The Autonomic Nervous System of the Chimaeroid Fish Hydrolagus Colliei by J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Sympathetic and the Parasympathetic Nervous System
The sympathetic and the parasympathetic nervous system Zsuzsanna Tóth, PhD Institute of Anatomy, Histology and Embryology Semmelweis University The role of the autonomic nervous system Claude Bernard • „milieu intérieur” concept; every organism lives in its internal environment that is constant and independent form the external environment Walter Bradford Cannon homeostasis; • an extension of the “milieu interieur” concept • consistence in an open system requires mechanisms that act to maintain that consistency • steady-state conditions require that any tendency toward change automatically meets with factors that resist that change • regulating systems that determine the homeostatic state : o autonomic nervous system ( sympathetic, parasympathetic, enteral) o endocrine system General structure of the autonomic nervous system craniosacral thoracolumbar Anatomy Neurotransmittersof the gut autonomic nervous system. symp. gangl pregangl. fiber pregangl. postgangl. fiber fiber (PoR) PoR enteral ganglion PoR PoR smooth muscle smooth muscle Kuratani S Development 2009;136:1585-1589 Sympathetic activation: Fight or flight reaction • energy mobilization • preparation for escape, or fight vasoconstriction • generalized Parasympathetic activation: adrenal • energy saving and restoring • „rest and digest” system • more localized vasoconstriction Paravertebral ganglia and the sympathetic chains pars cervicalis superius ganglion medium cervicale stellatum pars vertebrae • from the base of the skull to the caudal end thoracalis thoracalis of the sacrum • paravertebral ganglia (ganglia trunci sympathici) • rami interganglionares pars vertebrae • the two chains fuses at the ganglion impar abdominalis lumbalis sacrum pars pelvina foramen sacralia anteriora ganglion impar Anatomy of the cervical part of the sympathetic trunk superior cervical ganglion • behind the seath of the carotid, fusiform ggl. cervicale superius • IML T1-3 vegetative motoneurons- preganglionic fibers truncus symp. -
Simple Ways to Dissect Ciliary Ganglion for Orbital Anatomical Education
OkajimasDetection Folia Anat. of ciliary Jpn., ganglion94(3): 119–124, for orbit November, anatomy 2017119 Simple ways to dissect ciliary ganglion for orbital anatomical education By Ming ZHOU, Ryoji SUZUKI, Hideo AKASHI, Akimitsu ISHIZAWA, Yoshinori KANATSU, Kodai FUNAKOSHI, Hiroshi ABE Department of Anatomy, Akita University Graduate School of Medicine, Akita, 010-8543 Japan –Received for Publication, September 21, 2017– Key Words: ciliary ganglion, orbit, human anatomy, anatomical education Summary: In the case of anatomical dissection as part of medical education, it is difficult for medical students to find the ciliary ganglion (CG) since it is small and located deeply in the orbit between the optic nerve and the lateral rectus muscle and embedded in the orbital fat. Here, we would like to introduce simple ways to find the CG by 1): tracing the sensory and parasympathetic roots to find the CG from the superior direction above the orbit, 2): transecting and retracting the lateral rectus muscle to visualize the CG from the lateral direction of the orbit, and 3): taking out whole orbital structures first and dissecting to observe the CG. The advantages and disadvantages of these methods are discussed from the standpoint of decreased laboratory time and students as beginners at orbital anatomy. Introduction dissection course for the first time and with limited time. In addition, there are few clear pictures in anatomical The ciliary ganglion (CG) is one of the four para- textbooks showing the morphology of the CG. There are sympathetic ganglia in the head and neck region located some scientific articles concerning how to visualize the behind the eyeball between the optic nerve and the lateral CG, but they are mostly based on the clinical approaches rectus muscle in the apex of the orbit (Siessere et al., rather than based on the anatomical procedure for medical 2008). -
Diagrams of the Nerves of the Human Body
