A Complete Course in Canning and Related Processes

Total Page:16

File Type:pdf, Size:1020Kb

A Complete Course in Canning and Related Processes Woodhead Publishing Series in Food Science, Technology and Nutrition: Number 280 A Complete Course in Canning and Related Processes Fourteenth Edition Volume 1: Fundamental Information on Canning Revised by Susan Featherstone AMSTERDAM • BOSTON • CAMBRIDGE • HEIDELBERG LONDON • NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Woodhead Publishing is an imprint of Elsevier Introduction 1 Why this series of books? The name of this series of books, A Complete Course in Canning and Related Processes, indicates that it is intended as a source of information on canned foods. The reader will find here factual and reliable data on all the important facets of canned foods, such as product formulations, manufacturing procedures, food laws, sanitation, sterilisation, spoilage, containers, food plant characteristics, warehousing, and others. This 14th edition of these books builds on the excellent foundations laid by the authors who contributed to the original articles that were published in the early 1900s in the magazine The Trade, published in Baltimore in the United States of America (it was later called The Canning Trade and is now called Food Production Management). In 1906 the articles were published in a book entitled A Complete Course in Can- ning: Being a Thorough Exposition of the Best Practical Methods of Hermetically Sealing Canned Foods, and Preserving Fruits and Vegetables: Originally Republished from the Serial Articles Appearing in ‘The Canning Trade,’ the Canned Food Author- ity. This book was regularly updated with contributions from various authors, and between 1969 and 1987 the 9th through the 12th editions were edited by Dr Anthony Lopez. Originally there was only one book, but to live up to the name of “complete” in 1975 the 10th edition was expanded into two volumes, and in 1987 the 12th edition was further expanded into three volumes. In 1996 the 13th edition was edited by Dr Douglas L. Downing. When this work first appeared as a serial article in the pages ofThe Trade, the claim “complete” seemed boastful, if not questionable. At the beginning of the twentieth cen- tury, the canning industry was, if not in its infancy, at best in its kindergarten age and the amount of production was a fraction of what it is today. Factory equipment and layout were crude and just commencing to develop; quality and grades of products were as varied and as numerous as the producers, because food laws were then nonex- istent. Science, as applied to canning and food preservation, was just looming on the horizon. There were no set, definite formulae, except those that experience had taught through dint of heavy cost and that were accordingly carefully nursed and protected by their possessors, the “expert processors.” These “expert processors” lorded over the work and the men who employed them and refused to divulge their “secrets.” Losses from spoilage, as well as from poor quality, were accepted as normal. At the turn of the century, the industry had little or no scientific knowledge or assistance to depend upon. The fact that there were no definite formulae obtainable, in printed form or other- wise, at that time, brought the canners of that day, and the new men wishing to enter the industry in particular, to The Canning Trade, as the sole source of canning infor- mation, asking for direction on the canning of the particular product in which they were interested. Since his earliest association with the industry, in the founding of The Trade, later called The Canning Trade, in 1878, its first editor, Edward S. Judge, began xxvi Introduction the accumulation of information on processing and handling, keeping these findings in a big black book – a sort of treasure chest. From this source of information, type- written recipes/formulae were given free to inquirers. The demand was so heavy that it forced consideration of publication of the information in the weekly issues of the industry’s journal, The Canning Trade. To get more recipes, a competition was set up that offered several thousand dollars in prizes for the best, or most complete, formu- lae for the canning, preserving, or pickling of all the various products, the stipulation being that all offerings became the publisher’s property, whether or not they won prizes. Responses were prompt and plentiful, coming from all manner of “processors,” expert chefs, cooks, etc., including the most famous and most experienced. The awards were paid, and then began the compilation of the work. A Complete Course in Canning was, accordingly, the expression of the best experience existent, its formulae as dependable as possible. As in previous revisions of this book, this 14th edition has been brought up to date. The aim and desire of these revisions has been to help producers advance the safety and success of food production of this kind, to warn against the dangers and the pitfalls, to keep producers upon safe ground, and to make products safe for public consumption. A Complete Course in Canning, as the textbook of this industry, used as it is throughout the entire world, affords the opportunity to put information into the hands of the individuals who need it and can make the best use of it. It is intended to be a compendium of the industry’s researches and studies. This 14th edition has more detail on food microbiology and a new chapter on microbiological and nonmicro- biological spoilage. To keep abreast of a very important subject for today’s canners, there is a new chapter on reducing energy consumption. The series of books has been converted