Shapewright: Finite Element Based Free-Form Shape Design

Total Page:16

File Type:pdf, Size:1020Kb

Shapewright: Finite Element Based Free-Form Shape Design ShapeWright: Finite Element Based Free-Form Shape Design by George Celniker S.M., Mechanical Engineering Massachusetts Institute of Technology January, 1981 B.S., Mechanical Engineering Massachusetts Institute of Technology May, 1979 Submitted to the Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Mechanical Engineering at the Massachusetts Institute of Technology September, 1990 © Massachusetts Institute of Technology, 1990, All rights reserved. Signature of Author . ... , , , Department of Mechariical Engineering August 3, 1990 Certified by Professor David C. Gossard Thesis Supervisor Accepted by Ain A. Sonin Chairman, Department Committee MASSACHUITTS INSTITOiI OF TECHIvn .:.. NOV 0 8 1990 LIBRARIEb ShapeWright: Finite Element Based Free-Form Shape Design by George Celniker Submitted to the Department of Mechanical Engineering on September, 1990 inpartial fulfillment of the requirements for the degree of Doctor of Philosophy inMechanical Engineering. Abstract The mathematical foundations and an implementation of a new free-form shape design paradigm are developed. The finite element method is applied to generate shapes that minimize a surface energy function subject to user-specified geometric constraints while responding to user-specified forces. Because of the energy minimization these surfaces opportunistically seek globally fair shapes. It is proposed that shape fairness is a global and not a local property. Very fair shapes with C1 continuity are designed. Two finite elements, a curve segment and a triangular surface element, are developed and used as the geometric primitives of the approach. The curve segments yield piecewise C1 Hermite cubic polynomials. The surface element edges have cubic variations in position and parabolic variations in surface normal and can be combined to yield piecewise C1 surfaces. These are called deformable curves and surfaces because they respond to user inputs much like elastic beams and membranes. The properties of these geometric primitives have been designed to enable a three phase interactive approach to defining very fair free-form shapes. The shape's character lines are created with deformable curve segments. These character lines are then "skinned" with a deformable surface. The final shape is sculpted interactively by applying loads to the surface to control the surface shape between character lines. Very fair free-form shapes have such applications as the design of automobiles, ships, ceramics, and air-supported buildings as well as the modeling of natural forms. Thesis Advisor: Prof. David Gossard Thesis Committee: Prof. Tony Patera Prof. Alex Pentland Dedication To Matthew Benjamin and to those who follow. Acknowledgements My motivations and drive to explore that have resulted in this effort, are in no small part due to my associations with my family and friends. Before all others, I thank my wife, Nancy Stevens, for encouraging me to make the changes to do the things that are important. I thank my parents and sisters for their unquestioning love and for having made the world a valuable place for me. I thank all my friends in the extended M.I.T. community that have made this such an interesting and enjoyable time in my life. The direction and quality of this work greatly benefited from the input of the members of my committee, Sandy Pentland and Tony Patera, and in particular from the advice and guidance of my thesis advisor, David Gossard. I also thank David-Gossard for the support he has given in furthering my career. The time and opportunity to pursue this study were provided by the people of the Schlumberger Technology Corporation. I thank them for having supported me throughout this endeavor and for showing their confidence and belief in my abilities. This research was made possible in part by grants from the Ford Motor Company, and the Eastman Kodak Company. Table of Contents A bstract ............................................................................................. 3 D edication ..................................................... ........... ......................... Acknowledgements ............................................................................... ........ Table of Contents .......................... ................... .. .................................. 5 List of Figures ............................................................. ...................... 7 N om enclature ..................................... ...................... ........ .............. 1 Introduction ....................................... .............................................. 13 1.1 Computer Aided Geometric Design .................................................. 13 1.2 The ShapeWright Design Paradigm ................................ 17 1.3 ShapeWright Design Issues .............................................................. 18 1.4 Scope of W ork ............................................................................ 20 2 Previous Work ... ........................ ..... ..................................................22 2.1 Precursors to Energy-Based Shape Design............................... ... 22 2.2 The Foundations of Computer Aided Geometric Design .......................... 25 2.3 Shape Building and the User Load Problem ............................................ 26 2.4 Parametric Shape Technical Issues .................. .... ................ ............... 28 2.5 Topology................................................................................34 3 Deformable Models....................................................39 3.1 Parametric Description of Shape ............................................ 