Geodesic Methods for Shape and Surface Processing Gabriel Peyré, Laurent D
Geodesic Methods for Shape and Surface Processing Gabriel Peyré, Laurent D. Cohen To cite this version: Gabriel Peyré, Laurent D. Cohen. Geodesic Methods for Shape and Surface Processing. Tavares, João Manuel R.S.; Jorge, R.M. Natal. Advances in Computational Vision and Medical Image Process- ing: Methods and Applications, Springer Verlag, pp.29-56, 2009, Computational Methods in Applied Sciences, Vol. 13, 10.1007/978-1-4020-9086-8. hal-00365899 HAL Id: hal-00365899 https://hal.archives-ouvertes.fr/hal-00365899 Submitted on 4 Mar 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geodesic Methods for Shape and Surface Processing Gabriel Peyr´eand Laurent Cohen Ceremade, UMR CNRS 7534, Universit´eParis-Dauphine, 75775 Paris Cedex 16, France {peyre,cohen}@ceremade.dauphine.fr, WWW home page: http://www.ceremade.dauphine.fr/{∼peyre/,∼cohen/} Abstract. This paper reviews both the theory and practice of the nu- merical computation of geodesic distances on Riemannian manifolds. The notion of Riemannian manifold allows to define a local metric (a symmet- ric positive tensor field) that encodes the information about the prob- lem one wishes to solve. This takes into account a local isotropic cost (whether some point should be avoided or not) and a local anisotropy (which direction should be preferred).
[Show full text]