. 50, No. 11, 2002 November PAPERS TIME-FREQUENCY REASSIGNMENT IN SOUND MODELING The corrected frequency ωˆ k,n(k) corresponding to the spectrum, which is very difficult to interpret. The method same component is [1] reassignment is a technique for extracting information R V from the phase spectrum. S * W S XkXkfn; ^^hhn W ωt kn, ϭϩk 1 (8) S 2 W 2 REASSIGNED BANDWIDTH-ENHANCED S Xkn ^ h W ANALYSIS T X The reassigned bandwidth-enhanced additive model where Xf ;n(k) denotes the short-time transform computed using the frequency-weighted window function and 1 [·] [10] employs time–frequency reassignment to improve the time and frequency estimates used to define partial denotes the imaginary part of the bracketed ratio.
Recommended publications
  • Enhance Your DSP Course with These Interesting Projects
    AC 2012-3836: ENHANCE YOUR DSP COURSE WITH THESE INTER- ESTING PROJECTS Dr. Joseph P. Hoffbeck, University of Portland Joseph P. Hoffbeck is an Associate Professor of electrical engineering at the University of Portland in Portland, Ore. He has a Ph.D. from Purdue University, West Lafayette, Ind. He previously worked with digital cell phone systems at Lucent Technologies (formerly AT&T Bell Labs) in Whippany, N.J. His technical interests include communication systems, digital signal processing, and remote sensing. Page 25.566.1 Page c American Society for Engineering Education, 2012 Enhance your DSP Course with these Interesting Projects Abstract Students are often more interested learning technical material if they can see useful applications for it, and in digital signal processing (DSP) it is possible to develop homework assignments, projects, or lab exercises to show how the techniques can be used in realistic situations. This paper presents six simple, yet interesting projects that are used in the author’s undergraduate digital signal processing course with the objective of motivating the students to learn how to use the Fast Fourier Transform (FFT) and how to design digital filters. Four of the projects are based on the FFT, including a simple voice recognition algorithm that determines if an audio recording contains “yes” or “no”, a program to decode dual-tone multi-frequency (DTMF) signals, a project to determine which note is played by a musical instrument and if it is sharp or flat, and a project to check the claim that cars honk in the tone of F. Two of the projects involve designing filters to eliminate noise from audio recordings, including designing a lowpass filter to remove a truck backup beeper from a recording of an owl hooting and designing a highpass filter to remove jet engine noise from a recording of birds chirping.
    [Show full text]
  • 4 – Synthesis and Analysis of Complex Waves; Fourier Spectra
    4 – Synthesis and Analysis of Complex Waves; Fourier spectra Complex waves Many physical systems (such as music instruments) allow existence of a particular set of standing waves with the frequency spectrum consisting of the fundamental (minimal allowed) frequency f1 and the overtones or harmonics fn that are multiples of f1, that is, fn = n f1, n=2,3,…The amplitudes of the harmonics An depend on how exactly the system is excited (plucking a guitar string at the middle or near an end). The sound emitted by the system and registered by our ears is thus a complex wave (or, more precisely, a complex oscillation ), or just signal, that has the general form nmax = π +ϕ = 1 W (t) ∑ An sin( 2 ntf n ), periodic with period T n=1 f1 Plots of W(t) that can look complicated are called wave forms . The maximal number of harmonics nmax is actually infinite but we can take a finite number of harmonics to synthesize a complex wave. ϕ The phases n influence the wave form a lot, visually, but the human ear is insensitive to them (the psychoacoustical Ohm‘s law). What the ear hears is the fundamental frequency (even if it is missing in the wave form, A1=0 !) and the amplitudes An that determine the sound quality or timbre . 1 Examples of synthesis of complex waves 1 1. Triangular wave: A = for n odd and zero for n even (plotted for f1=500) n n2 W W nmax =1, pure sinusoidal 1 nmax =3 1 0.5 0.5 t 0.001 0.002 0.003 0.004 t 0.001 0.002 0.003 0.004 £ 0.5 ¢ 0.5 £ 1 ¢ 1 W W n =11, cos ¤ sin 1 nmax =11 max 0.75 0.5 0.5 0.25 t 0.001 0.002 0.003 0.004 t 0.001 0.002 0.003 0.004 ¡ 0.5 0.25 0.5 ¡ 1 Acoustically equivalent 2 0.75 1 1.
