Five Lectures on Sparse and Redundant Representations Modelling of Images
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries Michael Elad and Michal Aharon
3736 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 12, DECEMBER 2006 Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries Michael Elad and Michal Aharon Abstract—We address the image denoising problem, where we intend to concentrate on one specific approach towards the zero-mean white and homogeneous Gaussian additive noise is to image denoising problem that we find to be highly effective and be removed from a given image. The approach taken is based promising: the use of sparse and redundant representations over on sparse and redundant representations over trained dictio- naries. Using the K-SVD algorithm, we obtain a dictionary that trained dictionaries. describes the image content effectively. Two training options are Using redundant representations and sparsity as driving considered: using the corrupted image itself, or training on a forces for denoising of signals has drawn a lot of research corpus of high-quality image database. Since the K-SVD is limited attention in the past decade or so. At first, sparsity of the unitary in handling small image patches, we extend its deployment to wavelet coefficients was considered, leading to the celebrated arbitrary image sizes by defining a global image prior that forces sparsity over patches in every location in the image. We show how shrinkage algorithm [1]–[9]. One reason to turn to redundant such Bayesian treatment leads to a simple and effective denoising representations was the desire to have the shift invariance algorithm. This leads to a state-of-the-art denoising performance, property [10]. Also, with the growing realization that regular equivalent and sometimes surpassing recently published leading separable 1-D wavelets are inappropriate for handling images, alternative denoising methods. -
From Sparse Solutions of Systems of Equations to Sparse Modeling Of
SIAM REVIEW c 2009 Society for Industrial and Applied Mathematics Vol. 51,No. 1,pp. 34–81 From Sparse Solutions of Systems of Equations to Sparse ∗ Modeling of Signals and Images Alfred M. Bruckstein† David L. Donoho‡ Michael Elad§ Abstract. A full-rank matrix A ∈ Rn×m with n<mgenerates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries. Can it ever be unique? If so, when? As opti- mization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena, in particular the existence of easily verifiable conditions under which optimally sparse solutions can be found by con- crete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several well-known signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable, but there is considerable evidence that these problems often have sparse solutions. Hence, ad- vances in finding sparse solutions to underdetermined systems have energized research on such signal and image processing problems—to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical results on sparse mod- eling of signals and images, and recent applications in inverse problems and compression in image processing. This work lies at the intersection of signal processing and applied mathematics, and arose initially from the wavelets and harmonic analysis research commu- nities. -
Learning Low-Dimensional Models for Heterogeneous Data by David
Learning Low-Dimensional Models for Heterogeneous Data by David Hong A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering: Systems) in The University of Michigan 2019 Doctoral Committee: Professor Laura Balzano, Co-Chair Professor Jeffrey A. Fessler, Co-Chair Professor Rina Foygel Barber, The University of Chicago Professor Anna Gilbert Professor Raj Rao Nadakuditi David Hong [email protected] ORCID iD: 0000-0003-4698-4175 © David Hong 2019 To mom and dad. ii ACKNOWLEDGEMENTS As always, no list of dissertation acknowledgements can hope to be complete, and I have many people to thank for their wonderful influence over the past six years of graduate study. To start, I thank my advisors, Professor Laura Balzano and Professor Jeffrey Fessler, who introduced me to the exciting challenges of learning low-dimensional image models from heterogeneous data and taught me the funda- mental ideas and techniques needed to tackle it; this dissertation is the direct result. Laura and Jeff, I am always amazed by your deep and broad technical insights, your sincere care for students and your great patience (with me!). Working with you has changed the way I think, write and teach, and I cannot say how thankful I am to have had the opportunity to learn from you. I hope to one day be as wonderful an advisor to students of my own. I am also thankful for my excellent committee. Professor Rina Barber has many times provided deep statistical insight into my work, and her wonderful suggestions can be found throughout this dissertation.