DIAGRAMS OF THE NERVES OF THE HUMAN BODY; EXHIBITING THEIR ORIGIN, DIVISIONS, AND CONNECTIONS, WITH THEIR DISTRIBUTION TO THE VARIOUS REGIONS OF THE CUTANEOUS SURFACE AND TO ALL THE MUSCLES. BY WILLIAM HENRY FLOWER, FELLOW OF THE ROYAL SOCIETY; FELLOW OF THE ROYAL COLLEGE OF SURGEONS. SECOND AMERICAN FROM THE SECOND ENGLISH EDITION. EDITED, WITH ADDITIONS, BY WILLIAM W. KEEN, M.D., LECTURER ON ANATOMY AND OPERATIVE SURGERY IN THE PHILADELPHIA SCHOOL OF ANATOMY; LECTURER ON PATHOLOGICAL ANATOMY IN THE JEFFERSON MEDICAL COLLEGE, FELLOW OF THE COLLEGE OF PHYSICIANS, Ac. PHILADELPHIA : TURNER HAMILTON, BOOKSELLER AND STATIONER, 106 S. TENTH STREET. 1874. Entered according to the Act of Congress, in the year 1874, by TURNER HAMILTON, in the Office of the Librarian of Congress. All rights reserved. EDITOR’S PREFACE TO THE FIRST AMERICAN EDITION. The signal benefit derived from these diagrams as illustrations in teaching, and their great convenience for ready reference in practice, have led to their republication, reduced to one-fourth the size of the originals. The Editor has made some additions where greater detail seemed desirable, has grouped the spinal nerves in their plexuses, and has added to the text a synopsis of the various sympathetic ganglia. His alterations have been very slight, and limited almost exclusively to the mechanical arrangement, e.g. in the mode of bifurcation of the brachial plexus. 1729 Chestnut Street, Philadelphia, January 1, 1874. PREFACE TO THE SECOND EDITION. These diagrams were originally published in 1860. They were designed by the author while engaged in teaching anatomy at the Medical School attached to the Middlesex Hospital. -
The Histology of the Digestive Tract of the Chimaroid Fish, Hydrolagus
'PRE HISTOLOGY OF THE DIGEST IVE TRACT OF THE CHIMAEROID FISH, HYDROLA.GUS COLLIE! (LAY AND BENN:&rT) by GALEN EDWARD CLOTHIER A THESIS submitted to OREGON STATE COLLEGE in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June 1957 IIFBOTST Redacted for Privacy Frofeasor o,f BooI"oilr 0baLrrsn of $epartuant of Zoology & 0harst of XaJor Redacted for Privacy Cha,Lruaa Sob,oo1 0mduatr Oonntttec Redacted for Privacy Dcen ef Sraduato Sohool Date thccls te Brosoated tJrpcd by largaret $loth!.tr ACKNOWLEDGMENTS I would like to express my appreciation and gratitude to my major professor, Dr . Ernst J. Dornfeld , for the training, advice , assistance and encouragement given me during this investigation. Dr . Alfred Owczarzak of Oregon State College deserves special thanks for assistance and advice concerning t he photographs which accompany this thesis . I would like also to express my gratitude to Dr . Paul Ilg and his staff at the Friday Harbor Laboratories for collecting the fish used in this study. '!'ABLE OF CONTENTS Page INTRODUCTION • • • • • • • • • • • • . .. • • • .l MATERIALS AND METHODS • • • • • • • • • • • • 6 OBSERVATIONS • • • • • • • • • • • • • • • • • • 8 Gross anatomical features • • • • • • • • • 8 Microscopic anatomy • • • • • • • • • • • • ll DISCUSSION • • • • • • • • • . .. • • • • • • • 23 SUMMARY AND COUCLUSIONS • • • • • • • • • • • • 29 BJELIOGRAPHY • • • • • • • • • • • • • • • • • • 31 APPENDIX EXPLANATION OP PLATES • • • •• • • • • • • • • • 35 Plate I • • • • • • • • • • • • • • • . . -
Is Sometimes Mushroom-Shaped, Due to a Neuroma-Like En- with the Nerve Loop, Or the Blood-Vesselaccompanying
INTRASCLERAL NERVE LOOPS ALGERNON B. REESE, M.D. New York The long ciliary nerves accompany the long posterior ciliary arteries through their emissaries in the posterior part of the sclera, each nerve dividing into two branches before emerging into the suprachoroidal space. These four nerves course forward in a meridional direction between the sclera and the choroid. In some instances the ciliary nerve enters the sclera near the junction of the orbiculus ciliaris and the corona ciliaris, or 2.5 to 3 mm. from the angle of the an- terior chamber, then turns abruptly back again, to resume its forward course into the ciliary body. Occasionally the nerve loop thus formed extends through the entire thickness of the sclera, with its cupola projecting above the external surface, covered only by conjunctiva. This nerve loop may enter into the sclera perpendicular to or at an angle with the surface, or it may be retroverted or be anteflexed. Its apex is