to primarily metric and centigrade and the focus is more on general canning legislation and guidelines and is less specifically aimed at the American canner but does use the excellent base of the U.S. FDA and USDA legislation and guidelines, which have been used as building blocks for much of the text. Mechanical equipment and construction of the factory itself have so advanced and improved that no canner should fail to check carefully with the latest and best sources of information. To that end, they should consult the builders of factory buildings, mak- ers of canning and preserving machinery, manufacturers of metal and glass containers, commercial horticulturalists, specialists in food labels, etc. Every such firm willingly furnishes detailed information, without obligation, and their recommendations can be relied upon. It is impossible to lay down a uniform factory plan, mechanical equip- ment, or label design. Every individual or firm wants to carry out personal ideas or desires, and it is well that this is so; but we urge all to call in these experts and have confidence in them, as a surety that the best possible job, under the circumstances, in quality, safety, and cost of production, is being done. Despite the fact that the greatest care has been exercised in the preparation of the recipes, formulae, times, and directions given in this book, they should, nevertheless, be taken largely as suggestive only, as a reliable working basis, to be altered or changed to fit particular conditions. The formulae given herein are practical and ready to use; they have all been tried and proven, but a change in temperature, altitude, or raw material quality or composition; difference in soil or fertiliser used; a wet or dry season; and a hundred and one other causes may necessitate a change in the process. As was said in Introduction xxvii the first edition of this book, and repeated here: “there is one reservation that goes with this: ‘Considerable Common Sense Must Be Added To All Recipes and Formulae.’ As a result, “No Large Pack of a New Product Should Ever Be Produced Until a Trial Batch Has Been Made.” To quote the last paragraph from the Introduction in the first edition of this work: “If used judiciously, in this manner, these formulae will be found satisfactory, differing possibly with different processors, as is natural, but worthy of the high approval set upon them when they were first published.” Keeping careful check upon raw materi- als received, and on factory operations as they progress, may save heavy losses from spoilage or a lowering of quality. It is too late to check after the product is in the ware- house. Similarly, all the guidance and information given should be considered and then adapted accordingly to the specific factory and processing conditions and product type. 2 A brief history of canning technology It is more than two centuries (Figure 1) since Nicholas Appert published his book in which he documented his methods for producing heat-preserved foods in hermetically sealed containers. His invention has been incredibly successful and has contributed in a significant way to the improvement of nutrition and health of consumers all over the world. Today approximately 50 billion1 (Featherstone, 2012) cans of food are manu- factured and consumed every year, globally. 3 Nicholas Appert discovers and documents a safe way of heat-preserving food The sixteenth and seventeenth centuries were a time of great scientific advancement in the areas of chemistry, mathematics, and physics. This was known as the Scientific Revolu- tion, which laid the foundation for the Age of Enlightenment in the eighteenth century, a period in which science became popular with the ordinary person, and an increasingly literate population was hungry for knowledge, for information, and to learn. Evening science lectures, with demonstrations, were very popular as a form of entertainment for the work- ing class. In addition, the Industrial Revolution was taking place in Europe in the eighteenth and nineteenth centuries. Great strides were made in the areas of textiles, steam generation, and metallurgy. Steam generation was much more efficient; fossil fuels were used for the first time, instead of wood-based fuel, resulting in a much more efficient source of energy.
Recommended publications
  • Dairy and Food Sanitation 1982-10: Vol 2 Iss 10
    Dairy and Food Sanitation Advertising Works... of Food and this is protection the p/ace to be for resuits ' Dairy Food sanitation Mail your copy or camera ready art work today to: lAMFES-Advertising P.O. Box 701 AMES, lA 50010 Ad placed in one publication Ad placed in both publications|(same month & copy) ADVERTISING RATES - Base Charge ADVERTISING RATES- Base Charge Black 8 white rates 1 time 6 times 12 times Black 8- white rates 1 time 6 times 12 times Back cover $715 $653 $591 Back Cover $476 $435 $393 Inside Back Cover 697 636 576 Inside Front Cover 464 425 383 Inside Front Cover 697 636 576 Inside Back Cover 464 425 383 One page 622 568 514 One page 414 378 342 2/3 page 472 422 378 2/3 page 315 281 252 1/2 page 416 332 1/2 page 252 222 195 380 1/3 page 270 244 216 1/3 page 180 162 145 1 /4 page 206 190 162 1/4 page 138 127 109 1 /8 page 151 126 109 1/8 page 100 84 73 2 color: Add $85 per placement Classified ads: 20C per word 4 color: Add $275 per placement Agency commission: 15% Bleed: Add $55 to your base charge Invoices due upon receipt MECHANICAL REQUIREMENTS CIRCULATION INFORMATION Full page 7" x 10" 2/3 page (horiz.) 7" x 614" 1/2 page (vert.) 3%" x 10" 1/2 page (horiz.) 7" x 5" 1/3 page (horiz.) 7" x 314" Major Responsibilities 1/4 page (vert.) 314"x4%" Milk and Food Quality Control .
