Clemens Attinger 10 Angiosomes and Wound Care in the Diabetic Foot
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Netter's Musculoskeletal Flash Cards, 1E
Netter’s Musculoskeletal Flash Cards Jennifer Hart, PA-C, ATC Mark D. Miller, MD University of Virginia This page intentionally left blank Preface In a world dominated by electronics and gadgetry, learning from fl ash cards remains a reassuringly “tried and true” method of building knowledge. They taught us subtraction and multiplication tables when we were young, and here we use them to navigate the basics of musculoskeletal medicine. Netter illustrations are supplemented with clinical, radiographic, and arthroscopic images to review the most common musculoskeletal diseases. These cards provide the user with a steadfast tool for the very best kind of learning—that which is self directed. “Learning is not attained by chance, it must be sought for with ardor and attended to with diligence.” —Abigail Adams (1744–1818) “It’s that moment of dawning comprehension I live for!” —Calvin (Calvin and Hobbes) Jennifer Hart, PA-C, ATC Mark D. Miller, MD Netter’s Musculoskeletal Flash Cards 1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103-2899 NETTER’S MUSCULOSKELETAL FLASH CARDS ISBN: 978-1-4160-4630-1 Copyright © 2008 by Saunders, an imprint of Elsevier Inc. All rights reserved. No part of this book may be produced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publishers. Permissions for Netter Art figures may be sought directly from Elsevier’s Health Science Licensing Department in Philadelphia PA, USA: phone 1-800-523-1649, ext. 3276 or (215) 239-3276; or e-mail [email protected]. -
The Anterior View of the Extraosseous Blood Supply to the Foot and Ankle in a Specimen That Was Injected with Batson's Com- Po
The Journal of Bone and Joint Surgery (Gilbert) Final 32 Author(s): Paragraph text formatting will be adjusted prior to publication. Fig. E-1 The anterior view of the extraosseous blood supply to the foot and ankle in a specimen that was injected with Batson’s com- pound. 1 = first cuneiform, 2 = second cuneiform, 3 = third cu- neiform, 4 = cuboid, 5 = calcaneus, 6 = fibula, 7 = tibia, 8 = talus, 9 = navicular, A = anterior tibial artery, B = anterior medial malleolar artery, C = anterior lateral malleolar artery, D = dorsa- lis pedis artery, E = proximal lateral tarsal artery, F = proximal medial tarsal artery, G = distal medial tarsal artery, H = distal lateral tarsal artery, I = arcuate artery, J = first dorsal metatar- sal artery, K = artery of the sinus tarsi, L = longitudinal branch to second intermetatarsal space, M = longitudinal branch to third intermetatarsal space, N = longitudinal branch to fourth in- termetatarsal space, and O = transverse pedicle branch. Author: Illustration(s) on this page may have been modified. Please check illustration(s) carefully! TABLE E-1 Extraosseous Vessel Characteristics Artery Artery Present (%) Internal Diameter (mean [range]) (mm) Anterior tibial artery 95 1.828 (1.302 - 2.222) Medial metaphyseal artery 100 0.389 (0.106 - 0.818) Medial malleolar branch 100 0.316 (0.103 - 0.595) Annular branch 100 0.243 (0.122 - 0.464) Recurrent branch 90 0.218 (0.100 - 0.491) Lateral metaphyseal artery 100 0.352 (0.143 - 0.778) Anterior medial malleolar artery 80 0.430 (0.119 - 1.039) Superficial branch 100 -
The Deep Femoral Artery and Branching Variations: a Case Report Arteria Profunda Femoris Ve Dallarının Varyasyonu: Olgu Sunumu
Cumhuriyet Tıp Dergisi Cumhuriyet Tıp Derg 2009; 31: 279-282 Cumhuriyet Medical Journal Cumhuriyet Med J 2009; 31: 279-282 The deep femoral artery and branching variations: a case report Arteria profunda femoris ve dallarının varyasyonu: olgu sunumu Vedat Sabancıoğulları, Mehmet İlkay Koşar, Ekrem Ölçü, Mehmet Çimen Department of Anatomy (Assist. Prof. V. Sabancıoğulları, MD; Assist. Prof. M. İ. Koşar, MD; Prof. M. Çimen, PhD), Cumhuriyet University School of Medicine, TR-58140, Sivas; and Department of Radiology (E. Ölçü, MD, Specialist in Radiology) Afşin State Hospital, TR-46500 Kahramanmaraş Abstract The deep femoral artery is the major branch of the femoral artery. Its branches and branching show various variations. For this reason, an extensive knowledge about the anatomy of the deep femoral artery is indeed important in vascular reconstructive surgery