sometimes mushroom-shaped, due to a neuroma-like en- largement. At times chromatophores from the supracho- roidea appear, extending up into the interspace of the loop, and occasionally similar pigment cells, as well as smooth muscle from the ciliary body, are seen along the wall of the scleral foramen through which the loop passes. On rare oc- casions a cyst is seen accompanying a loop. The anterior ciliary artery, in its inward course, may share the emissary with the nerve loop, or the blood-vessel accompanying the loop may be an anastomotic branch between the episcleral and the ciliary vessels. Either the cupola or the stem of the loop may send off nerve branches which extend forward into the cornea. -
Autonomic Nervous System
Editing file Lecture 4: AUTONOMIC NERVOUS SYSTEM • Red : important • Pink : in girls slides only • Blue : in male slides only • Green : notes, Extra Objectives At the end of the lecture, students should be able to: ❖ Define the autonomic nervous system. ❖ Describe the structure of autonomic nervous system ❖ Trace the preganglionic & postganglionic neurons in both sympathetic & parasympathetic nervous system. ❖ Enumerate in brief the main effects of sympathetic & parasympathetic system Autonomic Nervous System The autonomic nervous system is concerned with the Autonomic nervous system: Nerve cells innervation and control of Involuntary structures such as located in both central & visceral organs, smooth muscles, cardiac muscles and glands. peripheral nervous system Skeletal muscles are controlled by somatic motor Difference between somatic and visceral motor: ● Somatic motor ● Function: Maintaining the homeostasis Fibers from Anterior horn cell —-> to target of the internal environment along with ● Visceral motor Regulation: (Controlled) the endocrine system. 1-Brain: from nuclei by the Hypothalamus 2- spinal cord: lateral horn cell Note: Hypothalamus controls ﺗﻌدي ﻋﻠﻰ . Ganglion ﻗﺑل ﺗوﺻل ﻟﻠـ Location: Central nervous system and Target ● both of Autonomic system + peripheral nervous system Endocrine system. Autonomic Nervous System Unlike the somatic nervous system, the Efferent pathway of the autonomic nervous system is made up of Preganglionic Neuron two neurons called as: Preganglionic Postganglionic The cell bodies are The cell bodies are Postganglionic Neuron located in the brain located in the and spinal cord autonomic ganglia (inside CNS ). (outside CNS). Preganglionic axons synapse with the postganglionic neurons Note: before the fibers reach the target, it should first pass by the autonomic ganglion and synapse ( interconnection). -
Catecholaminergic Properties of Cholinergic Neurons and Synapses in Adult Rat Ciliary Ganglion
The Journal of Neuroscience, November 1987, 7(11): 35743587 Catecholaminergic Properties of Cholinergic Neurons and Synapses in Adult Rat Ciliary Ganglion Story C. Landis,’ Patrick C. Jackson,l,a John R. Fredieu,l,b and Jean ThibauW ‘Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, and 2CoIlege de France, Paris, France Parasympathetic neurons of the ciliary ganglion are inner- The developmental mechanisms responsible for these mixed vated by preganglionic cholinergic neurons whose cell bod- transmitter phenotypes and the functional consequences re- ies lie in the brain stem; the ganglion cells in turn provide main to be elucidated. cholinergic innervation to the intrinsic muscles of the eye. Noradrenergic innervation of the iris is supplied by sympa- thetic neurons of the superior cervical ganglion. Using im- The ciliary ganglion is classified as a parasympathetic ganglion munocytochemical and histochemical techniques, we have based on anatomical, biochemical, and pharmacological crite- examined the ciliary ganglion of adult rats for the expression ria. The ganglion lies close to its target tissues, the iris and ciliary of cholinergic and noradrenergic properties. As expected, body; the preganglionic neurons lie in the brain stem (Warwick, the postganglionic ciliary neurons possessed detectable 1954; Loewy et al., 1978; Johnson and Purves, 198 1). In the levels of choline acetyltransferase immunoreactivity (ChAT- cat, the mammal studied most extensively, the ganglion contains IR). Unexpectedly, many ciliary neurons also exhibited im- high levels of ChAT, reflecting enzyme present in both pregan- munoreactivity for tyrosine hydroxylase (TH-IR). Some had glionic terminals and postganglionic perikarya (Buckley et al., dopamine&hydroxylase-like (DBH-IR) immunoreactivity, but 1967). -