39 3.2 Modeling of an Elastically Deformable Surface ....................................... 48 3.3 The Energy Functionals..... ............ ........ .... ............ 49 3.4 Properties of the Energy-Based Deformable Models .................. ........ 50 3.5 Minimize a Functional or Solve a Differential Equation...........................56 3.6 Time, Mass and Dynamics ...................................... 59 3.7 Forces ...................................................................................... 61 3.8 Soap Films, Plane Strain, Plates and Shells.................................. 64 3.9 Chapter 3 Summ ary ..................................................................... 69 4 Curve and Surface Geometric Primitives .................................................... 71 4.1 Finite Difference Solutions .................................. .......................... 72 4.2 The Finite Element Method..................................... ................. 77 4.3 Mass, Damping and Integrating Through Time ................ ...................... 84 4.4 A Deformable Surface Primitive ........................................................ 88 4.5 A Deformable Curve Primitive......................................................... 114 4.6 Chapter 4 Summ ary ...................................................... .............. 118 5 Survey of Constraint Methods ........................................................... 120 5.1 Reduced Transformation Equations ................................................... 121 5.2 Penalty Methods .............................................................................. 123 5.3 Lagrange M ultipliers ....................................................... 125 5.4 Stabilized Constraints .................................................................... 129 5.5 Stabilized Parametric Constraints ..................................................... 133 5.6 Chapter 5 Summary ................................................................... 137 6 Implementations .......................................................... 139 6.1 A Finite Difference Program for Deformable Surface Design, GGT.............139 6.2 A Finite Element Program for Deformable Surfaces, ECS .......................... 151 6.3 A Finite Element Program for Deformable Curves, CUBIC.......................162 6.4 Rendering ......................................................... 167 7 Conclusions and Future Work ............................................................. 171 7.1 Thesis Summary................................ ....................... 171 7.2 Conclusions ....................................................................... ... 173 7.3 Future Directions ......................................................................... 176 R eferences ...................................................................................... 179 List of Figures Figure 1.1) Current free-form design paradigms ............................................ 14 Figure 1.2) The ShapeWright design paradigm ............................................. 18 Figure 1.3) Geometric constraints needed for skinning ..................................19 Figure 2.1) Trimmed and constrained surface patches for complicated shapes..........38 Figure 3.1) The parametric tangents and normal to a regular surface ..................... 42 Figure 3.2) Curves in the parametric plane map to curves fixed in the surface .......... 43 Figure 3.3) The curvature and normal for a curve fixed in a surface......................45 Figure 3.4) Solutions for avoiding an obstacle . ................................. 61 Figure 3.5) External forces, a survey ................. ............... ............... 62 Figure 4.1) Discretizing the uv domain for a finite difference solution ..................
Recommended publications
  • Basics of the Differential Geometry of Surfaces
    Chapter 20 Basics of the Differential Geometry of Surfaces 20.1 Introduction The purpose of this chapter is to introduce the reader to some elementary concepts of the differential geometry of surfaces. Our goal is rather modest: We simply want to introduce the concepts needed to understand the notion of Gaussian curvature, mean curvature, principal curvatures, and geodesic lines. Almost all of the material presented in this chapter is based on lectures given by Eugenio Calabi in an upper undergraduate differential geometry course offered in the fall of 1994. Most of the topics covered in this course have been included, except a presentation of the global Gauss–Bonnet–Hopf theorem, some material on special coordinate systems, and Hilbert’s theorem on surfaces of constant negative curvature. What is a surface? A precise answer cannot really be given without introducing the concept of a manifold. An informal answer is to say that a surface is a set of points in R3 such that for every point p on the surface there is a small (perhaps very small) neighborhood U of p that is continuously deformable into a little flat open disk. Thus, a surface should really have some topology. Also,locally,unlessthe point p is “singular,” the surface looks like a plane. Properties of surfaces can be classified into local properties and global prop- erties.Intheolderliterature,thestudyoflocalpropertieswascalled geometry in the small,andthestudyofglobalpropertieswascalledgeometry in the large.Lo- cal properties are the properties that hold in a small neighborhood of a point on a surface. Curvature is a local property. Local properties canbestudiedmoreconve- niently by assuming that the surface is parametrized locally.
