Applied Signal Processing

Total Page:16

File Type:pdf, Size:1020Kb

Applied Signal Processing APPLIED SIGNAL PROCESSING SADASIVAN PUTHUSSERYPADY Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 ISBN: 978-1-68083-978-4 E-ISBN: 978-1-68083-979-1 DOI: 10.1561/9781680839791 Copyright © 2021 Sadasivan Puthusserypady Suggested citation: Sadasivan Puthusserypady. (2021). Applied Signal Processing. Boston–Delft: Now Publishers The work will be available online open access and governed by the Creative Commons “Attribution-Non Commercial” License (CC BY-NC), according to https://creativecommons.org/ licenses/by-nc/4.0/ Table of Contents Preface xv Acknowledgements xvii Notations, Symbols xix Glossary xxv Chapter 1 Introduction 1 1.1 What is a Signal?. 3 1.2 Classification of Signals . 6 1.2.1 Analog or Digital Signals . 6 1.2.2 Periodic and Aperiodic Signals . 9 1.2.3 Deterministic and Random Signals . 10 1.2.4 Real and Complex Signals . 10 1.3 Typical Real World Biomedical Signals. 11 1.3.1 Electroencephalogram (EEG) . 11 1.3.2 Electrocardiogram (ECG) . 14 1.3.3 Electrooculogram (EOG) . 14 1.3.4 Electroretinogram (ERG) . 15 1.3.5 Electromyogram (EMG) . 15 1.4 Concluding Remarks . 16 Chapter 2 Power and Energy 17 2.1 Power and Energy of Signals . 17 2.2 Energy Signals and Power Signals . 19 2.2.1 Single Real Sinusoid . 19 2.2.2 Single Complex Sinusoid. 20 iii iv Table of Contents 2.2.3 Sum of Complex Sinusoids . 21 2.2.4 Sum of Real Sinusoids . 22 2.3 Concluding Remarks . 23 Chapter 3 Fourier Series 27 3.1 Introduction to Fourier Series . 29 3.2 Why Fourier Series? . 30 3.3 Fourier Series: Definition and Interpretation . 31 3.4 Properties of Fourier Series . 34 3.4.1 Linearity . 34 3.4.2 Time Shifting . 35 3.4.3 Frequency Shifting or Modulation. 36 3.4.4 Time Reversal . 36 3.4.5 Even-Symmetric Signal . 36 3.4.6 Odd-Symmetric Signal . 37 3.4.7 Real Signal . 37 3.5 Real Fourier Series . 38 3.6 Examples of Fourier Series Evaluation. 40 3.7 Limitations of Fourier Series. 45 3.7.1 Gibbs Phenomenon . 45 3.7.2 Dirichlet Conditions . 45 3.8 Concluding Remarks . 46 Chapter 4 Fourier Transform 51 4.1 Introduction to Fourier Transform . 52 4.2 Fourier Transform: Development and Interpretation . 53 4.3 Properties of Fourier Transform. 57 4.3.1 Linearity . 58 4.3.2 Time Shifting . 58 4.3.3 Frequency Shifting or Modulation. 59 4.3.4 Time Reversal . 60 4.3.5 Time Scaling . 60 4.3.6 Time Scaling and Delay. 62 4.3.7 Time Differentiation . 64 4.3.8 Duality . 64 4.3.9 Symmetric Signals. 65 4.4 Fourier Transform of Periodic Signals . 66 4.4.1 Difficulty with Sinusoids . 67 4.4.2 Impulse Function . 68 4.4.3 Properties of Impulse Function . 69 Table of Contents v 4.4.4 Fourier Transform of Sinusoids . 70 4.4.5 Fourier Transform of Periodic Signals . 71 4.5 Dirichlet Conditions . 72 4.6 Fourier Transform Summary . 72 4.7 Concluding Remarks . 74 Chapter 5 Complex Signals 83 5.1 Introduction to Complex Signals . 83 5.1.1 Some Useful Rules and Identities . 85 5.1.2 Phasors . 85 5.2 Spectrum of Complex Signals. 87 5.2.1 Properties of the Fourier Transform of Complex Signals . 88 5.3 Linear Processing of Complex Signals . 89 5.4 Hilbert Transform . 90 5.4.1 Hilbert Transform as a Filter . 91 5.4.2 Properties of Hilbert Transform. 93 5.5 Analytic Signals . 94 5.5.1 Analytic Analog Signals . 94 5.5.2 Analytic Discrete-time Signals . 96 5.6 Instantaneous Amplitude and Frequency . 97 5.7 Concluding Remarks . 100 Chapter 6 Analog Systems 103 6.1 Classification of Systems . 104 6.1.1 Continuous-Time or Discrete-Time Systems . 104 6.1.2 Time-Invariant Systems . 104 6.1.3 Causal Systems . 104 6.1.4 Linear or Non-linear Systems . 104 6.2 Description of a System. 105 6.2.1 Input-Output Equation . 105 6.2.2 Frequency Response . 105 6.2.3 Impulse Response . 105 6.3 Why Study of Systems is Important?. 106 6.3.1 System Identification . 106 6.3.2 Output Evaluation . 107 6.3.3 Input Estimation. 107 6.4 Frequency Response . 107 6.5 Sinusoidal Input to Linear Systems . 110 6.5.1 Generalization to Multiple Sinusoids . 111 6.6 Partial Fraction Approach . 111 vi.