Sympathetic Tales: Subdivisons of the Autonomic Nervous System and the Impact of Developmental Studies Uwe Ernsberger* and Hermann Rohrer
Ernsberger and Rohrer Neural Development (2018) 13:20 https://doi.org/10.1186/s13064-018-0117-6 REVIEW Open Access Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies Uwe Ernsberger* and Hermann Rohrer Abstract Remarkable progress in a range of biomedical disciplines has promoted the understanding of the cellular components of the autonomic nervous system and their differentiation during development to a critical level. Characterization of the gene expression fingerprints of individual neurons and identification of the key regulators of autonomic neuron differentiation enables us to comprehend the development of different sets of autonomic neurons. Their individual functional properties emerge as a consequence of differential gene expression initiated by the action of specific developmental regulators. In this review, we delineate the anatomical and physiological observations that led to the subdivision into sympathetic and parasympathetic domains and analyze how the recent molecular insights melt into and challenge the classical description of the autonomic nervous system. Keywords: Sympathetic, Parasympathetic, Transcription factor, Preganglionic, Postganglionic, Autonomic nervous system, Sacral, Pelvic ganglion, Heart Background interplay of nervous and hormonal control in particular The “great sympathetic”... “was the principal means of mediated by the sympathetic nervous system and the ad- bringing about the sympathies of the body”. With these renal gland in adapting the internal -
Chondrichthyes: Holocephali: Chimaeridae) in the Northeastern Pacific Revista Mexicana De Biodiversidad, Vol
Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México González-Acosta, Adrián F.; Castro-Aguirre, José Luis; Didier, Dominique A.; Vélez-Marín, Rafael; Burnes-Romo, Luis A. Occurrence of Hydrolagus macrophthalmus (Chondrichthyes: Holocephali: Chimaeridae) in the northeastern Pacific Revista Mexicana de Biodiversidad, vol. 81, núm. 1, abril, 2010, pp. 197-201 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42515998026 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 81: 197- 201, 2010 Research note Occurrence of Hydrolagus macrophthalmus (Chondrichthyes: Holocephali: Chimaeridae) in the northeastern Pacifi c Presencia de Hydrolagus macrophthalmus (Chondrichthyes: Holocephali: Chimaeridae) en el Pacífi co nororiental Adrián F. González-Acosta1*, José Luis Castro-Aguirre1, Dominique A. Didier2, Rafael Vélez-Marín3 and Luis A. Burnes-Romo1 1Centro Interdisciplinario de Ciencias Marinas, Intituto Politécnico Nacional, Colección Ictiológica, Avenida Instituto Politécnico Nacional s/n, Col. Playa Palo de Santa Rita, 23096, La Paz, Baja California Sur, México. 2Department of Biology, Millersville University, P.O. Box 1002, Millersville, PA 17551, USA. 3Centro Regional de Investigación Pesquera, Manzanillo. Apartado postal 591, 28200, Manzanillo, Colima, México. *Correspondent: [email protected] Abstract. The southeastern Pacifi c chimaeroid Hydrolagus macrophthalmus De Buen, 1959, is reported for the fi rst time in the northeastern Pacifi c on the basis of 1 male specimen (945 mm TL) caught on 13 April 1995 off Manzanillo, Colima (Mexico: 18º 30’N, 104º 15’W) at the surface above deep water (2 000 m). -
Autonomic Nervous System
Autonomic nervous System Regulates activity of: Smooth muscle Cardiac muscle certain glands Autonomic- illusory (convenient)-not under direct control Regulated by: hypothalamus Medulla oblongata Divided in to two subdivisions: Sympathetic Parasympathetic Sympathetic: mobilizes all the resources of body in an emergency Parasympathetic: maintains the normal body functions Complimentary to each other. ANS Activity expressed • Regulation of Blood Pressure • Regulation of Body Temperature • Cardio-respiratory rate • Gastro-intestinal motility • Glandular Secretion Sensations • General – Hunger , Thirst , Nausea • Special -- Smell, taste and visceral pain • Location of ANS in CNS: 1. cerebral hemispheres (limbic system) 2. Brain stem (general visceral nuclei of cranial nerves) 3. Spinal cord (intermediate grey column) ANS Anatomy • Pathway: Two motor neurons 1. In CNS -->Axon-->Autonomic ganglion 2. In Autonomic ganglion-->Axon-->effector organ • Anatomy: Preganglionic neuron--->preganglionic fibre (myelinated axon)--->out of CNS as a part of cranial/spinal nerve--->fibres separate & extend to ANS ganglion-->synapse with postganglionic neuron--->postganglionic fibre (nonmyelinated)-- >effector organ Sympathetic system Components • Pair of ganglionic sympathetic trunk • Communicating rami • Branches • Plexuses • Subsidiary ganglia – collateral , terminal ganglia Sympathetic trunk (lateral ganglia) • Paravertebral in position • Extend from base of skull to coccygeal • Both trunk unite to form – ganglion impar Total Ganglia • Cervical-3 • Thoracic-11 -
Sharks, Skates, Rays, and Chimaeras
SHARKS, SKATES, RAYS, AND CHIMAERAS UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU OF COMMERCIAL FISHERIES Circular 228 TABLE 1. -- tiximum sizes of camnon species of sharks Species Traditional Mucimum length Muimum length maximum size (measure<l--U. S. coa.ts) (recorde<l--world) Scientific na.rr;e from literature SixgL. st.ark .... 1 Hexanchus sp. .•..•••••••. 15 feet 5 inches 26 feet 5 inches nd hary... ..... Carcharias taurus... 10 feet 5 inches 12 feet 3 inches 15 feet 11 inches Porbeagle •....... 1 LamTUl TUlSUS........... ... 10 feet 12 feet 12 feet Sall10n shark. .... LamTUl ditropis . 8 feet 6 inches 8 feet 6 inches 12 feet L 0 .•.••.•.•.... Isurus oxyrinchus ...... ... 10 feet 6 inches 12 feet 12 feet - 13 feet 'hi te sr.ark. ..... Carcharodan carcharias. 18 feet 2 inches 21 feet 36 feet 6 inches Basking shar".... Cetorhinus maximus . 32 feet 2 inches 45 feet 40 feet - 50 feet Thresher shark... Alopias vulpinus . 18 feet 18 feet 20 feet rse shark...... Ginglymostoma cirraturn.. 9 feet 3 inches 14 feet Whale shark. ..... Rhincodan typus........ .•. 38 feet 45 feet 45 feet - 50 feet Olain dogfish.... Scyliorhinus retifer. ... .. 1 foot 5 inches 2 feet 6 inches Leopard shark.... Triakis semifasciata... 5 feet 5 feet Smooth dogfish ... Alustelus canis ......... ... 4 feet 9 inches 5 feet rieer shark...... Galeocerdo cuvieri..... ... 13 feet 10 inches 18 feet 30 feet Soupfin shark.... Galeorhinus zyopterus . .. 6 feet 5 inches 6 feet 5 inches 6 feet 5 inches Blue shark. ...... Prionace glauca ....... 11 feet 12 feet 7 inches 25 feet Bul .. shark. ...... Carcharhinus leucas. .. 9 feet 10 inches 10 feet Whi tetip shark. -
Cartilaginous Fishes Offer Unique Insights Into the Evolution of The
General and Comparative Endocrinology 295 (2020) 113527 Contents lists available at ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Research paper Cartilaginous fishes offer unique insights into the evolution of the nuclear receptor gene repertoire in gnathostomes T Elza Fonsecaa,b, André M. Machadoa, Nair Vilas-Arrondoc,d, André Gomes-dos-Santosa,b, Ana Veríssimob,e, Pedro Estevesb,d, Tereza Almeidab,e, Gonçalo Themudoa, Raquel Ruivoa, Montse Pérezc, Rute da Fonsecaf, Miguel M. Santosa,b, Elsa Froufea, Esther Román-Marcotec, ⁎ ⁎ Byrappa Venkateshg, , L. Filipe C. Castroa,b, a CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal b FCUP – Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal c AQUACOV, Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, 36390 Vigo, Spain d UVIGO, phD Program “Marine Science, Tehchology and Management” (Do *MAR), Faculty of Biology, University of Vigo, 36200 Vigo, Spain e CIBIO – Research Center in Biodiversity and Genetic Resources, InBIO, Associate Laboratory, U.Porto, 4485-661 Vairão, Portugal f Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Denmark g Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore ARTICLE INFO ABSTRACT Keywords: Nuclear receptors (NRs) are key transcription factors that originated in the common ancestor of metazoans. The Nuclear receptors vast majority of NRs are triggered by binding to either endogenous (e.g. retinoic acid) or exogenous (e.g. xe- Genome nobiotics) ligands, and their evolution and expansion is tightly linked to the function of endocrine systems.