A Review of the Diagnosis and Management of Erythroderma (Generalized Red Skin)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neonatal Dermatology Review
NEONATAL Advanced Desert DERMATOLOGY Dermatology Jennifer Peterson Kevin Svancara Jonathan Bellew DISCLOSURES No relevant financial relationships to disclose Off-label use of acitretin in ichthyoses will be discussed PHYSIOLOGIC Vernix caseosa . Creamy biofilm . Present at birth . Opsonizing, antibacterial, antifungal, antiparasitic activity Cutis marmorata . Reticular, blanchable vascular mottling on extremities > trunk/face . Response to cold . Disappears on re-warming . Associations (if persistent) . Down syndrome . Trisomy 18 . Cornelia de Lange syndrome PHYSIOLOGIC Milia . Hard palate – Bohn’s nodules . Oral mucosa – Epstein pearls . Associations . Bazex-Dupre-Christol syndrome (XLD) . BCCs, follicular atrophoderma, hypohidrosis, hypotrichosis . Rombo syndrome . BCCs, vermiculate atrophoderma, trichoepitheliomas . Oro-facial-digital syndrome (type 1, XLD) . Basal cell nevus (Gorlin) syndrome . Brooke-Spiegler syndrome . Pachyonychia congenita type II (Jackson-Lawler) . Atrichia with papular lesions . Down syndrome . Secondary . Porphyria cutanea tarda . Epidermolysis bullosa TRANSIENT, NON-INFECTIOUS Transient neonatal pustular melanosis . Birth . Pustules hyperpigmented macules with collarette of scale . Resolve within 4 weeks . Neutrophils Erythema toxicum neonatorum . Full term . 24-48 hours . Erythematous macules, papules, pustules, wheals . Eosinophils Neonatal acne (neonatal cephalic pustulosis) . First 30 days . Malassezia globosa & sympoidalis overgrowth TRANSIENT, NON-INFECTIOUS Miliaria . First weeks . Eccrine -
Juvenile Spondyloarthropathies: Inflammation in Disguise
PP.qxd:06/15-2 Ped Perspectives 7/25/08 10:49 AM Page 2 APEDIATRIC Volume 17, Number 2 2008 Juvenile Spondyloarthropathieserspective Inflammation in DisguiseP by Evren Akin, M.D. The spondyloarthropathies are a group of inflammatory conditions that involve the spine (sacroiliitis and spondylitis), joints (asymmetric peripheral Case Study arthropathy) and tendons (enthesopathy). The clinical subsets of spondyloarthropathies constitute a wide spectrum, including: • Ankylosing spondylitis What does spondyloarthropathy • Psoriatic arthritis look like in a child? • Reactive arthritis • Inflammatory bowel disease associated with arthritis A 12-year-old boy is actively involved in sports. • Undifferentiated sacroiliitis When his right toe starts to hurt, overuse injury is Depending on the subtype, extra-articular manifestations might involve the eyes, thought to be the cause. The right toe eventually skin, lungs, gastrointestinal tract and heart. The most commonly accepted swells up, and he is referred to a rheumatologist to classification criteria for spondyloarthropathies are from the European evaluate for possible gout. Over the next few Spondyloarthropathy Study Group (ESSG). See Table 1. weeks, his right knee begins hurting as well. At the rheumatologist’s office, arthritis of the right second The juvenile spondyloarthropathies — which are the focus of this article — toe and the right knee is noted. Family history is might be defined as any spondyloarthropathy subtype that is diagnosed before remarkable for back stiffness in the father, which is age 17. It should be noted, however, that adult and juvenile spondyloar- reported as “due to sports participation.” thropathies exist on a continuum. In other words, many children diagnosed with a type of juvenile spondyloarthropathy will eventually fulfill criteria for Antinuclear antibody (ANA) and rheumatoid factor adult spondyloarthropathy. -
Jemds.Com Original Research Article