    [Show full text]
  • AN INTRODUCTION to the CURVATURE of SURFACES by PHILIP ANTHONY BARILE a Thesis Submitted to the Graduate School-Camden Rutgers
    AN INTRODUCTION TO THE CURVATURE OF SURFACES By PHILIP ANTHONY BARILE A thesis submitted to the Graduate School-Camden Rutgers, The State University Of New Jersey in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Mathematics written under the direction of Haydee Herrera and approved by Camden, NJ January 2009 ABSTRACT OF THE THESIS An Introduction to the Curvature of Surfaces by PHILIP ANTHONY BARILE Thesis Director: Haydee Herrera Curvature is fundamental to the study of differential geometry. It describes different geometrical and topological properties of a surface in R3. Two types of curvature are discussed in this paper: intrinsic and extrinsic. Numerous examples are given which motivate definitions, properties and theorems concerning curvature. ii 1 1 Introduction For surfaces in R3, there are several different ways to measure curvature. Some curvature, like normal curvature, has the property such that it depends on how we embed the surface in R3. Normal curvature is extrinsic; that is, it could not be measured by being on the surface. On the other hand, another measurement of curvature, namely Gauss curvature, does not depend on how we embed the surface in R3. Gauss curvature is intrinsic; that is, it can be measured from on the surface. In order to engage in a discussion about curvature of surfaces, we must introduce some important concepts such as regular surfaces, the tangent plane, the first and second fundamental form, and the Gauss Map. Sections 2,3 and 4 introduce these preliminaries, however, their importance should not be understated as they lay the groundwork for more subtle and advanced topics in differential geometry.
    [Show full text]
  • Convexity, Rigidity, and Reduction of Codimension of Isometric
    CONVEXITY, RIGIDITY, AND REDUCTION OF CODIMENSION OF ISOMETRIC IMMERSIONS INTO SPACE FORMS RONALDO F. DE LIMA AND RUBENS L. DE ANDRADE To Elon Lima, in memoriam, and Manfredo do Carmo, on his 90th birthday Abstract. We consider isometric immersions of complete connected Riemann- ian manifolds into space forms of nonzero constant curvature. We prove that if such an immersion is compact and has semi-definite second fundamental form, then it is an embedding with codimension one, its image bounds a convex set, and it is rigid. This result generalizes previous ones by M. do Carmo and E. Lima, as well as by M. do Carmo and F. Warner. It also settles affirma- tively a conjecture by do Carmo and Warner. We establish a similar result for complete isometric immersions satisfying a stronger condition on the second fundamental form. We extend to the context of isometric immersions in space forms a classical theorem for Euclidean hypersurfaces due to Hadamard. In this same context, we prove an existence theorem for hypersurfaces with pre- scribed boundary and vanishing Gauss-Kronecker curvature. Finally, we show that isometric immersions into space forms which are regular outside the set of totally geodesic points admit a reduction of codimension to one. 1. Introduction Convexity and rigidity are among the most essential concepts in the theory of submanifolds. In his work, R. Sacksteder established two fundamental results in- volving these concepts. Combined, they state that for M n a non-flat complete connected Riemannian manifold with nonnegative sectional curvatures, any iso- metric immersion f : M n Rn+1 is, in fact, an embedding and has f(M) as the boundary of a convex set.
    [Show full text]
  • Fundamental Forms of Surfaces and the Gauss-Bonnet Theorem
    FUNDAMENTAL FORMS OF SURFACES AND THE GAUSS-BONNET THEOREM HUNTER S. CHASE Abstract. We define the first and second fundamental forms of surfaces, ex- ploring their properties as they relate to measuring arc lengths and areas, identifying isometric surfaces, and finding extrema. These forms can be used to define the Gaussian curvature, which is, unlike the first and second fun- damental forms, independent of the parametrization of the surface. Gauss's Egregious Theorem reveals more about the Gaussian curvature, that it de- pends only on the first fundamental form and thus identifies isometries be- tween surfaces. Finally, we present the Gauss-Bonnet Theorem, a remarkable theorem that, in its global form, relates the Gaussian curvature of the surface, a geometric property, to the Euler characteristic of the surface, a topological property. Contents 1. Surfaces and the First Fundamental Form 1 2. The Second Fundamental Form 5 3. Curvature 7 4. The Gauss-Bonnet Theorem 8 Acknowledgments 12 References 12 1. Surfaces and the First Fundamental Form We begin our study by examining two properties of surfaces in R3, called the first and second fundamental forms. First, however, we must understand what we are dealing with when we talk about a surface. Definition 1.1. A smooth surface in R3 is a subset X ⊂ R3 such that each point has a neighborhood U ⊂ X and a map r : V ! R3 from an open set V ⊂ R2 such that • r : V ! U is a homeomorphism. This means that r is a bijection that continously maps V into U, and that the inverse function r−1 exists and is continuous.
