Classical Albedo Names from Latin

Total Page:16

File Type:pdf, Size:1020Kb

Classical Albedo Names from Latin Gangale & Dudley-Flores Proposed Additions to the Cartographic Database of Mars 50 Table 3: Classical Albedo Names From Latin Feature Name Type Latitude East Longitude Origin Usage Alba Fossae Fossae 49.39 253.18 "White" in Latin. Alba Patera Patera 39.53 250.82 "White" in Latin. Albor Tholus Tholus 18.87 150.47 "White" in Latin. Alba Catena Catena 35.04 245.42 "White" in Latin. Albor Fossae Fossae 18.09 150.78 "White" in Latin. Alba Mons Mons 41.08 249.29 "White" in Latin. Tractus Albus Regio 29.71 280 "White Tract" in Latin. 1954 De Vaucouleurs, 1957 IAU. Argentea Planum -72.49 298.33 "Silvery" in Latin. Planum Dorsa Argentea Dorsa -77.63 326.61 "Silvery" in Latin. Mare Australe Mare -59.71 350 "Southern" in Latin. 1888 Schiaparelli, 1901 Antoniadi, 1954 De Vaucouleurs, 1957 IAU. Chasma Chasma -82.35 95.03 "Southern" in Latin. Australe Planum Australe Planum -83.35 157.7 "Southern" in Latin. Australe Lingula Lingula -84.05 68.56 "Southern" in Latin. Australe Mensa Mensa -86.88 357.24 "Southern" in Latin. Australe Montes Montes -80.19 14.05 "Southern" in Latin. Australe Scopuli Scopuli -83.48 247.06 "Southern" in Latin. Australe Sulci Sulci -84.99 133.06 "Southern" in Latin. Chasma Boreale Chasma 82.54 312.36 "Northern" in Latin. Boreales Scopuli Scopuli 88.88 269.84 "Northern" in Latin. Vastitas Borealis Vastitas 87.73 32.53 "Northern" in Latin. Mare Boreum Mare 59.71 180 "North" in Latin Planum Boreum Planum 87.32 54.96 "North" in Latin Boreum Cavus Cavus 84.64 339.85 "North" in Latin Candor Regio 2.96 285 "Luster, sincerity" in Latin. 1954 De Vaucouleurs, 1957 IAU. Candor Chasma Chasma -6.53 289.22 "Luster, sincerity" in Latin. Gangale & Dudley-Flores Proposed Additions to the Cartographic Database of Mars 51 Feature Name Type Latitude East Longitude Origin Usage Candor Mensa Mensa -6.26 286.48 "Luster, sincerity" in Latin. Candor Labes Labes -4.79 284.01 "Luster, sincerity" in Latin. Candor Colles Colles -6.63 284.43 "Luster, sincerity" in Latin. Ceti Chasma Chasma -5.03 291.63 "Whale" in Latin. Ceti Mensa Mensa -5.85 283.68 "Whale" in Latin. Ceti Labes Labes -6.78 284.27 "Whale" in Latin. Claritas Canalis -34.68 250 "Brightness" in Latin Claritas Fossae Fossae -27.89 255.76 "Brightness" in Latin Claritas Rupes Rupes -25.04 254.74 "Brightness" in Latin Coronae Scopulus -33.26 64.94 "Crown" in Latin. Scopulus Coronae Montes Montes -34.31 86.11 "Crown" in Latin. Felis Dorsa Dorsa -21.87 294.1 "Cat" in Latin. Fortuna Fossae Fossae 4.64 267.31 "Fortune" in Latin. Sulci Gordii Sulci 19.02 234.27 From Nodus Gordii, "Gordian Knot" in Latin, an albedo fearure. Hyperboreus Lacus 74.83 300 "Far northern" in Latin. Lacus Hyperboreus Labyrinthus 80.28 300.25 "Far northern" in Latin. Labyrinthus Ius Chasma Chasma -7.29 275.61 "Law" in Latin. Ius Labes Labes -7.47 281.54 "Law" in Latin. Lucus Planum Planum -4.99 182.83 "Grove" in Latin. Lunae Palus Palus 14.83 295 "Moon" in Latin. Lunae Planum Planum 10.79 294.49 "Moon" in Latin. Lunae Mensa Mensa 23.91 297.5 "Moon" in Latin. Margaritifer Sinus -9.88 335 "Pearl-bearing" in Latin. 1888 Schiaparelli, 1895 Lowell, 1901 Sinus Antoniadi, 1954 De Vaucouleurs, 1955 BAA, 1967 IAU. Margaritifer Terra -1.85 335.08 "Pearl-bearing" in Latin. Terra Gangale & Dudley-Flores Proposed Additions to the Cartographic Database of Mars 52 Feature Name Type Latitude East Longitude Origin Usage Margaritifer Chaos -9.3 338.3 Pearl-bearing in Latin. Chaos Sinus Meridiani Sinus -4.94 0 Meridies, "mid-day" in Latin. 