Jemds.com Original Research Article A CLINICO-AETIOLOGICAL STUDY OF CASES OF ERYTHRODERMA ATTENDING TERTIARY CARE HOSPITAL IN NORTH-EAST INDIA Jahnabi Boruah1, Bhaskar Gupta2 1Postgraduate Resident, Department of Dermatology, Silchar Medical College, Silchar, Assam, India. 2Professor and HOD, Department of Dermatology, Silchar Medical College, Silchar, Assam, India. ABSTRACT BACKGROUND Erythroderma is the term used for any inflammatory skin disease that affects more than 90% of the body surface area.1 It has many underlying causes and finding the aetiology helps in proper management of cases. Aim- To study and analyse the different causes of erythroderma. MATERIALS AND METHODS The study was performed in Silchar Medical College and Hospital, Silchar, Assam. A total of 30 cases of erythroderma were studied with respect to epidemiological, clinical and histological finding. RESULTS Among 30 cases, 21 were male and 9 were female patients with male-to-female ratio of 2.3: 1 and mean age of incidence was found to be 53.26% yrs. In our study, the most common aetiology was found to be psoriasis (n= 14, 46.6%), atopic dermatitis (n= 5, 16.6%), drug-induced erythroderma (n= 3, 10%), allergic contact dermatitis (n= 3, 10%), dermatophytosis and pemphigus foliaceus (one case each) and 3 idiopathic cases (10%). CONCLUSION Although clinical presentation of most of the patients was similar, a detailed history, physical examination and histopathological examination helped us to reach most of the diagnosis. KEY WORDS Erythroderma, Clinico-Aetiological Study, North-East India. HOW TO CITE THIS ARTICLE: Boruah J, Gupta B. A clinico-aetiological study of cases of erythroderma attending tertiary care hospital in North-East India. -
Counsyl Foresight™ Carrier Screen Disease List
COUNSYL FORESIGHT™ CARRIER SCREEN DISEASE LIST The Counsyl Foresight Carrier Screen focuses on serious, clinically-actionable, and prevalent conditions to ensure you are providing meaningful information to your patients. 11-Beta-Hydroxylase- Bardet-Biedl Syndrome, Congenital Disorder of Galactokinase Deficiency Deficient Congenital Adrenal BBS1-Related (BBS1) Glycosylation, Type Ic (ALG6) (GALK1) Hyperplasia (CYP11B1) Bardet-Biedl Syndrome, Congenital Finnish Nephrosis Galactosemia (GALT ) 21-Hydroxylase-Deficient BBS10-Related (BBS10) (NPHS1) Gamma-Sarcoglycanopathy Congenital Adrenal Bardet-Biedl Syndrome, Costeff Optic Atrophy (SGCG) Hyperplasia (CYP21A2)* BBS12-Related (BBS12) Syndrome (OPA3) Gaucher Disease (GBA)* 6-Pyruvoyl-Tetrahydropterin Bardet-Biedl Syndrome, Cystic Fibrosis GJB2-Related DFNB1 Synthase Deficiency (PTS) BBS2-Related (BBS2) (CFTR) Nonsyndromic Hearing Loss ABCC8-Related Beta-Sarcoglycanopathy and Deafness (including two Cystinosis (CTNS) Hyperinsulinism (ABCC8) (including Limb-Girdle GJB6 deletions) (GJB2) Muscular Dystrophy, Type 2E) D-Bifunctional Protein Adenosine Deaminase GLB1-Related Disorders (SGCB) Deficiency (HSD17B4) Deficiency (ADA) (GLB1) Biotinidase Deficiency (BTD) Delta-Sarcoglycanopathy Adrenoleukodystrophy: GLDC-Related Glycine (SGCD) X-Linked (ABCD1) Bloom Syndrome (BLM) Encephalopathy (GLDC) Alpha Thalassemia (HBA1/ Calpainopathy (CAPN3) Dysferlinopathy (DYSF) Glutaric Acidemia, Type 1 HBA2)* Canavan Disease Dystrophinopathies (including (GCDH) (ASPA) Alpha-Mannosidosis Duchenne/Becker Muscular -
Child Neurology: Hereditary Spastic Paraplegia in Children S.T
RESIDENT & FELLOW SECTION Child Neurology: Section Editor Hereditary spastic paraplegia in children Mitchell S.V. Elkind, MD, MS S.T. de Bot, MD Because the medical literature on hereditary spastic clinical feature is progressive lower limb spasticity B.P.C. van de paraplegia (HSP) is dominated by descriptions of secondary to pyramidal tract dysfunction. HSP is Warrenburg, MD, adult case series, there is less emphasis on the genetic classified as pure if neurologic signs are limited to the PhD evaluation in suspected pediatric cases of HSP. The lower limbs (although urinary urgency and mild im- H.P.H. Kremer, differential diagnosis of progressive spastic paraplegia pairment of vibration perception in the distal lower MD, PhD strongly depends on the age at onset, as well as the ac- extremities may occur). In contrast, complicated M.A.A.P. Willemsen, companying clinical features, possible abnormalities on forms of HSP display additional neurologic and MRI abnormalities such as ataxia, more significant periph- MD, PhD MRI, and family