    [Show full text]
  • Geometry of Surfaces 1 4.1
    M435: INTRODUCTION TO DIFFERENTIAL GEOMETRY MARK POWELL Contents 4. Geometry of Surfaces 1 4.1. Smooth patches 1 4.2. Tangent spaces 3 4.3. Vector fields and covariant derivatives 4 4.4. The normal vector and the Gauss map 7 4.5. Change of parametrisation 7 4.6. Linear Algebra review 14 4.7. First Fundamental Form 14 4.8. Angles 16 4.9. Areas 17 4.10. Effect of change of coordinates on first fundamental form 17 4.11. Isometries and local isometries 18 References 21 4. Geometry of Surfaces 4.1. Smooth patches. Definition 4.1. A smooth patch of a surface in R3 consists of an open subset U ⊆ R2 and a smooth map r: U ! R3 which is a homeomorphism onto its image r(U), and which has injective derivative. The image r(U) is a smooth surface in R3. Recall that the injective derivative condition can be checked by computing ru ^ rv =6 0 everywhere. A patch gives us coordinates (u; v) on our surface. The curves α(t) = r(t; v) and β(t) = r(u; t), for fixed u; v, are the coordinate lines on our surface. The lines of constant longitude and latitude on the surface of the earth are examples. Smooth means that all derivatives exist. In practice, derivatives up to third or fourth order at most are usually sufficient. Example 4.2. The requirement that r be injective means that we sometimes have to restrict our domain, and we may not cover the whole of some compact surface with one patch.
    [Show full text]
  • The Second Fundamental Form. Geodesics. the Curvature Tensor
    Differential Geometry Lia Vas The Second Fundamental Form. Geodesics. The Curvature Tensor. The Fundamental Theorem of Surfaces. Manifolds The Second Fundamental Form and the Christoffel symbols. Consider a surface x = @x @x x(u; v): Following the reasoning that x1 and x2 denote the derivatives @u and @v respectively, we denote the second derivatives @2x @2x @2x @2x @u2 by x11; @v@u by x12; @u@v by x21; and @v2 by x22: The terms xij; i; j = 1; 2 can be represented as a linear combination of tangential and normal component. Each of the vectors xij can be repre- sented as a combination of the tangent component (which itself is a combination of vectors x1 and x2) and the normal component (which is a multi- 1 2 ple of the unit normal vector n). Let Γij and Γij denote the coefficients of the tangent component and Lij denote the coefficient with n of vector xij: Thus, 1 2 P k xij = Γijx1 + Γijx2 + Lijn = k Γijxk + Lijn: The formula above is called the Gauss formula. k The coefficients Γij where i; j; k = 1; 2 are called Christoffel symbols and the coefficients Lij; i; j = 1; 2 are called the coefficients of the second fundamental form. Einstein notation and tensors. The term \Einstein notation" refers to the certain summation convention that appears often in differential geometry and its many applications. Consider a formula can be written in terms of a sum over an index that appears in subscript of one and superscript of P k the other variable. For example, xij = k Γijxk + Lijn: In cases like this the summation symbol is omitted.
    [Show full text]
  • Differential Geometry
    18.950 (Differential Geometry) Lecture Notes Evan Chen Fall 2015 This is MIT's undergraduate 18.950, instructed by Xin Zhou. The formal name for this class is “Differential Geometry". The permanent URL for this document is http://web.evanchen.cc/ coursework.html, along with all my other course notes. Contents 1 September 10, 20153 1.1 Curves...................................... 3 1.2 Surfaces..................................... 3 1.3 Parametrized Curves.............................. 4 2 September 15, 20155 2.1 Regular curves................................. 5 2.2 Arc Length Parametrization.......................... 6 2.3 Change of Orientation............................. 7 3 2.4 Vector Product in R ............................. 7 2.5 OH GOD NO.................................. 7 2.6 Concrete examples............................... 8 3 September 17, 20159 3.1 Always Cauchy-Schwarz............................ 9 3.2 Curvature.................................... 9 3.3 Torsion ..................................... 9 3.4 Frenet formulas................................. 10 3.5 Convenient Formulas.............................. 11 4 September 22, 2015 12 4.1 Signed Curvature................................ 12 4.2 Evolute of a Curve............................... 12 4.3 Isoperimetric Inequality............................ 13 5 September 24, 2015 15 5.1 Regular Surfaces................................ 15 5.2 Special Cases of Manifolds .......................... 15 6 September 29, 2015 and October 1, 2015 17 6.1 Local Parametrizations ...........................