    [Show full text]
  • Lecture 1-10: Spectrograms
    Lecture 1-10: Spectrograms Overview 1. Spectra of dynamic signals: like many real world signals, speech changes in quality with time. But so far the only spectral analysis we have performed has assumed that the signal is stationary: that it has constant quality. We need a new kind of analysis for dynamic signals. A suitable analogy is that we have spectral ‘snapshots’ when what we really want is a spectral ‘movie’. Just like a real movie is made up from a series of still frames, we can display the spectral properties of a changing signal through a series of spectral snapshots. 2. The spectrogram: a spectrogram is built from a sequence of spectra by stacking them together in time and by compressing the amplitude axis into a 'contour map' drawn in a grey scale. The final graph has time along the horizontal axis, frequency along the vertical axis, and the amplitude of the signal at any given time and frequency is shown as a grey level. Conventionally, black is used to signal the most energy, while white is used to signal the least. 3. Spectra of short and long waveform sections: we will get a different type of movie if we choose each of our snapshots to be of relatively short sections of the signal, as opposed to relatively long sections. This is because the spectrum of a section of speech signal that is less than one pitch period long will tend to show formant peaks; while the spectrum of a longer section encompassing several pitch periods will show the individual harmonics, see figure 1-10.1.
    [Show full text]
  • Analysis of EEG Signal Processing Techniques Based on Spectrograms
    ISSN 1870-4069 Analysis of EEG Signal Processing Techniques based on Spectrograms Ricardo Ramos-Aguilar, J. Arturo Olvera-López, Ivan Olmos-Pineda Benemérita Universidad Autónoma de Puebla, Faculty of Computer Science, Puebla, Mexico [email protected],{aolvera, iolmos}@cs.buap.mx Abstract. Current approaches for the processing and analysis of EEG signals consist mainly of three phases: preprocessing, feature extraction, and classifica- tion. The analysis of EEG signals is through different domains: time, frequency, or time-frequency; the former is the most common, while the latter shows com- petitive results, implementing different techniques with several advantages in analysis. This paper aims to present a general description of works and method- ologies of EEG signal analysis in time-frequency, using Short Time Fourier Transform (STFT) as a representation or a spectrogram to analyze EEG signals. Keywords. EEG signals, spectrogram, short time Fourier transform. 1 Introduction The human brain is one of the most complex organs in the human body. It is considered the center of the human nervous system and controls different organs and functions, such as the pumping of the heart, the secretion of glands, breathing, and internal tem- perature. Cells called neurons are the basic units of the brain, which send electrical signals to control the human body and can be measured using Electroencephalography (EEG). Electroencephalography measures the electrical activity of the brain by recording via electrodes placed either on the scalp or on the cortex. These time-varying records produce potential differences because of the electrical cerebral activity. The signal generated by this electrical activity is a complex random signal and is non-stationary [1].
    [Show full text]
  • Improved Spectrograms Using the Discrete Fractional Fourier Transform
    IMPROVED SPECTROGRAMS USING THE DISCRETE FRACTIONAL FOURIER TRANSFORM Oktay Agcaoglu, Balu Santhanam, and Majeed Hayat Department of Electrical and Computer Engineering University of New Mexico, Albuquerque, New Mexico 87131 oktay, [email protected], [email protected] ABSTRACT in this plane, while the FrFT can generate signal representations at The conventional spectrogram is a commonly employed, time- any angle of rotation in the plane [4]. The eigenfunctions of the FrFT frequency tool for stationary and sinusoidal signal analysis. How- are Hermite-Gauss functions, which result in a kernel composed of ever, it is unsuitable for general non-stationary signal analysis [1]. chirps. When The FrFT is applied on a chirp signal, an impulse in In recent work [2], a slanted spectrogram that is based on the the chirp rate-frequency plane is produced [5]. The coordinates of discrete Fractional Fourier transform was proposed for multicompo- this impulse gives us the center frequency and the chirp rate of the nent chirp analysis, when the components are harmonically related. signal. In this paper, we extend the slanted spectrogram framework to Discrete versions of the Fractional Fourier transform (DFrFT) non-harmonic chirp components using both piece-wise linear and have been developed by several researchers and the general form of polynomial fitted methods. Simulation results on synthetic chirps, the transform is given by [3]: SAR-related chirps, and natural signals such as the bat echolocation 2α 2α H Xα = W π x = VΛ π V x (1) and bird song signals, indicate that these generalized slanted spectro- grams provide sharper features when the chirps are not harmonically where W is a DFT matrix, V is a matrix of DFT eigenvectors and related.