history. In order to develop a rational eral neuropathy, mental retardation, or a thin corpus diagnostic strategy for pediatric HSP cases, we per- callosum. HSP may be inherited as an autosomal formed a literature search focusing on presenting signs Address correspondence and dominant, autosomal recessive, or X-linked disease. reprint requests to Dr. S.T. de and symptoms, age at onset, and genotype. We present Over 40 loci and nearly 20 genes have already been Bot, Radboud University a case of a young boy with a REEP1 (SPG31) mutation. Nijmegen Medical Centre, identified.1 Autosomal dominant transmission is ob- Department of Neurology, PO served in 70% to 80% of all cases and typically re- Box 9101, 6500 HB, Nijmegen, CASE REPORT A 4-year-old boy presented with 2 the Netherlands progressive walking difficulties from the time he sults in pure HSP. -
Adult Still's Disease
44 y/o male who reports severe knee pain with daily fevers and rash. High ESR, CRP add negative RF and ANA on labs. Edward Gillis, DO ? Adult Still’s Disease Frontal view of the hands shows severe radiocarpal and intercarpal joint space narrowing without significant bony productive changes. Joint space narrowing also present at the CMC, MCP and PIP joint spaces. Diffuse osteopenia is also evident. Spot views of the hands after Tc99m-MDP injection correlate with radiographs, showing significantly increased radiotracer uptake in the wrists, CMC, PIP, and to a lesser extent, the DIP joints bilaterally. Tc99m-MDP bone scan shows increased uptake in the right greater than left shoulders, as well as bilaterally symmetric increased radiotracer uptake in the elbows, hands, knees, ankles, and first MTP joints. Note the absence of radiotracer uptake in the hips. Patient had bilateral total hip arthroplasties. Not clearly evident are bilateral shoulder hemiarthroplasties. The increased periprosthetic uptake could signify prosthesis loosening. Adult Stills Disease Imaging Features • Radiographs – Distinctive pattern of diffuse radiocarpal, intercarpal, and carpometacarpal joint space narrowing without productive bony changes. Osseous ankylosis in the wrists common late in the disease. – Joint space narrowing is uniform – May see bony erosions. • Tc99m-MDP Bone Scan – Bilaterally symmetric increased uptake in the small and large joints of the axial and appendicular skeleton. Adult Still’s Disease General Features • Rare systemic inflammatory disease of unknown etiology • 75% have onset between 16 and 35 years • No gender, race, or ethnic predominance • Considered adult continuum of JIA • Triad of high spiking daily fevers with a skin rash and polyarthralgia • Prodromal sore throat is common • Negative RF and ANA Adult Still’s Disease General Features • Most commonly involved joint is the knee • Wrist involved in 74% of cases • In the hands, interphalangeal joints are more commonly affected than the MCP joints. -
Erythema Annulare Centrifugum ▪ Erythema Gyratum Repens ▪ Exfoliative Erythroderma Urticaria ▪ COMMON: 15% All Americans
Cutaneous Signs of Internal Malignancy Ted Rosen, MD Professor of Dermatology Baylor College of Medicine Disclosure/Conflict of Interest ▪ No relevant disclosures ▪ No conflicts of interest Objectives ▪ Recognize common disorders associated with internal malignancy ▪ Manage cutaneous disorders in the context of associated internal malignancy ▪ Differentiate cutaneous signs of leukemia and lymphoma ▪ Understand spidemiology of cutaneous metastases Cutaneous Signs of Internal Malignancy ▪ General physical examination ▪ Pallor (anemia) ▪ Jaundice (hepatic or cholestatic disease) ▪ Fixed erythema or flushing (carcinoid) ▪ Alopecia (diffuse metastatic disease) ▪ Itching (excoriations) Anemia: Conjunctival pallor and Pale skin Jaundice 1-12% of hepatocellular, biliary tree or pancreatic cancer PRESENT with jaundice, but up to 40-60% eventually develop it World J Gastroenterol 2003;9:385-91 For comparison CAN YOU TELL JAUNDICE FROM NORMAL SKIN? JAUNDICE Alopecia Neoplastica Most common report w/ breast CA Lung, cervix, desmoplastic mm Hair loss