    [Show full text]
  • Submanifold Geometry
    CHAPTER 7 Submanifold geometry 7.1 Introduction In this chapter, we study the extrinsic geometry of Riemannian manifolds. Historically speaking, the field of Differential Geometry started with the study of curves and surfaces in R3, which originated as a development of the invention of infinitesimal calculus. Later investigations considered arbitrary dimensions and codimensions. Our discussion in this chapter is centered in submanifolds of spaces forms. A most fundamental problem in submanifold geometry is to discover simple (sharp) relationships between intrinsic and extrinsic invariants of a submanifold. We begin this chapter by presenting the standard related results for submanifolds of space forms, with some basic applications. Then we turn to the Morse index theorem for submanifolds. This is a very important theorem that can be used to deduce information about the topology of the submanifold. Finally, we present a brief account of the theory of isoparametric submanifolds of space forms, which in some sense are the submanifolds with the simplest local invariants, and we refer to [BCO16, ch. 4] for a fuller account. 7.2 The fundamental equations of the theory of isometric immersions The first goal is to introduce a number of invariants of the isometric immersion. From the point of view of submanifold geometry, it does not make sense to distinguish between two isometric immersions of M into M that differ by an ambient isometry. We call two isometric immersions f : (M, g) (M, g) and f ′ : (M, g′) (M, g) congruent if there exists an isometry ϕ of M such → → that f ′ = ϕ f. In this case, ◦ g′ = f ′∗g = f ∗ϕ∗g = f ∗g = g.
    [Show full text]
  • Differential Geometry Peter Petersen
    Differential Geometry Peter Petersen CHAPTER 1 Preliminaries 1.1. Vectors-Matrices Given a basis e, f for a two dimensional vector space we expand vectors using matrix multiplication ve v = vee + vf f = ef vf and the matrix representation [L] for a linear⇥ map/transformation⇤ L can be found from L (e) L (f) = ef [L] Le Le ⇥ ⇤ = ⇥ ef⇤ e f Lf Lf e f ⇥ ⇤ Next we relate matrix multiplication and the dot product in R3. We think of vectors as being columns or 3 1 matrices. Keeping that in mind and using transposition ⇥ of matrices we immediately obtain: XtY = X Y, · Xt X Y = X X X Y 2 2 · 2 · 2 t X X X⇥ Y X⇤ = ⇥ 1 ⇤ 1 1 Y ·X 1 · ⇥ t ⇤ X X X Y X Y X Y = 1 2 1 2 , 1 1 2 2 Y ·X Y ·Y 1 · 2 1 · 2 ⇥ ⇤ ⇥ ⇤ X1 X2 X1 Y2 X1 Z2 t · · · X1 Y1 Z1 X2 Y2 Z2 = Y1 X2 Y1 Y2 Y1 Z2 2 Z · X Z · Y Z · Z 3 ⇥ ⇤ ⇥ ⇤ 1 · 2 1 · 2 1 · 2 These formulas can be used to calculate the4 coefficients of a vector with respect5 2 to a general basis. Recall first that if E1,E2 is an orthonormal basis for R , then X =(X E1) E1 +(X E2) E2 · · t = E1 E2 E1 E2 X So the coefficients for X are simply⇥ the dot⇤⇥ products with⇤ the basis vectors. More generally we have Theorem 1.1.1. Let U.V be a basis for R2, then t 1 t X = UV UV UV − UV X ⇥ ⇤ ⇣⇥ ⇤t ⇥ ⇤⌘ 1 ⇥ U X ⇤ = UV UV UV − V · X · ⇥ ⇤ ⇣⇥ ⇤ ⇥ ⇤⌘ 3 1.2.