involving the groin. In this investigation, a case with variations of the deep femoral artery origin and branching has been presented. The case was a 45-year old male cadaver and the arterial variation was noted during routine dissection. The right and left origins of the deep femoral artery varied. When the midpoint of the inguinal ligament was taken as a reference, the right artery originated at 5.58 cm and the left artery at 2.22 cm. In the left, the ascending branch and transverse branch of the lateral circumflex femoral artery originated. At a joint root and the descending branch originated directly at the deep femoral artery. Also in the left, it was observed that there were eight perforating arteries. Keywords: Deep femoral artery, anatomic variation, cadaver Özet Arteria profunda femoris, arteria femoralis’in uyluğu besleyen en büyük dalıdır. -
Reconstructive
RECONSTRUCTIVE Angiosomes of the Foot and Ankle and Clinical Implications for Limb Salvage: Reconstruction, Incisions, and Revascularization Christopher E. Attinger, Background: Ian Taylor introduced the angiosome concept, separating the M.D. body into distinct three-dimensional blocks of tissue fed by source arteries. Karen Kim Evans, M.D. Understanding the angiosomes of the foot and ankle and the interaction among Erwin Bulan, M.D. their source arteries is clinically useful in surgery of the foot and ankle, especially Peter Blume, D.P.M. in the presence of peripheral vascular disease. Paul Cooper, M.D. Methods: In 50 cadaver dissections of the lower extremity, arteries were injected Washington, D.C.; New Haven, with methyl methacrylate in different colors and dissected. Preoperatively, each Conn.; and Millburn, N.J. reconstructive patient’s vascular anatomy was routinely analyzed using a Dopp- ler instrument and the results were evaluated. Results: There are six angiosomes of the foot and ankle originating from the three main arteries and their branches to the foot and ankle. The three branches of the posterior tibial artery each supply distinct portions of the plantar foot. The two branches of the peroneal artery supply the anterolateral portion of the ankle and rear foot. The anterior tibial artery supplies the anterior ankle, and its continuation, the dorsalis pedis artery, supplies the dorsum of the foot. Blood flow to the foot and ankle is redundant, because the three major arteries feeding the foot have multiple arterial-arterial connections. By selectively performing a Doppler examination of these connections, it is possible to quickly map the existing vascular tree and the direction of flow. -
Femoral Artery, Profunda Femoris Artery, Lateral Circumflex Femoral Artery, Medial Circumflex Artery, Femoral Triangle
Basic Sciences of Medicine 2016, 5(1): 5-7 DOI: 10.5923/j.medicine.20160501.02 Anomalous Configuration of Medial and Lateral Circumflex Femoral Arteries Rajani Singh Department of Anatomy AIIMS Rishikesh, Rishikesh, India Abstract Normally profunda femoris artery arises from femoral artery below the inguinal ligament. Profunda femoris artery gives rise to lateral circumflex artery laterally and medial circumflex artery medially. But abnormal configuration of profunda femoris artery and its branches was observed in two cases in present study during dissection of lower limbs for teaching purpose in the department of Anatomy AIIMS Rishikesh, India. In one case, femoral artery trifurcated into medial circumflex, lateral circumflex and profunda femoris arteries. This finding is rare. In another case, common trunk arose from femoral artery which descended for 2.5 cm and gave medial circumflex artery. This common trunk descended further for 1 cm and bifurcated into lateral circumflex and profunda femoris arteries. This finding is new and unique and hence the case is reported. Knowledge of these variations will be of utmost importance to surgeons carrying out surgical procedures around the femoral triangle, to radiologists to avoid misinterpretation of radiographs and to anatomists for new and rare variants. Keywords Femoral artery, Profunda femoris artery, Lateral circumflex femoral artery, Medial circumflex artery, Femoral triangle 1. Introduction 2. Case Report Femoral artery (FA) is continuation of external iliac artery. Femoral triangles of two female cadavers embalmed in Profunda femoris artery (PFA) originates from posterolateral 10% formalin were dissected for teaching undergraduate aspect of femoral artery about 3.5 cm below the inguinal medical students in the department of anatomy AIIMS ligament (IL) in femoral triangle [1]. -