    [Show full text]
  • A Centurty of Food Science IFT Booklet
    This book was the product of the Research Report Task Force, including Roy G. Arnold Robert E. Berry Ellen Bradley Walter L. Clark AI. S. Clausi Arnold E. Denton Charles Feldberg F. Jack Francis Daniel Fung Marianne Gillette Dennis Heldman Richard Lechowich Gilbert Leveille David Lineback Daryl Lund Laszlo P. Somogyi Special thanks to three 1FT members who wrote special articles about their acquaintences and experiences: Al Clausi John Powers Jack Francis Editing by 1FT Staff copywrite 2000 ood science is a somewhat odd amalgam of scientific disciplines, including basic sciences, "soft" science, culinary arts and its out• growths, chemistry, biology, economics, agronomics, microbiology, and engineering. There are others, but "food science" is the common theme that turns traditional foods into a variety of specialty products and makes them tasty, safe, available, and convenient. Food supply and security are sometimes prominent in the roster, and other disciplines take their place from time to time. It is rare that food science teaches something truly new-but the "devil is in the details," and food science takes knowledge to a supremely practical use. Between the early 1900s and the present, food science and its cousins have provided Americans with the safest food supply the world has ever known, as well as the most plentiful and the least expensive. The other developed countries of the world have also been provided with the same kind of food supply. The underdeveloped and developing countries of the world have an improving food situation, and the information gained during the long race toward food security for developing countries has been extremely helpful to developed countries as well.
    [Show full text]
  • Principles of the Food Processing & Preservation
    Paper No.: 02 Paper Title: PRINCIPLES OF THE FOOD PROCESSING & PRESERVATION Module – 06: Thermal Death Time Curves Paper Coordinator: Dr. P. Narender Raju, Scientist, National Dairy Research Institute, Karnal, Haryana Content Writer: Dr. Kuna Aparna, Asst. Professor, Prof. Jayashankar Telangana State Agricultural University, Hyderabad Module 6 THERMAL DEATH TIME CURVES Introduction • Thermal calculations thus involve the need for knowledge of the concentration of microorganisms to be destroyed, the acceptable concentration of microorganisms that can remain behind (spoilage organisms, for example, but not pathogens), the thermal resistance of the target microorganisms (the most heat tolerant ones), and the temperature time relationship required for destruction of the target organisms. • The extent of the pasteurization treatment required is determined by the heat resistance of the most heat-resistant enzyme or microorganism in the food. • A thermal death curve for this process is shown in next slide. It is a logarithmic process, meaning that in a given time interval and at a given temperature, the same percentage of the bacterial population will be destroyed regardless of the population present. • Several parameters help us to do thermal calculations and define the rate of thermal lethality. The D value is a measure of the heat resistance of a microorganism. It is the time in minutes at a given temperature required to destroy 1 log cycle (90%) of the target microorganism. (Of course, in an actual process, all others that are less heat tolerant are destroyed to a greater extent). For example, a D value at 72°C of 1 minute means that for each minute of processing at 72°C the bacteria population of the target microorganism will be reduced by 90%.