1954 De Vaucouleurs, 1967 IAU. Meridiani Planum -0.04 356.86 Meridies, "mid-day" in Latin. Planum Niliacus Lacus Lacus 29.71 330 "Lake of the Nile" in Latin. 1888 Schiaparelli, 1901 Antoniadi, 1954 De Vaucouleurs, 1955 BAA, 1967 IAU. Gordii Dorsum Dorsum 4.11 215.86 "Gordian Knot" in Latin. Gordii Fossae Fossae 14.83 232.4 "Gordian Knot" in Latin. Noctis Labyrinthus -6.36 258.81 "Night" in Latin. Labyrinthus Noctis Fossae Fossae -2.69 261.15 "Night" in Latin. Parva Planum Planum -73.67 264.93 "Small" in Latin. Pavonis Mons Mons 1.48 247.04 "Peacock" in Latin. Pavonis Chasma Chasma 2.73 248.98 "Peacock" in Latin. Pavonis Fossae Fossae 4.15 248.71 "Peacock" in Latin. Pavonis Sulci Sulci 4.01 242.63 "Peacock" in Latin. Sacra Fossae Fossae 20.36 290 "Sacred" in Latin. Sacra Dorsa Dorsa 11.21 293.91 "Sacred" in Latin. Sacra Sulci Sulci 22.16 285.3 "Sacred" in Latin. Sacra Mensa Mensa 24.64 291.78 "Sacred" in Latin. Mare Serpentis Mare -29.71 40 "Serpent" in Latin. 1954 De Vaucouleurs, 1967 IAU. Solis Lacus Lacus -27.72 270 "Sun" in Latin. 1888 Schiaparelli. Solis Planum Planum -26.4 270.33 "Sun" in Latin. Solis Dorsa Dorsa -22.88 280.26 "Sun" in Latin. Tractus Catena Catena 27 257.21 "Tract" in Latin. Tractus Fossae Fossae 25.89 258.72 "Tract" in Latin. Ultimum Chasma -81.1 151.37 "Farthest" in Latin. Chasma Ultima Lingula Lingula -76.32 142.56 "Farthest" in Latin. Gangale & Dudley-Flores Proposed Additions to the Cartographic Database of Mars 53 Feature Name Type Latitude East Longitude Origin Usage Ultimi Scopuli Scopuli -77.88 179.04 "Farthest" in Latin. Umbra Regio 49.67 70 "Shadow" in Latin. 1954 De Vaucouleurs, 1957 IAU. .
Recommended publications
  • The Floodwaters of Mars 7 June 2013
    The floodwaters of Mars 7 June 2013 erosive power of the fast-flowing water, this hardier outcrop has stood the test of time. Slightly further downstream, the flood waters did their best to erase the 100 km-wide Sharonov crater, crumpling its southern rim. Around Sharonov, many small streamlined islands form teardrop shapes rising from the riverbed, carved as water swept around these natural obstacles. Kasei Valles. (Phys.org) —Dramatic flood events carved this impressive channel system on Mars covering 1.55 million square kilometres, shown here in a stunning new mosaic from ESA's Mars Express. The mosaic, which features the spectacular Kasei Valles, comprises 67 images taken with the spacecraft's high-resolution stereo camera and is released during the week of the 10th anniversary of the spacecraft's launch to the Red Planet. Kasei Valles is one of the largest outflow channel systems on Mars – from source to sink, it extends Kasei Valles in context. some 3000 km and descends by 3 km in altitude. The scene covered in the mosaic spans 987 km north–south (19–36°N) and 1550 km east–west (280–310°E). The region between Sacra Mensa and Sharonov is seen in close-up detail in the perspective view The channel originates beyond the southern edge below, looking downstream from the northern flank of this image near Valles Marineris, and empties of Kasai Valles. into the vast plains of Chryse Planitia to the east (right). Zooming into the valley floor reveals small craters with bright dust 'tails' seemingly flowing in the Kasei Valles splits into two main branches that hug opposite direction to the movement of water.