Vascular Anatomy of the Lower Limbs Anatomy Team 434
Vascular Anatomy of the Lower Limbs Anatomy Team 434 Color Index: If you have any complaint or ▪ Important Points suggestion please don’t ▪ Helping notes hesitate to contact us on: [email protected] ▪ Explanation OBJECTIVES ● List the main arteries of the lower limb. ● Describe their origin, course distribution & branches ● List the main arterial anastomosis ● List the sites where you feel the arterial pulse. ● Differentiate the veins of LL into superficial & deep ● Describe their origin, course & termination and tributaries ORIGIN FEMORAL ARTERY It is the main Arterial supply of the lower limb it is the LOCATION continuation of the external Behind the inguinal ligament in the midway iliac artery between Superior anterior iliac spine and the pubic symphysis . It ends at the opening of adductor magnus as the popliteal artery. It descends vertically towards the adductor RELATIONS tubercle -It terminates by passing through the adductor hiatus (in adductor magnus) and entering the popliteal space as the Popliteal artery. - In the front of hip joint→femoral artery - artery and vien inside the femoral sheath but the nerve outside the sheath - In the back of hip joint→siatic nearve - artery , vien and nerve inside femoral triangle . FEMORAL VEIN & ARTETY : ( See Figure 1 ) 1- At the inguinal ligament : it is located medially to the femoral artery 2- At the apex of the femoral triangle : it is located posteriorly to the femoral artery 3- At the opening of the adductor magnus : it is located laterally to the femoral artery 1 BRANCHES OF THE FEMORAL ARTERY(1) : ( See Figure 2 ) 2 3 1- Superficial Epigastric 2- Superficial Circumflex iliac 3- Superficial external pudendal 4- Deep external pudendal Figure Figure 1 5- Profunda femoris —(Deep artery of thigh) 2 Cannulation of Femoral Artery : It is used for left cardiac angiography. -
M34 M34/1 Latin M34, M34/1
M34 M34/1 M34 M34/1 Latin M34, M34/1 1 Tibia 34 Retinaculum 62 Vagina tendinum musculi 2 Malleolus medialis musculorum fibularium extensoris hallucis longi 3 Talus inferius [Retinaculum 63 A. dorsalis pedis 4 Lig. collaterale mediale musculorum peroneorum 64 M. extensor hallucis brevis [Lig. deltoideum] inferius] 65 N. cutaneus dorsalis 5 Lig. talonaviculare 35 Tendo musculi fibularis medialis 6 Os naviculare longus [Tendo musculi 66 Mm. interossei dorsales 7 Ligg. tarsi dorsalia fibularis longus] 67 Tendines musculi 8 Os metatarsi I 36 Lig. calcaneofibulare extensoris digitorum longi [Os metatarsale I] 37 Tendo calcaneus 68 Tendo musculi extensoris 9 Articualtio 38 Retinaculum musculo- hallucis longi metatarsophalangeae I rum fibularium superius 69 Nn. digitales dorsales pedis 10 Phalanx proximalis I [Retinaculum musculorum 70 Aa. digitales dorsales 11 Phalanx distalis I peroneorum superius] 71 M. abductor digiti minimi 12 Ligg. metatarsalia dorsalia 39 Lig. talocalcaneum 72 Tendines musculi 13 Os cuboideum interosseum extensoris digitorum brevis 14 Lig. bifurcatum 40 Lig. talofibulare posterius 73 Aa. metatarsales dorsales 15 Lig. talofibulare anterius 41 Articulationes metatarsop- 74 A. arcuata 16 Malleolus lateralis halangeae, Ligg. plantaria 75 M. fibularis tertius 17 Lig. tibio-fibulare anterius 42 Basis ossis metatarsi I [M. peroneus tertius] 18 Fibula 43 Ligg. tarsometatarsalia 76 Tendo musculi fibularis 19 Membrana interossea cruris plantaria brevis [Tendo musculi 20 Lig. collaterale mediale 44 Lig. cuboideonaviculare peronei brevis] [Lig. deltoideum], pars plantare 77® A. tarsalis lateralis tibiotalaris anterior 45 Lig. calcaneonaviculare 78 N. cutaneus dorsalis inter- 21 Lig. collaterale mediale plantare medius [Lig. deltoideum], pars 46 Sustentaculum tali 79 Retinaculum musculorum tibiocalcanea 47 Tuber calcanei extensorum superius 22 Lig. -
Vascular Anatomy of the Lower Limb