    [Show full text]
  • Dr. Vijaya Khader Former Dean, Acharya N G Ranga Agricultural University Paper Coordinator Er
    Paper No. : 04 Unit Operations in Food Processing Module : 09 Fundamentals of Thermal Processing of Food Development Team Principal Investigator Prof. (Mrs.) Vijaya Khader, Ph.D Former Dean, Acharya N G Ranga Agricultural University Dr. Vijaya Khader Former Dean, Acharya N G Ranga Agricultural University Paper Coordinator Er. Dibyakanta Seth Asst. Professor, Tezpur University, Assam Dr. Kshirod Kumar Dash Content Writer Asst. Professor, Dept. of Food Engg. & Tech., Tezpur University, Assam Prof. (Mrs.) Vijaya Khader, Ph.D Content Reviewer Former Dean, Acharya N G Ranga Agricultural University Dr. MC Varadaraj , Chief Scientist CSIR-CFTRI, Mysore Dr. Vijaya Khader Dr. MC Varadaraj 1 Unit Operations in Food Processing Food Technology Fundamentals of Thermal Processing of Food Description of Module Subject Name Food Technology Paper Name 04 Unit Operations in Food Processing Module Name/Title Fundamentals of Thermal Processing of Food Module Id FT/UOFP/9 Pre-requisites Heat transfer Objectives To study the relationship between the microbial destruction and thermal treatment and to get acquainted with the related terms like D value, z value and F value. Keywords Thermal death time, z- value, F-value Biological materials, particularly foods, are perishable in nature and therefore, it becomes critical to apply certain preservation techniques in order to increase their shelf life. Physical and chemical means 2 Unit Operations in Food Processing Food Technology Fundamentals of Thermal Processing of Food of preservation like drying, smoking, salting, chilling, freezing and heating are most commonly used in food industries. Thermal processing is a technique that causes surface destruction of the pathogenic as well as /or spoilage micro-organisms leading to an increase in the shelf life of the product.
    [Show full text]
  • Thermal Pasteurization of Ready-To-Eat Foods and Vegetables: Critical Factors for Process Design and Effects on Quality
    Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20 Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality Jing Peng, Juming Tang, Diane M. Barrett, Shyam S. Sablani, Nathan Anderson & Joseph R. Powers To cite this article: Jing Peng, Juming Tang, Diane M. Barrett, Shyam S. Sablani, Nathan Anderson & Joseph R. Powers (2017) Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality, Critical Reviews in Food Science and Nutrition, 57:14, 2970-2995, DOI: 10.1080/10408398.2015.1082126 To link to this article: http://dx.doi.org/10.1080/10408398.2015.1082126 Accepted author version posted online: 03 Nov 2015. Published online: 03 Nov 2015. Submit your article to this journal Article views: 229 View related articles View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 Download by: [Washington State University Libraries ] Date: 17 May 2017, At: 11:15 CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION 2017, VOL. 57, NO. 14, 2970–2995 http://dx.doi.org/10.1080/10408398.2015.1082126 Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality Jing Penga, Juming Tangb, Diane M. Barrettc, Shyam S. Sablanib, Nathan Andersond, and Joseph R. Powerse aCollege of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China; bDepartment of Biological Systems Engineering, Washington State University, Pullman, Washington, USA; cDepartment of Food Science and Technology, University of California, Davis, California, USA; dU.S.
    [Show full text]
  • Validation of Thermal Destruction of Pathogenic Bacteria in Rendered Animal Products Mary Hayes Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations 12-2013 Validation of Thermal Destruction of Pathogenic Bacteria in Rendered Animal Products Mary Hayes Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Microbiology Commons Recommended Citation Hayes, Mary, "Validation of Thermal Destruction of Pathogenic Bacteria in Rendered Animal Products" (2013). All Dissertations. 1255. https://tigerprints.clemson.edu/all_dissertations/1255 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. VALIDATION OF THERMAL DESTRUCTION OF PATHOGENIC BACTERIA IN RENDERED ANIMAL PRODUCTS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Microbiology by Mary Melissa Hayes December 2013 Accepted by: Annel K. Greene, Committee Chair Thomas A. Hughes Xuiping Jiang Paul L. Dawson ABSTRACT This study tested enumeration techniques for high fat food matrices and determined thermal death times in rendering animal products. Standard Class O phosphate/magnesium chloride dilution buffer series (Dilution Series A) and a modified (pre-warmed to 32ºC) lecithin phosphate dilution buffer series (Dilution Series B) were used to enumerate a Salmonella cocktail from both poultry and beef rendering materials. Results of this study indicate use of a modified lecithin buffer did not improve Salmonella enumeration accuracy from rendering materials. Instead, the results suggested use of xylose lysine deoxycholate agar (XLD) with either buffer system accurately enumerated Salmonella from rendering materials.