Recommended publications
  • Sampling Signals on Graphs from Theory to Applications
    1 Sampling Signals on Graphs From Theory to Applications Yuichi Tanaka, Yonina C. Eldar, Antonio Ortega, and Gene Cheung Abstract The study of sampling signals on graphs, with the goal of building an analog of sampling for standard signals in the time and spatial domains, has attracted considerable attention recently. Beyond adding to the growing theory on graph signal processing (GSP), sampling on graphs has various promising applications. In this article, we review current progress on sampling over graphs focusing on theory and potential applications. Although most methodologies used in graph signal sampling are designed to parallel those used in sampling for standard signals, sampling theory for graph signals significantly differs from the theory of Shannon–Nyquist and shift-invariant sampling. This is due in part to the fact that the definitions of several important properties, such as shift invariance and bandlimitedness, are different in GSP systems. Throughout this review, we discuss similarities and differences between standard and graph signal sampling and highlight open problems and challenges. I. INTRODUCTION Sampling is one of the fundamental tenets of digital signal processing (see [1] and references therein). As such, it has been studied extensively for decades and continues to draw considerable research efforts. Standard sampling theory relies on concepts of frequency domain analysis, shift invariant (SI) signals, and bandlimitedness [1]. Sampling of time and spatial domain signals in shift-invariant spaces is one of the most important building blocks of digital signal processing systems. However, in the big data era, the signals we need to process often have other types of connections and structure, such as network signals described by graphs.
    [Show full text]
  • Arxiv:1712.04732V2 [Math.NA] 17 Jan 2021 New Window Function, Runtimes for the SE Method Can Be Further Reduced
    Fast Ewald summation for electrostatic potentials with arbitrary periodicity D. S. Shamshirgar,a) J. Bagge,b) and A.-K. Tornbergc) KTH Mathematics, Swedish e-Science Research Centre, 100 44 Stockholm, Sweden. A unified treatment for fast and spectrally accurate evaluation of electrostatic po- tentials subject to periodic boundary conditions in any or none of the three spatial dimensions is presented. Ewald decomposition is used to split the problem into a real- space and a Fourier-space part, and the FFT-based Spectral Ewald (SE) method is used to accelerate the computation of the latter. A key component in the unified treatment is an FFT-based solution technique for the free-space Poisson problem in three, two or one dimensions, depending on the number of non-periodic directions. The computational cost is furthermore reduced by employing an adaptive FFT for the doubly and singly periodic cases, allowing for different local upsampling factors. The SE method will always be most efficient for the triply periodic case as the cost of computing FFTs will then be the smallest, whereas the computational cost of the rest of the algorithm is essentially independent of periodicity. We show that the cost of removing periodic boundary conditions from one or two directions out of three will only moderately increase the total runtime. Our comparisons also show that the computational cost of the SE method in the free-space case is around four times that of the triply periodic case. The Gaussian window function previously used in the SE method, is here compared to a piecewise polynomial approximation of the Kaiser-Bessel window function.