    [Show full text]
  • The Mean Curvature Flow of Submanifolds of High Codimension
    The mean curvature flow of submanifolds of high codimension Charles Baker November 2010 arXiv:1104.4409v1 [math.DG] 22 Apr 2011 A thesis submitted for the degree of Doctor of Philosophy of the Australian National University For Gran and Dar Declaration The work in this thesis is my own except where otherwise stated. Charles Baker Abstract A geometric evolution equation is a partial differential equation that evolves some kind of geometric object in time. The protoype of all parabolic evolution equations is the familiar heat equation. For this reason parabolic geometric evolution equations are also called geometric heat flows or just geometric flows. The heat equation models the physical phenomenon whereby heat diffuses from regions of high temperature to regions of cooler temperature. A defining characteris- tic of this physical process, as one readily observes from our surrounds, is that it occurs smoothly: A hot cup of coffee left to stand will over a period of minutes smoothly equilibrate to the ambient temperature. In the case of a geometric flow, it is some kind of geometric object that diffuses smoothly down a driving gradient. The most natural extrinsically defined geometric heat flow is the mean curvature flow. This flow evolves regions of curves and surfaces with high curvature to regions of smaller curvature. For example, an ellipse with highly curved, pointed ends evolves to a circle, thus minimising the distribution of curvature. It is precisely this smoothing, energy- minimising characteristic that makes geometric flows powerful mathematical tools. From a pure mathematical perspective, this is a useful property because unknown and complicated objects can be smoothly deformed into well-known and easily understood objects.
    [Show full text]
  • DIFFERENTIAL GEOMETRY of CURVES and SURFACES 5. the Second Fundamental Form of a Surface
    DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 5. The Second Fundamental Form of a Surface The main idea of this chapter is to try to measure to which extent a surface S is different from a plane, in other words, how “curved” is a surface. The idea of doing this is by assigning to each point P on S a unit normal vector N(P ) (that is, a vector perpendicular to the tangent plane at P ). We are measuring to which extent is the map from S to R3 given by P N(P ) (called the Gauss map) different from the constant map, so we are interested in its7→ derivative (or rather, differential). This will lead us to the concept of second fundamental form, which is a quadratic form associated to S at the point P . 5.1. Orientability and the Gauss map. Let S be a regular surface in R3. Definition 5.1.1. (a) A normal vector to S at P is a vector perpendicular to the plane TP S. If it has length 1, we call it a normal unit vector. (b) A (differentiable) normal unit vector field on S is a way of assigning to each P in S a unit normal vector N(P ), such that the resulting map N : S R3 is differentiable1. → At any point P in S there exist two normal unit vectors, which differ from each other by a minus sign. So a normal unit vector field is just a choice of one of the two vectors at any point P . It is a useful exercise to try to use ones imagination to visualize normal unit vector fields on surfaces like the sphere, the cylinder, the torus, the graph of a function of two variables etc.
    [Show full text]
  • M435: Introduction to Differential Geometry
    M435: INTRODUCTION TO DIFFERENTIAL GEOMETRY MARK POWELL Contents 5. Second fundamental form and the curvature 1 5.1. The second fundamental form 1 5.2. Second fundamental form alternative derivation 2 5.3. The shape operator 3 5.4. Principal curvature 5 5.5. The Theorema Egregium of Gauss 11 References 14 5. Second fundamental form and the curvature 5.1. The second fundamental form. We will give several ways of motivating the definition of the second fundamental form. Like the first fundamental form, the second fundamental form is a symmetric bilinear form on each tangent space of a surface Σ. Unlike the first, it need not be positive definite. The idea of the second fundamental form is to measure, in R3, how Σ curves away from its tangent plane at a given point. The first fundamental form is an intrinsic object whereas the second fundamental form is extrinsic. That is, it measures the surface as compared to the tangent plane in R3. By contrast the first fundamental form can be measured by a denizen of the surface, who does not possess 3 dimensional awareness. Given a smooth patch r: U ! Σ, let n be the unit normal vector as usual. Define R(u; v; t) := r(u; v) − tn(u; v); with t 2 (−"; "). This is a 1-parameter family of smooth surface patches. How is the first fundamental form changing in this family? We can compute that: 1 @ ( ) Edu2 + 2F dudv + Gdv2 = Ldu2 + 2Mdudv + Ndv2 2 @t t=0 where L := −ru · nu 2M := −(ru · nv + rv · nu) N := −rv · nv: The reason for the negative signs will become clear soon.
    [Show full text]