    [Show full text]
  • Shaka: a New and Novel Processing Technology to Produce Commercially Sterile Canned Foods
    SHAKA: A NEW AND NOVEL PROCESSING TECHNOLOGY TO PRODUCE COMMERCIALLY STERILE CANNED FOODS by STEPHANIE MARIE ANGALET B.S., Kansas State University, 2003 A REPORT submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Food Science KANSAS STATE UNIVERSITY Manhattan, Kansas 2011 Approved by: Major Professor Dr. Daniel Y. C. Fung Abstract The process of canning or “commercial sterilization” has been studied for more than two centuries. The first to develop canning as a defense against spoilage was Nicholas Appert also known as the “father of canning.” Appert invented a method of preservation by enclosing food in hermetically sealed containers and then heating containers to boiling temperatures for a specific period of time. The canning preservation method has changed over the years, and continues to change for the better. Technology for retorts, or processing vessels, has grown from the traditional steam heating medium to also include water and steam/water spray heating mediums. The once static vessels, now utilize rotation and shaking motions to decrease process time and in turn increase product quality. The product packaging has also evolved to include not only rigid metal containers, but semi-rigid and flexible plastic containers. The variety of packaging adds greater flexibility to the type of food products that can be produced in a shelf stable manner. Canning or “commercial sterilization” is still used today by the food industry as a method of providing safe food with extended shelf life. Today’s goal of commercial sterilization is to continue to produce safe food products that are high in quality and profitable to produce.
    [Show full text]
  • Handbook of Food Engineering Practice / Edited by Enrique Rotstein, R
    CRC Press Boca Raton New York Copyright © 1997 CRC Press, LLC Acquiring Editor: Harvey M. Kane Project Editor: Albert W. Starkweather, Jr. Cover Designer: Dawn Boyd Library of Congress Cataloging-in-Publication Data Handbook of food engineering practice / edited by Enrique Rotstein, R. Paul Singh, and Kenneth J. Valentas. p. cm. Includes bibliographical references and index. ISBN 0-8493-8694-2 (alk. paper) 1. Food industry and trade--Handbooks, manuals, etc. I. Rotstein, Enrique. II. Singh, R. Paul. III. Valentas, Kenneth J., 1938- . TP370.4.H37 1997 664--dc21 96-53959 CIP This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific clients, may be granted by CRC Press LLC, provided that $.50 per page photocopied is paid directly to Copyright Clearance Center, 27 Congress Street, Salem, MA 01970 USA. The fee code for users of the Transactional Reporting Service is ISBN 0-8493-8694-2/97/$0.00+$.50.
    [Show full text]
  • Validating the Reduction of Salmonella and Other Pathogens in Heat
    PMMI is excited to announce that the Alliance for Innovation & Operational Excellence (AIOE) is now the OpX Leadership Network Validating the Reduction of Salmonella and Other REPRINT Pathogens in Heat Processed Low-Moisture Foods For more information on this document and other work from the OpX Leadership Network, please visit OpXLeadershipNetwork.org brought to you by: PMMI | 11911 Freedom Drive, Suite 600 | Reston, VA 20190 FOR POSITION ONLY Leadership Network Moving Operational Excellence Forward DEVELOPED BY THE ALLIANCE FOR INNOVATION & OPERATIONAL EXCELLENCE PRODUCT SAFETY SOLUTIONS GROUP SEPTEMBER 2012 Validating the Reduction of Salmonella and Other Pathogens in Heat Processed Low-Moisture Foods Based in Washington, D.C., the Grocery Manufacturers Association (GMA) is the voice of more than 300 leading food, beverage and consumer product companies that sustain and enhance the quality of life for hundreds of millions of people in the United States and around the globe. Founded in 1908, GMA is an active, vocal advocate for its member companies and a trusted source of information about the industry and the products consumers rely on and enjoy every day. The association and its member companies are committed to meeting the needs of consumers through product innovation, responsible business practices and effective public policy solutions developed through a genuine partnership with policymakers and other stakeholders. In keeping with its founding principles, GMA helps its members produce safe products through a strong and ongoing commitment to scientific research, testing and evaluation and to providing consumers with the products, tools and information they need to achieve a healthy diet and an active lifestyle.
