Five Lectures on Sparse and Redundant Representations Modelling of Images
Five Lectures on Sparse and Redundant Representations Modelling of Images Michael Elad IAS/Park City Mathematics Series Volume 19, 2010 Five Lectures on Sparse and Redundant Representations Modelling of Images Michael Elad Preface The field of sparse and redundant representations has evolved tremendously over the last decade or so. In this short series of lectures, we intend to cover this progress through its various aspects: theoretical claims, numerical problems (and solutions), and lastly, applications, focusing on tasks in image processing. Our story begins with a search for a proper model, and of ways to use it. We are surrounded by huge masses of data, coming from various sources, such as voice signals, still images, radar images, CT images, traffic data and heart signals just to name a few. Despite their diversity, these sources of data all have something in common: each and everyone of these signals has some kind of internal structure, which we wish to exploit for processing it better. Consider the simplest problem of removing noise from data. Given a set of noisy samples (e.g., value as a function of time), we wish to recover the true (noise- free) samples with as high accuracy as possible. Suppose that we know the exact statistical characteristics of the noise. Could we perform denoising of the given data? The answer is negative: Without knowing anything about the properties of the signal in mind, this is an impossible task. However, if we could assume, for example, that the signal is piecewise-linear, the noise removal task becomes feasible. The same can be said for almost any data processing problem, such as de- blurring, super-resolution, inpainting, compression, anomaly detection, detection, recognition, and more - relying on a good model is in the base of any useful solution.
[Show full text]