    [Show full text]
  • La Doppia Edizione De Le Lagrime Di San Pietro Di Luigi Tansillo Tra Censura E Manipolazione
    Università degli Studi di Napoli Federico II Dottorato di ricerca in Filologia moderna Coordinatore: Prof. Costanzo Di Girolamo Tesi di dottorato Ciclo XXIII La doppia edizione de Le lagrime di San Pietro di Luigi Tansillo tra censura e manipolazione Candidato: Dott. Luca Torre Tutore: Prof. Tobia R. Toscano Cotutore: Prof. Corrado Calenda Napoli 2010 INDICE Introduzione .......................................................................................... p. 3 1. La tradizione de Le lagrime di San Pietro..................................... » 4 2. Lo sfondo culturale e l’inventio tansilliana.................................... » 16 3. Giovan Battista Attendolo e la censura ecclesiastica..................... » 27 4. La vis polemica di Tommaso Costo: la stampa del 1606............... » 43 5. Conclusioni minime....................................................................... » 51 6. La presente edizione: criteri e struttura.......................................... » 56 Criteri di trascrizione.............................................................................. » 58 Testi ....................................................................................................... » 61 Pianto primo....................................................................................... » 63 Pianto secondo................................................................................... » 86 Pianto terzo........................................................................................ » 100 Pianto quarto.....................................................................................
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Workshop on Mars Telescopic Observations
    WORKSHCPON MARS TELESCOPIC OBSERVATIONS 90' 180'-;~~~~~~------------------..~~------------~~----..~o~,· 270' LPI Technical Report Number 95-04 Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPIITR--95-04 WORKSHOP ON MARS TELESCOPIC OBSERVATIONS Edited by J. F. Bell III and J. E. Moersch Held at Cornell University, Ithaca, New York August 14-15, 1995 Sponsored by Lunar and Planetary Institute Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Technical Report Number 95-04 LPIITR--95-04 Compiled in 1995 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. This report may be cited as Bell J. F.III and Moersch J. E., eds. (1995) Workshop on Mars Telescopic Observations. LPI Tech. Rpt. 95-04, Lunar and Planetary Institute, Houston. 33 pp. This report is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Mail order requestors will be invoiced for the cost ofshipping and handling. Cover: Orbits of Mars (outer ellipse) and Earth (inner ellipse) showing oppositions of the planet from 1954to 1999. From C. Aammarion (1954) The Flammarion Book ofAstronomy, Simon and Schuster, New York. LPl Technical Report 95-04 iii Introduction The Mars Telescopic Observations Workshop, held August 14-15, 1995, at Cornell University in Ithaca, New York, was organized and planned with two primary goals in mind: The first goal was to facilitate discussions among and between amateur and professional observers and to create a workshop environment fostering collaborations and comparisons within the Mars ob­ serving community.
    [Show full text]
  • Global Spectral Classification of Martian Low-Albedo Regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) Data A
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E02004, doi:10.1029/2006JE002726, 2007 Global spectral classification of Martian low-albedo regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data A. Deanne Rogers,1 Joshua L. Bandfield,2 and Philip R. Christensen2 Received 4 April 2006; revised 12 August 2006; accepted 13 September 2006; published 14 February 2007. [1] Martian low-albedo surfaces (defined here as surfaces with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) albedo values 0.15) were reexamined for regional variations in spectral response. Low-albedo regions exhibit spatially coherent variations in spectral character, which in this work are grouped into 11 representative spectral shapes. The use of these spectral shapes in modeling global surface emissivity results in refined distributions of previously determined global spectral unit types (Surface Types 1 and 2). Pure Type 2 surfaces are less extensive than previously thought, and are mostly confined to the northern lowlands. Regional-scale spectral variations are present within areas previously mapped as Surface Type 1 or as a mixture of the two surface types, suggesting variations in mineral abundance among basaltic units. For example, Syrtis Major, which was the Surface Type 1 type locality, is spectrally distinct from terrains that were also previously mapped as Type 1. A spectral difference also exists between southern and northern Acidalia Planitia, which may be due in part to a small amount of dust cover in southern Acidalia. Groups of these spectral shapes can be averaged to produce spectra that are similar to Surface Types 1 and 2, indicating that the originally derived surface types are representative of the average of all low-albedo regions.