    [Show full text]
  • Int~Rnational
    VOLUME 17 NO. 7 July, 1954 Int ~r nationa l nNever Let it Get Dirty" , . r , "The first and all important rule e We first reprinted these words more than 30 years ago. We have re­ is: never let a milking machine get printed them many, many times since. We dirty. Milk is clean as it comes from doubt that anybody has ever said so much the cow. It does not dirty the milker in so few words-we doubt that anybody unless it is allowed to stay in the ever will. They tell the whole story. milker and dry on. Thus the first e A Surge Unit can be step in never letting the milker get snapped all apart in twenty seconds. A few dirty is to rinse it immediately after seconds more and the pail, pail lid and rub­ the last cow is milked, not 15 or 20 bers can be buried in clean cold water. No minutes later or after breakfast, milk can dry. · but IMMEDIATELY.'' e Then ... scrub with a Old Cornell University Bulletin detergent* and hot water. Rinse and sani­ tize* as required. That's all there is to it. e The right way is the easiest, safest and surest way. •we recommend:-Pfonstiehl #47 Detergent Copy ri -'t hl I 95 .C Babson Bros. Co . Pfonstiehl HWD for hard water Pfonstiehl LSH Liquid Sodium Hypochlorite BABSON BROS. CO. 2843 West Nineteenth Street • Chicago 23, Illinois Atlanta ·Houston ·Kansas City· Minneapolis· Sacramento· SeaHie ·Syracuse· Toronto , . r i A' ' The urgent need to increase consumption of dairy products points up the Dairyman's responsibility for the quality of the milk and cream he produces ..
    [Show full text]
  • Thesis-1964-M266d.Pdf (5.160Mb)
    DEI'ERMINATION OF A CANNING TECHNIQUE,,AND ACCEPTABILITY OF A CHICKEN AND RICE DISH USED IN THE PHILIPPINES By ROMUALDA s. MANALO !1 Bachelor of Science University of the Philippines Ouezon City, Philippines 195? Submitted to the faculty of the .Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1964 U!J"U.,"'Jli'1U!IIIR It.ATE UNIVERSITY. LIBRARY JAN 6 1985 .,.,.,, -.·.,,~·,-~ ... --,-·--· ''" ,., DEI'ERMINATION OF A CANNING TECHNIQUE AND ACCEPTABILITY OF A CHICKEN AND RICE DISH USED IN THE PHILIPPINES Thesis Approved: ~~ool.., 569830 ii ACKNOWLEDGMENT The writer is greatly indebted to her adviser, Dr. Helen F. Barbour, Head of the Food, Nutrition and Instituti.on Administration Department, for her kindness, understanding and valuable guidance in planning and conducting this study. Grateful acknowledgments are due to Dr. Eric C. Noller of the Micro­ biology Department, to Dr. Robert L. Henrickson of the Animal Husbandry Department, to Dr. David L. Weeks of the Statistics Department and to Miss Hazel Baker of the Food, Nutrition and Institution Administration Depart­ ment, for their valuable assistance and for the use of the facilities in their departments. Sincere appreciation is expressed to Miss Mary E. Leidigh, Director of the Dietetic Internship Program, for the encouragement she has given to the writer; to the Asian students for their full cooperation in the taste panel evaluation; to Mrs. Richard P. Reid for her cooperation in the typing of this manuscript. To her family-and friends, the writer is indebted for their continuous support and encouragement.
    [Show full text]
  • Principles of Thermal Processing of Packaged Foods
    Principles of Thermal Processing of Packaged Foods Ricardo Simpson Universidad Técnica Federico Santa María, Chile Helena Nuñez Universidad Técnica Federico Santa María, Chile Cristian Ramírez Universidad Técnica Federico Santa María, Chile https:// doi .org/ 10 .21061/ IntroBiosystemsEngineering/ Food _Thermal _Processing How to cite this chapter: Simpson, R., Nuñez, H., & Ramírez, C. (2020). Principles of Thermal Processing of Packaged Foods. In Holden, N. M., Wolfe, M. L., Ogejo, J. A., & Cummins, E. J. (Ed.), Introduction to Biosystems Engineering. https:// doi .org/ 10 .21061/ IntroBiosystemsEngineering/ Food _Thermal _Processing This chapter is part of Introduction to Biosystems Engineering International Standard Book Number (ISBN) (PDF): 978- 1- 949373- 97- 4 International Standard Book Number (ISBN) (Print): 978- 1- 949373- 93- 6 https:// doi .org/ 10 .21061/ IntroBiosystemsEngineering Copyright / license: © The author(s) This work is licensed under a Creative Commons Attribution (CC BY) 4.0 license. https:// creativecommons .org/ licenses/ by/ 4 .0 The work is published jointly by the American Society of Agricultural and Biological Engineers (ASABE) www .asabe .org and Virginia Tech Publishing publishing .vt .edu. Principles of Thermal Processing of Packaged Foods Ricardo Simpson Cristian Ramírez Departamento de Ingeniería Química y Ambiental, Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso, Chile Universidad Técnica Federico Santa María, Valparaíso, Chile Centro Regional de
    [Show full text]