Vascular anatomy of the lower limb Musculoskeletal block- Anatomy-lecture 17 Editing file Objectives Color guide : Only in boys slides in Green Only in girls slides in Purple ✓ List the main arteries of the lower limb. important in Red ✓ Describe their origin, course distribution & branches. Doctor note in Blue Extra information in Grey ✓ List the main arterial anastomosis ✓ List the sites where you feel the arterial pulse. ✓ Differentiate the veins of the lower limb into superficial & deep. ✓ Describe their origin, course & termination and tributaries. For best understand check this:https://youtu.be/JNczJx2ju3I ➢ Is the main arterial supply to the lower limb Femoral artery ➢ It is the continuation of the external iliac artery Beginning Relations Terminations Branches It enters the thigh In the femoral triangle the Terminates by passing The femoral artery supplies: lower behind the inguinal artery is superficial covered through the adductor canal abdominal wall, thigh & external ligament point only by skin & fascia. (deep to sartorius) genitalia through the following (midway between the Posterior: Hip joint, It exits the canal by passing branches: anterior superior iliac separated from it by psoas through the adductor hiatus 1- superficial epigastric spine & the symphysis muscle and becomes the popliteal 2- superficial circumflex iliac pubis Medial: femoral vein. artery 3- superficial external pudendal Lateral: femoral nerve & its 4- deep external pudendal branches 5- profunda femoris (deep artery of thigh) Inguinal ligament Cannulation of FA: because of the superficial position of the femoral artery, it is used for left cardiac angiography. A long catheter is inserted percutaneously into the artery and passed up the external iliac artery, common iliac artery , aorta to the left ventricle. -
On the Position and Course of the Deep Plantar Arteries, with Special Reference to the So-Called Plantar Metatarsal Arteries
Okajimas Fol. anat. jap., 48: 295-322, 1971 On the Position and Course of the Deep Plantar Arteries, with Special Reference to the So-Called Plantar Metatarsal Arteries By Takuro Murakami Department of Anatomy, Okayama University Medical School, Okayama, Japan -Received for publication, June 7, 1971- Recently, we have confirmed that, as in the hand and foot of the monkey (Koch, 1939 ; Nishi, 1943), the arterial supply of the human deep metacarpus is composed of two layers ; the superficial layer on the palmar surfaces of the interosseous muscles and the deep layer within the muscles (Murakami, 1969). In that study, we pointed out that both layers can be classified into two kinds of arteries, one descending along the boundary of the interosseous muscles over the metacarpal bone (superficial and deep palmar metacarpal arteries), and the other de- scending along the boundary of the muscles in the intermetacarpal space (superficial and deep intermetacarpal arteries). In the human foot, on the other hand, the so-called plantar meta- tarsal arteries are occasionally found deep to the plantar surfaces of the interosseous muscles in addition to their usual positions on the plantar surfaces of the muscles (Pernkopf, 1943). And they are some- times described as lying in the intermetatarsal spaces (Baum, 1904), or sometimes descending along the metatarsal bones (Edwards, 1960). These circumstances suggest the existence in the human of deep planta of the two arterial layers and of the two kinds of descending arteries. There are, however, but few studies on the courses and positions of the deep plantar arteries, especially of the so-called plantar metatarsal arteries. -
Clinical Anatomy of the Lower Extremity
Государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный медицинский университет» Министерства здравоохранения Российской Федерации Department of Operative Surgery and Topographic Anatomy Clinical anatomy of the lower extremity Teaching aid Иркутск ИГМУ 2016 УДК [617.58 + 611.728](075.8) ББК 54.578.4я73. К 49 Recommended by faculty methodological council of medical department of SBEI HE ISMU The Ministry of Health of The Russian Federation as a training manual for independent work of foreign students from medical faculty, faculty of pediatrics, faculty of dentistry, protocol № 01.02.2016. Authors: G.I. Songolov - associate professor, Head of Department of Operative Surgery and Topographic Anatomy, PhD, MD SBEI HE ISMU The Ministry of Health of The Russian Federation. O. P.Galeeva - associate professor of Department of Operative Surgery and Topographic Anatomy, MD, PhD SBEI HE ISMU The Ministry of Health of The Russian Federation. A.A. Yudin - assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU The Ministry of Health of The Russian Federation. S. N. Redkov – assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU THE Ministry of Health of The Russian Federation. Reviewers: E.V. Gvildis - head of department of foreign languages with the course of the Latin and Russian as foreign languages of SBEI HE ISMU The Ministry of Health of The Russian Federation, PhD, L.V. Sorokina - associate Professor of Department of Anesthesiology and Reanimation at ISMU, PhD, MD Songolov G.I K49 Clinical anatomy of lower extremity: teaching aid / Songolov G.I, Galeeva O.P, Redkov S.N, Yudin, A.A.; State budget educational institution of higher education of the Ministry of Health and Social Development of the Russian Federation; "Irkutsk State Medical University" of the Ministry of Health and Social Development of the Russian Federation Irkutsk ISMU, 2016, 45 p. -
Intriguing Variations of Dorsalis Pedis Artery with Clinical Correlations P
Scholars International Journal of Anatomy and Physiology Abbreviated Key Title: Sch Int J Anat Physiol ISSN 2616-8618 (Print) |ISSN 2617-345X (Online) Scholars Middle East Publishers, Dubai, United Arab Emirates Journal homepage: https://scholarsmepub.com/sijap/ Original Research Article Intriguing Variations of Dorsalis Pedis Artery with Clinical Correlations P. J. Barot1, P. R. Koyani2* 1Tutor, Department of Anatomy, P. D. U. Medical College, Rajkot, Gujarat, India 2 Assistant Professor, Department of Anatomy, P. D. U. Medical College, Rajkot, Gujarat, India DOI: 10.36348/SIJAP.2019.v02i12.001 | Received: 24.11.2019 | Accepted: 04.12.2019 | Published: 06.12.2019 *Corresponding author: P. R. Koyani Abstract Objective: Dorsalis pedis artery represents the continuation of anterior tibial artery distal to level of ankle joint. The dorsalis pedis angiosome encompasses the entire dorsal aspect of foot through its branches eg. Medial tarsal, Lateral tarsal, Arcuate and 1st dorsal metatarsal arteries. Dorsalis pedis artery variation have been reported in past. Evaluation of dorsalis pedis artery pulsation is useful clinical test for assessing peripheral arterial diseases. Dorsalis pedis artery is the main source of blood supply to foot. Knowledge about origins, course, distribution and branching pattern is important for angiographers, vascular surgeons and reconstructive surgeons who operate upon these region. Method: Study of dorsalis pedis artery was done in forty dissected lower limbs of unknown sex and age from department of anatomy, PDUMC, RAJKOT. Result: In our study normal course and branching pattern of dorsalis pedis artery was found in 87.5% cases. Variation in branching pattern of dorsalis pedis artery was found in 12.5% cases. -
Product Information
G30 Latin VASA CAPITIS et CERVICIS ORGANA INTERNA 1 V. frontalis 49 Pulmo sinister 2 V. temporalis superficialis 50 Atrium dextrum 3 A. temporalis superficialis 51 Atrium sinistrum 3 a A. maxillaris 52 Ventriculus dexter 4 A. occipitalis 53 Ventriculus sinister 5 A. supratrochlearis 54 Valva aortae 6 A. et V. angularis 55 Valva trunci pulmonalis 7 A. et V. facialis 56 Septum interventriculare 7 a A. lingualis 57 Diaphragma 9 V. retromandibularis 58 Hepar 10 V. jugularis interna 11 A. thyroidea superior VASA ORGANORUM INTERNORUM 12 A. vertebralis 59 Vv. hepaticae 13 Truncus thyrocervicalis 60 V. gastrica dextra et sinistra 14 Truncus costocervicalis 61 A. hepatica communis 15 A. suprascapularis 61 a Truncus coeliacus 16 A. et V. subclavia dextra 62 V. mesenterica superior 17 V. cava superior 63 V. cava inferior 18 A. carotis communis 64 A. et V. renalis 18 a A. carotis externa 65 A. mesenterica superior 19 Arcus aortae 66 A. et V. lienalis 20 Pars descendens aortae 67 A. gastrica sinistra 68 Pars abdominalis® aortae VASA MEMBRII SUPERIORIS 69 A. mesenterica inferior 21 A. et V. axillaris 22 V. cephalica VASA REGIONIS PELVINAE 22 a A. circumflexa humeri anterior 72 A. et V. iliaca communis 22 b A. circumflexa humeri posterior 73 A. et V. iliaca externa 23 A. thoracodorsalis 74 A. sacralis mediana 24 A. et V. brachialis 75 A. et V. iliaca interna 25 A. thoracoacromialis 26 A. subclavia sinistra VASA MEMBRI INFERIORIS 27 V. basilica 76 Ramus ascendens a. circumflexae femoris 28 A. collateralis ulnaris superior lateralis 29 A. ulnaris 77 Ramus descendens a.