    [Show full text]
  • The Modeling and Quantification of Rhythmic to Non-Rhythmic
    Graduate Institute of Biomedical Electronics and Bioinformatics College of Electrical Engineering and Computer Science National Taiwan University Doctoral Dissertation The Modeling and Quantification of Rhythmic to Non-rhythmic Phenomenon in Electrocardiography during Anesthesia Author : Yu-Ting Lin Advisor : Jenho Tsao, Ph.D. arXiv:1502.02764v1 [q-bio.NC] 10 Feb 2015 February 2015 \All composite things are not constant. Work hard to gain your own enlightenment." Siddh¯arthaGautama Abstract Variations of instantaneous heart rate appears regularly oscillatory in deeper levels of anesthesia and less regular in lighter levels of anesthesia. It is impossible to observe this \rhythmic-to-non-rhythmic" phenomenon from raw electrocardiography waveform in cur- rent standard anesthesia monitors. To explore the possible clinical value, I proposed the adaptive harmonic model, which fits the descriptive property in physiology, and provides adequate mathematical conditions for the quantification. Based on the adaptive har- monic model, multitaper Synchrosqueezing transform was used to provide time-varying power spectrum, which facilitates to compute the quantitative index: \Non-rhythmic- to-Rhythmic Ratio" index (NRR index). I then used a clinical database to analyze the behavior of NRR index and compare it with other standard indices of anesthetic depth. The positive statistical results suggest that NRR index provides addition clinical infor- mation regarding motor reaction, which aligns with current standard tools. Furthermore, the ability to indicates the noxious stimulation is an additional finding. Lastly, I have proposed an real-time interpolation scheme to contribute my study further as a clinical application. Keywords: instantaneous heart rate; rhythmic-to-non-rhythmic; Synchrosqueezing trans- form; time-frequency analysis; time-varying power spectrum; depth of anesthesia; electro- cardiography Acknowledgements First of all, I would like to thank Professor Jenho Tsao for all thoughtful lessons, discus- sions, and guidance he has provided me in the last five years.
    [Show full text]
  • Attention, I'm Trying to Speak Cs224n Project: Speech Synthesis
    Attention, I’m Trying to Speak CS224n Project: Speech Synthesis Akash Mahajan Management Science & Engineering Stanford University [email protected] Abstract We implement an end-to-end parametric text-to-speech synthesis model that pro- duces audio from a sequence of input characters, and demonstrate that it is possi- ble to build a convolutional sequence to sequence model with reasonably natural voice and pronunciation from scratch in well under $75. We observe training the attention to be a bottleneck and experiment with 2 modifications. We also note interesting model behavior and insights during our training process. Code for this project is available on: https://github.com/akashmjn/cs224n-gpu-that-talks. 1 Introduction We have come a long way from the ominous robotic sounding voices used in the Radiohead classic 1. If we are to build significant voice interfaces, we need to also have good feedback that can com- municate with us clearly, that can be setup cheaply for different languages and dialects. There has recently also been an increased interest in generative models for audio [6] that could have applica- tions beyond speech to music and other signal-like data. As discussed in [13] it is fascinating that is is possible at all for an end-to-end model to convert a highly ”compressed” source - text - into a substantially more ”decompressed” form - audio. This is a testament to the sheer power and flexibility of deep learning models, and has been an interesting and surprising insight in itself. Recently, results from Tachibana et. al. [11] reportedly produce reasonable-quality speech without requiring as large computational resources as Tacotron [13] and Wavenet [7].