    [Show full text]
  • I Quaderni Del Castello
    Gruppo Amici della Storia Locale “Giuseppe Gerosa Brichetto” I QUADERNI DEL CASTELLO NUMERO 3 CONFERENZE AL CASTELLO DI PESCHIERA BORROMEO MAGGIO 2012 PRESENTAZIONE Ed eccoci al terzo appuntamento, con i Quaderni del Castello. In quanto tale, che questo numero 3 della Rivista sia “perfetto”, non osiamo crederlo, in ogni caso il giudizio complessivo spetta ai lettori, che ci auguriamo benevoli. Di certo, noi ce l’abbiamo messa tutta, per confezionarlo meglio che possiamo. Riguardo ai contenuti, la valutazione spetta appunto a chi legge; sulle caratteristiche tecniche, crediamo però non possano esserci dubbi, il progresso si vede subito: difatti, se fino all’anno scorso la pubblicazione veniva prodotta “in casa”, utilizzando personal computer e stampanti casalinghe, le presenti pagine sortiscono da una tipografia in piena regola, mentre per la fase di pre-stampa ci siamo avvalsi della competenza e della preziosa collaborazione dell’amico Roberto Casetta, che generosamente ha preparato il tutto, cosa di cui lo ringraziamo di cuore. Siamo grati altresì ai Conti Franco e Filippo Borromeo, che ci onorano del loro sostegno e con squisita cortesia ci ospitano una volta ancora nella splendida cornice del Castello di Peschiera Borromeo, per la presentazione in anteprima della pubblicazione, sotto forma di conferenze dei singoli Autori, i quali anticipano i testi di seguito riportati integralmente. Tra il Gruppo Amici della Storia Locale e la Famiglia Borromeo si è da tempo stabilita una virtuosa “corrispondenza d’amorosi sensi” che ha reso possibile, oltre che questa Rivista, l’organizzazione di memorabili giornate di visite al Castello, soddisfacendo la sete di bellezza di centinaia e centinaia di persone del Circondario, le quali hanno potuto così ammirare da vicino i tesori d’arte e di storia custoditi nella nobile dimora.
    [Show full text]
  • Observations of Mars and Its Satellites by the Mars Imaging Camera (MIC) on Planet-B
    Earth Planets Space, 50, 183–188, 1998 Observations of Mars and its satellites by the Mars Imaging Camera (MIC) on Planet-B Tadashi Mukai1, Tokuhide Akabane2, Tatsuaki Hashimoto3, Hiroshi Ishimoto1, Sho Sasaki4, Ai Inada1, Anthony Toigo5, Masato Nakamura6, Yutaka Abe6, Kei Kurita6, and Takeshi Imamura6 1The Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan 2Hida Observatory, Kyoto University, Kamitakara, Gifu 506-13, Japan 3Institute of Space and Astronautical Science, Kanagawa 229-8510, Japan 4Geological Institute, University of Tokyo, Tokyo 113, Japan 5Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, U.S.A. 6Space and Planetary Science, University of Tokyo, Tokyo 113, Japan (Received August 7, 1997; Revised December 16, 1997; Accepted January 30, 1998) We present the specifications of the Mars Imaging Camera (MIC) on the Planet-B spin-stabilized spacecraft, and key scientific objectives of MIC observations. A non-sun-synchronous orbit of Planet-B with a large eccentricity of about 0.87 around Mars provides the opportunities (1) to observe the same region of Mars at various times of day and various solar phase angles with spatial resolution of about 60 m from a distance of 150 km altitude (at periapsis), and (2) to monitor changes of global atmospheric conditions on Mars near an apoapsis of 15 Mars radii. In addition, (3) several encounters of Planet-B with each of the two Martian satellites are scheduled during the mission lifetime of two years from October 1999 to observe their shapes and surface structures with three color filters, centered on 450, 550, and 650 nm.