    [Show full text]
  • Lecture19.Pptx
    Outline Foundations of Computer Graphics (Fall 2012) §. Basic ideas of sampling, reconstruction, aliasing CS 184, Lectures 19: Sampling and Reconstruction §. Signal processing and Fourier analysis §. http://inst.eecs.berkeley.edu /~cs184 Implementation of digital filters §. Section 14.10 of FvDFH (you really should read) §. Post-raytracing lectures more advanced topics §. No programming assignment §. But can be tested (at high level) in final Acknowledgements: Thomas Funkhouser and Pat Hanrahan Some slides courtesy Tom Funkhouser Sampling and Reconstruction Sampling and Reconstruction §. An image is a 2D array of samples §. Discrete samples from real-world continuous signal (Spatial) Aliasing (Spatial) Aliasing §. Jaggies probably biggest aliasing problem 1 Sampling and Aliasing Image Processing pipeline §. Artifacts due to undersampling or poor reconstruction §. Formally, high frequencies masquerading as low §. E.g. high frequency line as low freq jaggies Outline Motivation §. Basic ideas of sampling, reconstruction, aliasing §. Formal analysis of sampling and reconstruction §. Signal processing and Fourier analysis §. Important theory (signal-processing) for graphics §. Implementation of digital filters §. Also relevant in rendering, modeling, animation §. Section 14.10 of FvDFH Ideas Sampling Theory Analysis in the frequency (not spatial) domain §. Signal (function of time generally, here of space) §. Sum of sine waves, with possibly different offsets (phase) §. Each wave different frequency, amplitude §. Continuous: defined at all points; discrete: on a grid §. High frequency: rapid variation; Low Freq: slow variation §. Images are converting continuous to discrete. Do this sampling as best as possible. §. Signal processing theory tells us how best to do this §. Based on concept of frequency domain Fourier analysis 2 Fourier Transform Fourier Transform §. Tool for converting from spatial to frequency domain §.
    [Show full text]
  • And Bandlimiting IMAHA, November 14, 2009, 11:00–11:40
    Time- and bandlimiting IMAHA, November 14, 2009, 11:00{11:40 Joe Lakey (w Scott Izu and Jeff Hogan)1 November 16, 2009 Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting sampling theory and history Time- and bandlimiting, history, definitions and basic properties connecting sampling and time- and bandlimiting The multiband case Outline Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting Time- and bandlimiting, history, definitions and basic properties connecting sampling and time- and bandlimiting The multiband case Outline sampling theory and history Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting connecting sampling and time- and bandlimiting The multiband case Outline sampling theory and history Time- and bandlimiting, history, definitions and basic properties Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting The multiband case Outline sampling theory and history Time- and bandlimiting, history, definitions and basic properties connecting sampling and time- and bandlimiting Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting Outline sampling theory and history Time- and bandlimiting, history, definitions and basic properties connecting sampling and time- and bandlimiting The multiband case Joe Lakey (w Scott Izu and Jeff Hogan) Time- and bandlimiting R −2πitξ Fourier transform: bf (ξ) = f (t) e dt R _ Bandlimiting:
    [Show full text]
  • High Frequency Integrated MOS Filters C
    N94-71118 2nd NASA SERC Symposium on VLSI Design 1990 5.4.1 High Frequency Integrated MOS Filters C. Peterson International Microelectronic Products San Jose, CA 95134 Abstract- Several techniques exist for implementing integrated MOS filters. These techniques fit into the general categories of sampled and tuned continuous- time niters. Advantages and limitations of each approach are discussed. This paper focuses primarily on the high frequency capabilities of MOS integrated filters. 1 Introduction The use of MOS in the design of analog integrated circuits continues to grow. Competitive pressures drive system designers towards system-level integration. System-level integration typically requires interface to the analog world. Often, this type of integration consists predominantly of digital circuitry, thus the efficiency of the digital in cost and power is key. MOS remains the most efficient integrated circuit technology for mixed-signal integration. The scaling of MOS process feature sizes combined with innovation in circuit design techniques have also opened new high bandwidth opportunities for MOS mixed- signal circuits. There is a trend to replace complex analog signal processing with digital signal pro- cessing (DSP). The use of over-sampled converters minimizes the requirements for pre- and post filtering. In spite of this trend, there are many applications where DSP is im- practical and where signal conditioning in the analog domain is necessary, particularly at high frequencies. Applications for high frequency filters are in data communications and the read channel of tape, disk and optical storage devices where filters bandlimit the data signal and perform amplitude and phase equalization. Other examples include filtering of radio and video signals.