    [Show full text]
  • Time-Frequency Analysis of Time-Varying Signals and Non-Stationary Processes
    Time-Frequency Analysis of Time-Varying Signals and Non-Stationary Processes An Introduction Maria Sandsten 2020 CENTRUM SCIENTIARUM MATHEMATICARUM Centre for Mathematical Sciences Contents 1 Introduction 3 1.1 Spectral analysis history . 3 1.2 A time-frequency motivation example . 5 2 The spectrogram 9 2.1 Spectrum analysis . 9 2.2 The uncertainty principle . 10 2.3 STFT and spectrogram . 12 2.4 Gabor expansion . 14 2.5 Wavelet transform and scalogram . 17 2.6 Other transforms . 19 3 The Wigner distribution 21 3.1 Wigner distribution and Wigner spectrum . 21 3.2 Properties of the Wigner distribution . 23 3.3 Some special signals. 24 3.4 Time-frequency concentration . 25 3.5 Cross-terms . 27 3.6 Discrete Wigner distribution . 29 4 The ambiguity function and other representations 35 4.1 The four time-frequency domains . 35 4.2 Ambiguity function . 39 4.3 Doppler-frequency distribution . 44 5 Ambiguity kernels and the quadratic class 45 5.1 Ambiguity kernel . 45 5.2 Properties of the ambiguity kernel . 46 5.3 The Choi-Williams distribution . 48 5.4 Separable kernels . 52 1 Maria Sandsten CONTENTS 5.5 The Rihaczek distribution . 54 5.6 Kernel interpretation of the spectrogram . 57 5.7 Multitaper time-frequency analysis . 58 6 Optimal resolution of time-frequency spectra 61 6.1 Concentration measures . 61 6.2 Instantaneous frequency . 63 6.3 The reassignment technique . 65 6.4 Scaled reassigned spectrogram . 69 6.5 Other modern techniques for optimal resolution . 72 7 Stochastic time-frequency analysis 75 7.1 Definitions of non-stationary processes .
    [Show full text]
  • ECE438 - Digital Signal Processing with Applications 1
    Purdue University: ECE438 - Digital Signal Processing with Applications 1 ECE438 - Laboratory 9: Speech Processing (Week 1) October 6, 2010 1 Introduction Speech is an acoustic waveform that conveys information from a speaker to a listener. Given the importance of this form of communication, it is no surprise that many applications of signal processing have been developed to manipulate speech signals. Almost all speech processing applications currently fall into three broad categories: speech recognition, speech synthesis, and speech coding. Speech recognition may be concerned with the identification of certain words, or with the identification of the speaker. Isolated word recognition algorithms attempt to identify individual words, such as in automated telephone services. Automatic speech recognition systems attempt to recognize continuous spoken language, possibly to convert into text within a word processor. These systems often incorporate grammatical cues to increase their accuracy. Speaker identification is mostly used in security applications, as a person’s voice is much like a “fingerprint”. The objective in speech synthesis is to convert a string of text, or a sequence of words, into natural-sounding speech. One example is the Speech Plus synthesizer used by Stephen Hawking (although it unfortunately gives him an American accent). There are also similar systems which read text for the blind. Speech synthesis has also been used to aid scientists in learning about the mechanisms of human speech production, and thereby in the treatment of speech-related disorders. Speech coding is mainly concerned with exploiting certain redundancies of the speech signal, allowing it to be represented in a compressed form. Much of the research in speech compression has been motivated by the need to conserve bandwidth in communication sys- tems.
    [Show full text]
  • Chapter 3 Sound Windows: Visibility, Views, Linkage, & Navigation
    Chapter 3 Sound Windows: Visibility, Views, Linkage, & Navigation About this chapter This chapter will explain how to work with and get around Raven in more detail. Before reading this chapter, you should have a solid understanding of the major components and basic layout that make up the Raven window. If you need to review this information, please see Chapter 1, “Getting Started” and Chapter 2, “The Raven Window”. Topics discussed in this chapter are: •using contextual menus •learning the basic layout of a sound window •understanding the five main view types •linking and unlinking of views •controlling how views are displayed •changing the appearance of a Sound window •changing the appearance of the Raven window Using Contextual Menus As you learn more about navigating around the Raven window, you might realize that it would be convenient to have a list of contextually- oriented commands readily available. Well, luckily for our users, there is such a list. A context menu is a menu of useful commands that apply to wherever your mouse pointer is positioned at that time. To activate a context menu, simply right-click using your mouse (or Control+click on a Mac) and the menu will appear. Raven Pro 1.4 User’s Manual 45 Chapter 3: Visibility, Views, & Navigation Figure 3.1 Context menu example Figure 3.1. An example of a context menu when the mouse pointer is over a waveform view. The menu gives you many command options relevant to the mouse location and is accessible by a simple right-click of the mouse (or Control+click on a Mac).
