Learning Low-Dimensional Models for Heterogeneous Data by David Hong A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering: Systems) in The University of Michigan 2019 Doctoral Committee: Professor Laura Balzano, Co-Chair Professor Jeffrey A. Fessler, Co-Chair Professor Rina Foygel Barber, The University of Chicago Professor Anna Gilbert Professor Raj Rao Nadakuditi David Hong
[email protected] ORCID iD: 0000-0003-4698-4175 © David Hong 2019 To mom and dad. ii ACKNOWLEDGEMENTS As always, no list of dissertation acknowledgements can hope to be complete, and I have many people to thank for their wonderful influence over the past six years of graduate study. To start, I thank my advisors, Professor Laura Balzano and Professor Jeffrey Fessler, who introduced me to the exciting challenges of learning low-dimensional image models from heterogeneous data and taught me the funda- mental ideas and techniques needed to tackle it; this dissertation is the direct result. Laura and Jeff, I am always amazed by your deep and broad technical insights, your sincere care for students and your great patience (with me!). Working with you has changed the way I think, write and teach, and I cannot say how thankful I am to have had the opportunity to learn from you. I hope to one day be as wonderful an advisor to students of my own. I am also thankful for my excellent committee. Professor Rina Barber has many times provided deep statistical insight into my work, and her wonderful suggestions can be found throughout this dissertation.