    [Show full text]
  • Fourier Analysis of Discrete-Time Signals
    Fourier analysis of discrete-time signals (Lathi Chapt. 10 and these slides) Towards the discrete-time Fourier transform • How we will get there? • Periodic discrete-time signal representation by Discrete-time Fourier series • Extension to non-periodic DT signals using the “periodization trick” • Derivation of the Discrete Time Fourier Transform (DTFT) • Discrete Fourier Transform Discrete-time periodic signals • A periodic DT signal of period N0 is called N0-periodic signal f[n + kN0]=f[n] f[n] n N0 • For the frequency it is customary to use a different notation: the frequency of a DT sinusoid with period N0 is 2⇡ ⌦0 = N0 Fourier series representation of DT periodic signals • DT N0-periodic signals can be represented by DTFS with 2⇡ fundamental frequency ⌦ 0 = and its multiples N0 • The exponential DT exponential basis functions are 0k j⌦ k j2⌦ k jn⌦ k e ,e± 0 ,e± 0 ,...,e± 0 Discrete time 0k j! t j2! t jn! t e ,e± 0 ,e± 0 ,...,e± 0 Continuous time • Important difference with respect to the continuous case: only a finite number of exponentials are different! • This is because the DT exponential series is periodic of period 2⇡ j(⌦ 2⇡)k j⌦k e± ± = e± Increasing the frequency: continuous time • Consider a continuous time sinusoid with increasing frequency: the number of oscillations per unit time increases with frequency Increasing the frequency: discrete time • Discrete-time sinusoid s[n]=sin(⌦0n) • Changing the frequency by 2pi leaves the signal unchanged s[n]=sin((⌦0 +2⇡)n)=sin(⌦0n +2⇡n)=sin(⌦0n) • Thus when the frequency increases from zero, the number of oscillations per unit time increase until the frequency reaches pi, then decreases again towards the value that it had in zero.
    [Show full text]
  • The Equivalence of Digital and Analog Signal Processing *
    Reprinted from I ~ FORMATIO:-; AXDCOXTROL, Volume 8, No. 5, October 1965 Copyright @ by AcademicPress Inc. Printed in U.S.A. INFORMATION A~D CO:";TROL 8, 455- 4G7 (19G5) The Equivalence of Digital and Analog Signal Processing * K . STEIGLITZ Departmentof Electrical Engineering, Princeton University, Princeton, l\rew J er.~e!J A specific isomorphism is constructed via the trallsform domaiIls between the analog signal spaceL2 (- 00, 00) and the digital signal space [2. It is then shown that the class of linear time-invariaIlt realizable filters is illvariallt under this isomorphism, thus demoIl- stratillg that the theories of processingsignals with such filters are identical in the digital and analog cases. This means that optimi - zatioll problems illvolving linear time-illvariant realizable filters and quadratic cost functions are equivalent in the discrete-time and the continuous-time cases, for both deterministic and random signals. FilIally , applicatiolls to the approximation problem for digital filters are discussed. LIST OF SY~IBOLS f (t ), g(t) continuous -time signals F (jCAJ), G(jCAJ) Fourier transforms of continuous -time signals A continuous -time filters , bounded linear transformations of I.J2(- 00, 00) {in}, {gn} discrete -time signals F (z), G (z) z-transforms of discrete -time signals A discrete -time filters , bounded linear transfornlations of ~ JL isomorphic mapping from L 2 ( - 00, 00) to l2 ~L 2 ( - 00, 00) space of Fourier transforms of functions in L 2( - 00,00) 512 space of z-transforms of sequences in l2 An(t ) nth Laguerre function * This work is part of a thesis submitted in partial fulfillment of requirements for the degree of Doctor of Engineering Scienceat New York University , and was supported partly by the National ScienceFoundation and partly by the Air Force Officeof Scientific Researchunder Contract No.