    [Show full text]
  • Multiscale Analysis
    1 Multiscale analysis Warwick, 2/2008 2 Most of our data analysis techniques involve strong assumptions on linearity, stationarity, etc. Yet the world we live in is non-linear non-stationary non-Gaussian spatio-temporal ... Warwick, 2/2008 3 The proper understanding of these “non-properties” requires new (more advanced) tools. Many mistakes have been made by ignoring these non- properties These “non-properties” can however give deeper insight into the physics Warwick, 2/2008 4 An old mystery M. C. Escher didn’t know how to properly finish his drawing Warwick, 2/2008 5 An old mystery The solution was found last year : self-similarity ! Warwick, 2/2008 6 Wigner-Ville Unfortunately, interferences arise when signals are mixed W (t, ν) = W (t, ν) + W (t, ν) + 2 W (t, ν) x+y x y !{ x+y } ,-./&'(-/(+-0% !"# ! $%&'()&*+ !!"# 5-/%&*(67&'% ;<=('-/"(67&'%=(-0&.%67=(>?*%6?@':ABC !"B !"1 !"K !"# F*%GH%/79(DIJE 8/%*.9(6)%7+*&'(:%/6-+9 !"4 ! 4!!3! 2! 1! #! B! 4!! 4B! #!! #B! Warwick, 2/2008 >-0%(D6E 7 Wigner-Ville Various methods have been developed for attenuating interferences in the Wigner-Ville transform but these cross-terms remain a severe problem +,-.%&',.'*,/$ ! " #$%&'(%)* !! 1,.$%)'23%&$ 789'&,.:'23%&$9',/%-$239';<)$2<=&6>0? ":0 ":H ":K ":G B)$CD$.35'@EFA 4.$)-5'2($3*)%&'6$.2,*5 ":! " !0""!""" 0"" G" H" I" J" !"" !G" ;,/$'@2A Warwick, 2/2008 8 Tiling the plane The problem is : how to properly partition the time-frequency plane ? !"#$$%$ &%'()*( %&$'($)*+ 1 ∆t ∆ν !"#$ · ≥ 4π +#,%( -#.*/*0 Warwick, 2/2008 9 Fourier vs multiscale analysis Warwick,
    [Show full text]
  • On the Use of Concentrated Time–Frequency Representations As Input to a Deep Convolutional Neural Network: Application to Non Intrusive Load Monitoring
    entropy Article On the Use of Concentrated Time–Frequency Representations as Input to a Deep Convolutional Neural Network: Application to Non Intrusive Load Monitoring Sarra Houidi 1,2 , Dominique Fourer 1,∗ and François Auger 2 1 Laboratoire IBISC (Informatique, BioInformatique, Systèmes Complexes), EA 4526, University Evry/Paris-Saclay, 91020 Evry Cédex, France; [email protected] 2 Institut de Recherche en Energie Electrique de Nantes Atlantique (IREENA), EA 4642, University of Nantes, 44602 Saint-Nazaire, France; [email protected] * Correspondence: [email protected] Received: 29 July 2020; Accepted: 17 August 2020 ; Published: 19 August 2020 Abstract: Since decades past, time–frequency (TF) analysis has demonstrated its capability to efficiently handle non-stationary multi-component signals which are ubiquitous in a large number of applications. TF analysis us allows to estimate physics-related meaningful parameters (e.g., F0, group delay, etc.) and can provide sparse signal representations when a suitable tuning of the method parameters is used. On another hand, deep learning with Convolutional Neural Networks (CNN) is the current state-of-the-art approach for pattern recognition and allows us to automatically extract relevant signal features despite the fact that the trained models can suffer from a lack of interpretability. Hence, this paper proposes to combine together these two approaches to take benefit of their respective advantages and addresses non-intrusive load monitoring (NILM) which consists of identifying a home electrical appliance (HEA) from its measured energy consumption signal as a “toy” problem. This study investigates the role of the TF representation when synchrosqueezed or not, used as the input of a 2D CNN applied to a pattern recognition task.
    [Show full text]