    [Show full text]
  • The Sand Ships of Mars By: Jeffrey D
    The Sand Ships of Mars By: Jeffrey D. Beish (Rev. 12-19-2018) INTRODUCTION It was Ray Bradbury who wrote of the "Sand Ships of Mars" in his science fiction novel, The Martian Chronicles (Bradbury, 1950). One can imagine the fictional inhabitants of Mars trekking across its deserts in their floating machines stirring up huge dust devils. This great science fiction story set the stage for this author’s interest in Mars and who now writes about similar accounts of the real dusty whirlwinds on the Red Planet. [NOTE: see Mars Chart in Reference section for location names]. One of the most spectacular events to watch in our Solar System is the development of a major Martian dust storm. From Earth a Martian dust cloud may seem to be just a nuisance to any would-be telescopic explorer on that planet. However, if you consider the actual size of these clouds then you suddenly realize that many of them would cover entire western United States! Imagine if a Mars-sized planet-encircling dust storm would occur on Earth; it would blank out most of an entire Hemisphere! Some would-be Mars experts claim that after dust storms the dust settles quickly to the surface and reduces contrast of albedo features. This is contrary to the known facts; dust remains in the atmosphere of Mars for weeks -- at times months -- before settling to the surface [Pollack, 1989], [Kahn, 1992]. This dust is very fine particles of volcanic ash and when raised aloft during these storms they reach heights of several kilometers.
    [Show full text]
  • The Opposition of Mars, 1999
    The opposition of Mars, 1999 Richard McKim A report of the Mars Section (Director: R. J. McKim) The 1999 martian apparition was followed by BAA members while Mars Global Surveyor was monitoring the planet from martian orbit. The planet’s surface showed little change from 1997, indicating the absence of any great dust storm since solar conjunction. The long period of telescopic coverage enabled us to conclude that neither was there any planet-encircling storm in the southern martian spring or summer in 1999−2000. Three small telescopic storms were followed along the Valles Marineris, and two were seen at the edge of the summer N. polar cap. Dust storms commencing at the historically rarely-active Margaritifer Sinus emergence site (MGS data) point to ongoing changes in the fallout pattern of atmospheric dust. White cloud activity was high before and around opposition time − in northern midsummer − with morning and evening limb hazes, the equatorial cloud band (ECB) and orographic clouds. The ECB ‘season’ was identical to 1997, pointing to an equally low level of atmospheric dust-loading. Comparison with historical records suggests that the seasonal ‘wave of darkening’ may be partly attributable to the annual disappearance of the ECB. A ‘polar cyclone’ imaged by the Hubble Space Telescope between Mare Acidalium and the northern cap was followed over several days. The seasonal behaviour of the NPC, including its transition to the polar hood, was well observed. Its recession (observed from northern mid-spring) was a little slower than usual. The formation of the SPC from its winter hood, and its early recession, was also recorded.
    [Show full text]
  • The Medusae Fossae Formation As the Single Largest Source of Dust on Mars
    ARTICLE DOI: 10.1038/s41467-018-05291-5 OPEN The Medusae Fossae Formation as the single largest source of dust on Mars Lujendra Ojha1, Kevin Lewis1, Suniti Karunatillake 2 & Mariek Schmidt3 Transport of fine-grained dust is one of the most widespread sedimentary processes occurring on Mars today. In the present climate, eolian abrasion and deflation of rocks are likely the most pervasive and active dust-forming mechanism. Martian dust is globally 1234567890():,; enriched in S and Cl and has a distinct mean S:Cl ratio. Here we identify a potential source region for Martian dust based on analysis of elemental abundance data. We show that a large sedimentary unit called the Medusae Fossae Formation (MFF) has the highest abundance of S and Cl, and provides the best chemical match to surface measurements of Martian dust. Based on volume estimates of the eroded materials from the MFF, along with the enrichment of elemental S and Cl, and overall geochemical similarity, we propose that long-term deflation of the MFF has significantly contributed to the global Martian dust reservoir. 1 Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA. 2 Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA. 3 Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada. Correspondence and requests for materials should be addressed to L.O. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:2867 | DOI: 10.1038/s41467-018-05291-5 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05291-5 ust is ubiquitous on Mars and plays a key role in con- formation on Mars today is likely abrasion of mechanically weak temporary atmospheric and surface processes.