    [Show full text]
  • Information Theory
    Information Theory Professor John Daugman University of Cambridge Computer Science Tripos, Part II Michaelmas Term 2016/17 H(X,Y) I(X;Y) H(X|Y) H(Y|X) H(X) H(Y) 1 / 149 Outline of Lectures 1. Foundations: probability, uncertainty, information. 2. Entropies defined, and why they are measures of information. 3. Source coding theorem; prefix, variable-, and fixed-length codes. 4. Discrete channel properties, noise, and channel capacity. 5. Spectral properties of continuous-time signals and channels. 6. Continuous information; density; noisy channel coding theorem. 7. Signal coding and transmission schemes using Fourier theorems. 8. The quantised degrees-of-freedom in a continuous signal. 9. Gabor-Heisenberg-Weyl uncertainty relation. Optimal \Logons". 10. Data compression codes and protocols. 11. Kolmogorov complexity. Minimal description length. 12. Applications of information theory in other sciences. Reference book (*) Cover, T. & Thomas, J. Elements of Information Theory (second edition). Wiley-Interscience, 2006 2 / 149 Overview: what is information theory? Key idea: The movements and transformations of information, just like those of a fluid, are constrained by mathematical and physical laws. These laws have deep connections with: I probability theory, statistics, and combinatorics I thermodynamics (statistical physics) I spectral analysis, Fourier (and other) transforms I sampling theory, prediction, estimation theory I electrical engineering (bandwidth; signal-to-noise ratio) I complexity theory (minimal description length) I signal processing, representation, compressibility As such, information theory addresses and answers the two fundamental questions which limit all data encoding and communication systems: 1. What is the ultimate data compression? (answer: the entropy of the data, H, is its compression limit.) 2.
    [Show full text]
  • Analog Signal Processing Circuits in Organic Transistor Technology a Dissertation Submitted to the Department of Electrical Engi
    ANALOG SIGNAL PROCESSING CIRCUITS IN ORGANIC TRANSISTOR TECHNOLOGY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Wei Xiong October 2010 © 2011 by Wei Xiong. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/fk938sr9136 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Boris Murmann, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Zhenan Bao I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Robert Dutton Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract Low-voltage organic thin-film transistors offer potential for many novel applications. Because organic transistors can be fabricated near room temperature, they allow integrated circuits to be made on flexible plastic substrates.
    [Show full text]
  • Lecture 16 Bandlimiting and Nyquist Criterion
    ELG3175 Introduction to Communication Systems Lecture 16 Bandlimiting and Nyquist Criterion Bandlimiting and ISI • Real systems are usually bandlimited. • When a signal is bandlimited in the frequency domain, it is usually smeared in the time domain. This smearing results in intersymbol interference (ISI). • The only way to avoid ISI is to satisfy the 1st Nyquist criterion. • For an impulse response this means at sampling instants having only one nonzero sample. Lecture 12 Band-limited Channels and Intersymbol Interference • Rectangular pulses are suitable for infinite-bandwidth channels (practically – wideband). • Practical channels are band-limited -> pulses spread in time and are smeared into adjacent slots. This is intersymbol interference (ISI). Input binary waveform Individual pulse response Received waveform Eye Diagram • Convenient way to observe the effect of ISI and channel noise on an oscilloscope. Eye Diagram • Oscilloscope presentations of a signal with multiple sweeps (triggered by a clock signal!), each is slightly larger than symbol interval. • Quality of a received signal may be estimated. • Normal operating conditions (no ISI, no noise) -> eye is open. • Large ISI or noise -> eye is closed. • Timing error allowed – width of the eye, called eye opening (preferred sampling time – at the largest vertical eye opening). • Sensitivity to timing error -> slope of the open eye evaluated at the zero crossing point. • Noise margin -> the height of the eye opening. Pulse shapes and bandwidth • For PAM: L L sPAM (t) = ∑ai p(t − iTs ) = p(t)*∑aiδ (t − iTs ) i=0 i=0 L Let ∑aiδ (t − iTs ) = y(t) i=0 Then SPAM ( f ) = P( f )Y( f ) BPAM = Bp.