w/ underlying induration Biopsy = dermis effaced by tumor Ann Dermatol 26:624, 2014 South Med J 102:385, 2009 Int J Dermatol 46:188, 2007 Acta Derm Venereol 87:93, 2007 J Eur Acad Derm Venereol 18:708, 2004 Gastric Adenocarcinoma: Alopecia Ann Dermatol 2014; 26: 624–627 Pruritus: Excoriation ▪ Overall risk internal malignancy presenting as itch LOW. OR =1.14 ▪ CTCL, Hodgkin’s & NHL, Polycythemia vera ▪ Biliary tree carcinoma Eur J Pain 20:19-23, 2016 Br J Dermatol 171:839-46, 2014 J Am Acad Dermatol 70:651-8, 2014 Non-specific (Paraneoplastic) Specific (Metastatic Disease) Paraneoplastic Signs “Curth’s Postulates” ▪ Concurrent onset (temporal proximity) ▪ Parallel course ▪ Uniform site or type of neoplasm ▪ Statistical association ▪ Genetic linkage (syndromal) Curth HO. -
Nasal Septal Perforation: a Novel Clinical Manifestation of Systemic Juvenile Idiopathic Arthritis/Adult Onset Still’S Disease
Case Report Nasal Septal Perforation: A Novel Clinical Manifestation of Systemic Juvenile Idiopathic Arthritis/Adult Onset Still’s Disease TADEJ AVCIN,ˇ EARL D. SILVERMAN, VITO FORTE, and RAYFEL SCHNEIDER ABSTRACT. Nasal septal perforation has been well recognized in patients with various rheumatic diseases. To our knowledge, this condition has not been reported in children with systemic juvenile idiopathic arthri- tis (SJIA) or patients with adult onset Still’s disease (AOSD). We describe 3 patients with persistent SJIA/AOSD who developed nasal septal perforation during the course of their disease. As illustrat- ed by these cases, nasal septal perforation may develop as a rare complication of SJIA/AOSD and can be considered as part of the clinical spectrum of the disease. In one case the nasal septal perfo- ration was associated with vasculitis. (J Rheumatol 2005;32:2429–31) Key Indexing Terms: SYSTEMIC JUVENILE IDIOPATHIC ARTHRITIS ADULT ONSET STILL’S DISEASE NASAL SEPTAL PERFORATION Perforation of the nasal septum has been well recognized in tory manifestations to SJIA and may occur at all ages9. We patients with various rheumatic diseases, including describe 3 patients with persistent SJIA/AOSD who devel- Wegener’s granulomatosis, systemic lupus erythematosus oped nasal septal perforation during the course of their dis- (SLE), and sarcoidosis1,2. Nasal involvement is one of the ease (Table 1). major features of Wegener’s granulomatosis and may lead to massive destruction of the septal cartilage and saddle-nose CASE REPORTS deformity3. Nasal septal perforation is also a recognized Case 1. A 4.5-year-old girl first presented in February 1998 with an 8 week complication of mucosal involvement in SLE and occurs in history of spiking fever, evanescent rash, and polyarthritis. -
TITLE: Biotinidase Deficiency PRESENTER: Anna Scott Slide 1
TITLE: Biotinidase Deficiency PRESENTER: Anna Scott Slide 1: Hello, my name is Anna Scott. I am a biochemical genetics laboratory director at Seattle Children’s Hospital. Welcome to this Pearl of Laboratory Medicine on “Biotinidase Deficiency.” Slide 2: Lecture Overview For today’s Pearl, I will start with background information about biotinidase including its role in metabolism and clinical features. Then we will discuss different clinical assays that can detect and diagnose the enzyme deficiency. Finally, I will touch on biotinidase as it relates to newborn screening. Slide 3: Background Biotinidase deficiency is an inborn error of metabolism, specifically affecting biotin metabolism. Biotin is also known as vitamin B7. Most free biotin is absorbed through the gut from food. This vitamin is an essential cofactor for four carboxylase enzymes. Biotin metabolism primarily consists of two steps- 1) loading the free biotin into an apocarboxylase to form the active form of the enzyme, called holocarboylases and 2) recycling biocytin back to lysine and free biotin after protein degradation. The enzyme responsible for loading free biotin into new enzymes is holocarboxylase synthetase. Loss of function of this enzyme can cause clinical features similar to biotinidase deficiency, typically with an earlier age of onset and greater severity. Biotinidase deficiency results in failure to recycle biocytin back to free biotin for re-incorporation into a new apoenzyme. Slide 4: Clinical Symptoms and Therapy © 2016 Clinical Chemistry Pearls of Laboratory Medicine Title Classical clinical symptoms associated with biotinidase deficiency include: alopecia, eczema, hearing and/or vision loss, and acidosis. During acute illness, hyperammonemia, seizures, and coma can also manifest. -