    [Show full text]
  • Karl William Wegmann, Ph.D., LG, LEG
    Karl William Wegmann, Ph.D., LG, LEG North Carolina State University Dept. of Marine, Earth, and Atmospheric Sciences 2800 Faucette DR, Campus Box 8208, Jordan Hall RM 1125 Raleigh, NC 27695-8208 Phone: 919.515.0380 | E-mail: [email protected] Websites: https://wegmann.wordpress.ncsu.edu/ https://hazmapper.org PROFESSIONAL INTERESTS Teaching and research interests intersect across the domains of Geomorphology (surface processes), Active Tectonics, Natural Hazards, and Geoarchaeology. EDUCATION 2008 Ph.D., Earth and Environmental Sciences Lehigh University, Bethlehem, Pennsylvania, USA 1999 M.S., Earth and Planetary Sciences The University of New Mexico, Albuquerque, New Mexico, USA 1996 B.A., Geology, Cum Laude, with Honors Whitman College, Walla Walla, WA, USA PROFESSIONAL EXPERIENCE 2017– Center for Geospatial Analytics, North Carolina State University Faculty Fellow 2015– Dept. of Marine, Earth & Atmospheric Sciences, North Carolina State University Associate Professor 2008–2015 Dept. of Marine, Earth & Atmospheric Sciences, North Carolina State University Assistant Professor 2004 Washington State Dept. of Natural Resources – Division of Geology & Earth Resources Geologist 3 / Natural Resource Scientist 3 1999–2004 Washington State Dept. of Natural Resources – Division of Geology & Earth Resources Geologist 2 2000-2004 Peninsula College, Port Angeles, WA Distance Learning Instructor - Geology Updated May 20, 2021 1 1998 New Mexico Bureau of Mines & Mineral Resources and Univ. of New Mexico Office of Contract Archeology Contract Geologist 1996 U.S. Geological Survey – Seattle, WA NAGT Geology Intern PROFESSIONAL LICENSES 2002–present Washington State Licensed Geologist & Engineering Geologist (License # 733). RESEARCH FUNDING 2020-2021 RAPID: Sparta Earthquake Surface Deformation Characterization | National Science Foundation | $29,752 | Co-Principle Investigator.
    [Show full text]
  • Effects of Surface Roughness and Graybody Emissivity on Martian Thermal Infrared Spectra ∗ Joshua L
    Icarus 202 (2009) 414–428 Contents lists available at ScienceDirect Icarus www.elsevier.com/locate/icarus Effects of surface roughness and graybody emissivity on martian thermal infrared spectra ∗ Joshua L. Bandfield Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195-1310, USA article info abstract Article history: Slopes are present in martian apparent surface emissivity observations collected by the Thermal Emission Received 29 December 2008 Spectrometer (TES) and the Thermal Emission Imaging System (THEMIS). These slopes are attributed Revised 20 March 2009 to misrepresenting the surface temperature, either through incorrect assumptions about the maximum Accepted 23 March 2009 emissivity of surface materials or the presumption of a uniform surface temperature within the field of Availableonline1April2009 view. These incorrect assumptions leave distinct characteristics in the resulting apparent emissivity data Keywords: that can be used to gain a better understanding of the surface properties. Surfaces with steep slopes Mars, surface typically have a variable surface temperatures within the field of view that cause distinct and highly Spectroscopy variable slopes in apparent emissivity spectra based on the observing conditions. These properties are Radiative transfer documented on the southwestern flank of Apollinaris Patera and can be reasonably approximated by modeled data. This spectral behavior is associated with extremely rough martian surfaces and includes surfaces south of Arsia Mons and near Warrego Valles that also appear to have high slopes in high resolution images. Surfaces with low maximum values of emissivity have apparent emissivity spectra with more consistent spectral slopes that do not vary greatly based on observing conditions. This spectral surface type is documented in Terra Serenum and is consistent with associated high resolution images that do not indicate the presence of a surface significantly rougher that the surrounding terrain.
    [Show full text]