    [Show full text]
  • Fractional Calculus and Generalised Norms in Condition Monitoring of a Load Haul Dumper
    Fractional calculus and generalised norms in condition monitoring of a load haul dumper Master’s thesis Juhani Nissilä 1975600 Department of Mathematical Sciences University of Oulu Autumn 2014 Contents Introduction 4 1 Classical analysis 6 1.1 Norms and function spaces . 6 1.2 Convergence of function sequences . 9 1.3 Complex analysis . 10 1.4 Important theorems of analysis . 11 1.5 Distributions . 12 1.6 Iterated differences and derivatives . 16 1.7 Iterated integrals . 18 2 Mathematical background for fractional calculus 20 2.1 Gamma function . 20 2.2 Fourier series . 23 2.2.1 Series in L1;loc and L2;loc . 23 2.2.2 Pointwise convergence . 24 2.3 Fourier transform . 26 2.3.1 Transform in S and L1 . 26 2.3.2 Transform in L2 ...................... 28 2.3.3 Transform in S0 ...................... 29 2.3.4 Properties . 31 2.4 Poisson summation formula and the sampling theorem . 34 2.5 Discrete Fourier transform . 36 2.6 Window functions . 37 3 Fractional calculus in time domain 39 3.1 Riemann-Liouville fractional integral and derivative . 39 3.2 Caputo fractional derivative . 45 3.3 Grünwald-Letnikov fractional derivative and integral . 46 3.4 Equivalences of definitions . 47 4 Fractional calculus in frequency domain 49 4.1 Fourier differintegrals . 49 4.2 Weyl differintegrals . 52 4.3 Equivalences of definitions . 53 4.4 Numerical algorithm . 56 5 Norms, means and other features of signals 60 5.1 Generalised lp norms and Hölder means . 60 5.2 Measurement index . 64 1 6 Condition monitoring of a load haul dumper front axle 65 6.1 Data acquisition and acceleration signals .
    [Show full text]
  • Frames and Other Bases in Abstract and Function Spaces Novel Methods in Harmonic Analysis, Volume 1
    Applied and Numerical Harmonic Analysis Isaac Pesenson Quoc Thong Le Gia Azita Mayeli Hrushikesh Mhaskar Ding-Xuan Zhou Editors Frames and Other Bases in Abstract and Function Spaces Novel Methods in Harmonic Analysis, Volume 1 Applied and Numerical Harmonic Analysis Series Editor John J. Benedetto University of Maryland College Park, MD, USA Editorial Advisory Board Akram Aldroubi Gitta Kutyniok Vanderbilt University Technische Universität Berlin Nashville, TN, USA Berlin, Germany Douglas Cochran Mauro Maggioni Arizona State University Duke University Phoenix, AZ, USA Durham, NC, USA Hans G. Feichtinger Zuowei Shen University of Vienna National University of Singapore Vienna, Austria Singapore, Singapore Christopher Heil Thomas Strohmer Georgia Institute of Technology University of California Atlanta, GA, USA Davis, CA, USA Stéphane Jaffard Yang Wang University of Paris XII Michigan State University Paris, France East Lansing, MI, USA Jelena Kovaceviˇ c´ Carnegie Mellon University Pittsburgh, PA, USA More information about this series at http://www.springer.com/series/4968 Isaac Pesenson • Quoc Thong Le Gia Azita Mayeli • Hrushikesh Mhaskar Ding-Xuan Zhou Editors Frames and Other Bases in Abstract and Function Spaces Novel Methods in Harmonic Analysis, Volume 1 Editors Isaac Pesenson Quoc Thong Le Gia Department of Mathematics School of Mathematics and Statistics Temple University University of New South Wales Philadelphia, PA, USA Sydney, NSW, Australia Azita Mayeli Hrushikesh Mhaskar Department of Mathematics Institute of Mathematical
    [Show full text]