Causes and Features of Erythroderma 1 1 2 1 Grace FL Tan, MBBS, Yan Ling Kong, MBBS, Andy SL Tan, MBBS, MPH, Hong Liang Tey, MBBS, MRCP(UK), FAMS
391 Erythroderma: Causes and Features—Grace FL Tan et al Original Article Causes and Features of Erythroderma 1 1 2 1 Grace FL Tan, MBBS, Yan Ling Kong, MBBS, Andy SL Tan, MBBS, MPH, Hong Liang Tey, MBBS, MRCP(UK), FAMS Abstract Introduction: Erythroderma is a generalised infl ammatory reaction of the skin secondary to a variety of causes. This retrospective study aims to characterise the features of erythroderma and identify the associated causes of this condition in our population. Materials and Methods: We reviewed the clinical, laboratory, histological and other disease-specifi c investigations of 225 inpatients and outpatients with erythroderma over a 7.5-year period between January 2005 and June 2012. Results: The most common causative factors were underlying dermatoses (68.9%), idiopathic causes (14.2%), drug reactions (10.7%), and malignancies (4.0%). When drugs and underlying dermatoses were excluded, malignancy-associated cases constituted 19.6% of the cases. Fifty-fi ve percent of malignancies were solid-organ malignancies, which is much higher than those previously reported (0.0% to 25%). Endogenous eczema was the most common dermatoses (69.0%), while traditional medications (20.8%) and anti-tuberculous medications (16.7%) were commonly implicated drugs. In patients with cutaneous T-cell lymphoma (CTCL), skin biopsy was suggestive or diagnostic in all cases. A total of 52.4% of patients with drug-related erythroderma had eosinophilia on skin biopsy. Electrolyte abnormalities and renal impairment were seen in 26.2% and 16.9% of patients respectively. Relapse rate at 1-year was 17.8%, with no associated mortality. -
Biotinidase Deficiency (Biot) Family Fact Sheet
BIOTINIDASE DEFICIENCY (BIOT) FAMILY FACT SHEET What is a positive newborn screen? What problems can biotinidase deficiency Newborn screening is done on tiny samples of blood cause? taken from your baby’s heel 24 to 36 hours after birth. The blood is tested for rare, hidden disorders that may Biotinidase deficiency is different for each child. Some affect your baby’s health and development. The children have a mild, partial biotinidase deficiency with newborn screen suggests your baby might have a few health problems, while other children may have disorder called biotinidase deficiency. complete biotinidase deficiency with serious complications. A positive newborn screen does not mean your If biotinidase deficiency is not treated, a child might baby has biotinidase deficiency, but it does mean develop: your baby needs more testing to know for sure. • Muscle weakness • Hearing loss You will be notified by your primary care provider or • Vision (eye) problems the newborn screening program to arrange for • Hair loss additional testing. • Skin rashes What is biotinidase deficiency? • Seizures • Developmental delay Biotinidase deficiency affects an enzyme needed to It is very important to follow the doctor’s instructions free biotin (one of the B vitamins) from the food we for testing and treatment. eat, so it can be used for energy and growth. What is the treatment for biotinidase A person with biotinidase deficiency doesn’t have deficiency? enough enzyme to free biotin from foods so it can be used by the body. Biotinidase deficiency can be treated. Treatment is life- long and includes: Biotinidase deficiency is a genetic disorder that is • Daily biotin vitamin pill(s) or liquid. -
MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature.