Ep 2588593 B1

Total Page:16

File Type:pdf, Size:1020Kb

Ep 2588593 B1 (19) TZZ ¥_T (11) EP 2 588 593 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 8/46 (2006.01) A61K 8/49 (2006.01) 23.08.2017 Bulletin 2017/34 A61Q 19/08 (2006.01) A61K 8/97 (2017.01) (21) Application number: 11804011.2 (86) International application number: PCT/US2011/040157 (22) Date of filing: 13.06.2011 (87) International publication number: WO 2012/005876 (12.01.2012 Gazette 2012/02) (54) COMPOSITIONS AND METHODS FOR STIMULATING MAGP-1 TO IMPROVE THE APPEARANCE OF SKIN ZUSAMMENSETZUNGENUND VERFAHREN ZUR MAGP-1-STIMULATION ZUR VERBESSERUNG DES ERSCHEINUNGSBILDES DER HAUT COMPOSITIONS ET PROCÉDÉS DE STIMULATION DE MAGP-1 POUR AMÉLIORER L’ASPECT DE LA PEAU (84) Designated Contracting States: (56) References cited: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB WO-A1-2007/093839 WO-A1-2012/005872 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO WO-A2-2006/068778 JP-A- 2002 087 973 PL PT RO RS SE SI SK SM TR JP-A- 2006 069 954 JP-A- 2010 090 069 US-A1- 2003 207 818 US-A1- 2006 134 231 (30) Priority: 30.06.2010 US 360083 P US-A1- 2007 161 625 US-A1- 2008 274 453 US-A1- 2009 012 273 (43) Date of publication of application: 08.05.2013 Bulletin 2013/19 • MICOR JOSERENE L. ET AL.: "BiologicalActivity of Bignay [Antidesma bunius (L.) Spreng] Crude (73) Proprietor: Avon Products, Inc. Extract in Artemia Salina", JOURNAL OF New York, NY 10017 (US) MEDICAL SCIENCES, vol. 5, no. 3, 1 September 2005 (2005-09-01), pages 195-198, XP002741400, (72) Inventors: ISSN: 1682-4474 • ZHENG, Qian • CHOI E M ET AL: "Screening of Indonesian Morris Plains medicinal plants for inhibitor activity on nitric New Jersey 07950 (US) oxide production of RAW264.7 cells and • CHEN, Siming W. antioxidant activity", FITOTERAPIA, IDB Parsippany HOLDING, MILAN, IT, vol. 76, no. 2, 1 March 2005 New Jersey 07054 (US) (2005-03-01), pages194-203, XP027752362, ISSN: • SANTHANAM, Uma 0367-326X [retrieved on 2005-03-01] Tenafly • JOTHI G.J. ET AL.: "Glimpses of Tribal Botanical New Jersey 07670 (US) Knowledge of Tirunveli Hills, Western Ghats, • LYGA, John W. India", ETHNOBOTANICAL LEAFLETS, vol. 12, 4 Basking Ridge March 2008 (2008-03-04), pages 118-126, New Jersey 07920 (US) XP002741401, (74) Representative: Dr. Weitzel & Partner Patent- und Rechtsanwälte mbB Friedenstrasse 10 89522 Heidenheim (DE) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 588 593 B1 Printed by Jouve, 75001 PARIS (FR) (Cont. next page) EP 2 588 593 B1 • FUJIMOTO NORIHIRO ET AL: "Expression of • DATABASE GENBANK 15 December 2009 microfibril-associated glycoprotein-1 (MAGP-1) FARACO ET AL.: ’RecName: in human epidermal keratinocytes", ARCHIVES Full=Microfibrillar-associated protein 2; OFDERMATOLOGICAL RESEARCH, SPRINGER, Short=MFAP-2; AltName: INTERNATIONAL, BERLIN, DE, vol. 292, no. 1, 1 Full=Microfibrilassociated glycoprotein 1; January 2000 (2000-01-01), pages 21-26, Short=MAGP;Short=MAGP-1; Flags: Precursor.’, XP002436049, ISSN: 0340-3696, DOI: XP008162517 Database accession no. P55001 10.1007/PL00007456 • WEINBAUM ET AL.: ’Deficiency in • Y. TATANO ET AL: "Significant Decrease in microfibril-associated glycoprotein-1 leads to Tropoelastin Gene Expression in Fibroblasts complex phenotypes in multiple organ systems.’ from a Japanese Costello Syndrome Patient with J. BIOL. CHEM. vol. 283, no. 37, 12 September Impaired Elastogenesis and Enhanced 2008, pages 25533 - 25543, XP008162542 Proliferation", JOURNAL OF BIOCHEMISTRY, vol. 140, no. 2, 1 August 2006 (2006-08-01), pages 193-200, XP055198321, ISSN: 0021-924X, DOI: 10.1093/jb/mvj146 • DATABASE GNPD [Online] MINTEL; October 2011 (2011-10), "Treatment Cream", XP002746747, Database accession no. 1646948 2 EP 2 588 593 B1 Description RELATED APPLICATIONS 5 [0001] This application claims priority to U.S. Provisional Patent Application Serial No. 61/360,083, filed June 30, 2010. FIELD OF INVENTION [0002] The present invention relates generally to methods of improving the aesthetic appearance of human skin and/or 10 improving the appearance of aged and/or photodamaged skin by applying compounds to the skin which stimulate the expression of the extracellular matrix protein MAGP-1 and provide benefits to the skin. BACKGROUND OF THE INVENTION 15 [0003] There is an increasing demand in the cosmetics industry to develop products that may be applied topically to the skin that improve the condition and appearance of skin. Consumers are interested in mitigating or delaying the dermatological signs of chronologically- or hormonally- aged skin, as well as skin aging due to the environmental stress, such as fine lines, wrinkles, sagging skin and other conditions due to a progressive loss of cell growth, proliferation and functionality in the epidermal and dermal skin layers. During the aging process, the complexion of the skin, i.e., the color 20 and appearance of the skin, deteriorates slowly from aging and/or exposure to environmental stress, e.g., sunlight. [0004] There remains a general need in the cosmetics industry for products that retard or counter the aging effects on the skin, and more specifically for products that produce such effects without undesirable side effects. In particular, there remains a need for topically applied cosmetic compositions that provide anti-aging and skin texture benefits using natural plant materials as active components. 25 [0005] Active ingredients or components derived or extracted from plants and plant seeds have commonly been employed for a myriad of medicinal, therapeutic and cosmetic purposes. Such actives may be obtained from the entire plant or various parts of a plant, such as seeds, needles, leaves, flowers, roots, bark, cones, stems, rhizomes, callus cells, protoplasts, and meristems. Active ingredients or components are incorporated in compositions in a variety of forms. Such forms include a pure or semi-pure component, a solid or liquid extract or derivative, or a solid natural plant 30 material. Plant material may be incorporated in a variety of subforms such as whole, minced, ground or crushed, or otherwise physically modified for incorporation into a composition. [0006] Examples of skin beautifying products comprising plant extracts are US 2006/134231 A1 (Amorphophallus), JP 2010 090069 A (Ixora chinensis) and WO 2006/068778 A1 (Sapindus rarak and Thumbergia laurifolia). A peptide- based ingredient (KTFK) is disclosed in WO 2007/093839). 35 [0007] MAGP-1 (Microfibril-associated glycoprotein 1) is a small glycine rich acidic protein in extra-cellular matrix (ECM). MAGP-1 is a 30-33 kDa member of the microfibril associated glycoprotein family of proteins. It was found to be a key component of microfibrils and elastic fibers in skin. MAGP-1 forms complexes with other microfibril proteins such as fibrillin. Besides providing structural support for skin elastic fiber formation, MAGP-1 is also essential for vascular integrity, wound healing, and proper body fat deposition, possibly through regulating TGF-beta signaling, based on 40 animal studies. MAGP-1 apparently mediates the release of Notch extracellular domain and also likely binds to type IV collagen and contributes to elastin fiber formation. [0008] The present invention identifies a particular compound to be active at simulating expression of the extracellular matrix protein MAGP-1. This compound is an N-substituted sulfonyloxybenzylamine having the following structure (I): 45 50 [0009] The N-substituted sulfonyloxybenzylamine as disclosed above has not been known previously for topical ap- 55 plication to skin to improve the skin’s aesthetic appearance. [0010] Antidesma bunius is a species of fruit tree in the spurge family. It is native to Southeast Asia, the Philippines, and northern Australia. Its common Philippine name and other names include bignay, bugnay or bignai and currant tree. This is a variable plant which may be short and shrubby or tall and erect, approaching 30 meters in height. It has large 3 EP 2 588 593 B1 oval shaped leathery evergreen up to about 20 centimeters long and seven wide. The leaves are sudorific and employed in treating snakebite, in Asia. (Morton, J. 1987. Bignay. p. 210-212. In: Fruits of warm climates. Julia F. Morton, Miami, FL.) . [0011] Operculina turpethum is a plant in the morning glory family, (syn. Ipomoea turpethum) and is known commonly as turpeth, fue vao, and St. Thomas lidpod. It is one of many plants mentioned in the literature having claims of activity 5 against liver disorders. Vasudesan, N,V., Indian Medicinal Plants, Vol. IV, Orient Longman Ltd, Chennai, 1995, 172. It also has anthelmintic expectorant, antipyretic, anti-inflammatory and purgative properties. Id. [0012] Ixora chinensis is a fairly small, bushy shrub, usually only 5-10ft tall. There are dwarf varieties that are much smaller. Ixora will flower when only a few inches high. It is commonly used a hedge or small garden plant. The plant is mainly grown as ornamental but its flowers are believed to have some medicinal uses including treatment for hypertension 10 and for treating rheumatism, abscesses, bruises and wounds. The plant is native to India and Sri Lanka [0013] Clerodendron lindleyi are shrubs, lianas, and small trees, usually growing to 1-12 m tall, with opposite or whorled leaves. The genus is native to tropical and warm temperate regions of the world, with most of the species occurring in tropical Africa and southern Asia, but with a few in the tropical Americas and northern Australasia, and a few extending north into the temperate zone in eastern Asia.
Recommended publications
  • Survey of Roadside Alien Plants in Hawai`I Volcanoes National Park and Adjacent Residential Areas 2001–2005
    Technical Report HCSU-032 SURVEY OF ROADSIDE ALIEN PLANts IN HAWAI`I VOLCANOES NATIONAL PARK AND ADJACENT RESIDENTIAL AREAS 2001–2005 Linda W. Pratt1 Keali`i F. Bio2 James D. Jacobi1 1 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Kilauea Field Station, P.O. Box 44, Hawaii National Park, HI 96718 2 Hawai‘i Cooperative Studies Unit, University of Hawai‘i at Hilo, P.O. Box 44, Hawai‘i National Park, HI 96718 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 September 2012 This product was prepared under Cooperative Agreement CA03WRAG0036 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-032 SURVEY OF ROADSIDE ALIEN PLANTS IN HAWAI`I VOLCANOES NATIONAL PARK AND ADJACENT RESIDENTIAL AREAS 2001–2005 1 2 1 LINDA W. PRATT , KEALI`I F. BIO , AND JAMES D. JACOBI 1 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Kīlauea Field Station, P.O. Box 44, Hawai`i Volcanoes National Park, HI 96718 2 Hawaii Cooperative Studies Unit, University of Hawai`i at Hilo, Hilo, HI 96720 Hawai`i Cooperative Studies Unit University of Hawai`i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 September 2012 This article has been peer reviewed and approved for publication consistent with USGS Fundamental Science Practices ( http://pubs.usgs.gov/circ/1367/ ). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    [Show full text]
  • Sinopsis De La Familia Acanthaceae En El Perú
    Revista Forestal del Perú, 34 (1): 21 - 40, (2019) ISSN 0556-6592 (Versión impresa) / ISSN 2523-1855 (Versión electrónica) © Facultad de Ciencias Forestales, Universidad Nacional Agraria La Molina, Lima-Perú DOI: http://dx.doi.org/10.21704/rfp.v34i1.1282 Sinopsis de la familia Acanthaceae en el Perú A synopsis of the family Acanthaceae in Peru Rosa M. Villanueva-Espinoza1, * y Florangel M. Condo1 Recibido: 03 marzo 2019 | Aceptado: 28 abril 2019 | Publicado en línea: 30 junio 2019 Citación: Villanueva-Espinoza, RM; Condo, FM. 2019. Sinopsis de la familia Acanthaceae en el Perú. Revista Forestal del Perú 34(1): 21-40. DOI: http://dx.doi.org/10.21704/rfp.v34i1.1282 Resumen La familia Acanthaceae en el Perú solo ha sido revisada por Brako y Zarucchi en 1993, desde en- tonces, se ha generado nueva información sobre esta familia. El presente trabajo es una sinopsis de la familia Acanthaceae donde cuatro subfamilias (incluyendo Avicennioideae) y 38 géneros son reconocidos. El tratamiento de cada género incluye su distribución geográfica, número de especies, endemismo y carácteres diagnósticos. Un total de ocho nombres (Juruasia Lindau, Lo­ phostachys Pohl, Teliostachya Nees, Streblacanthus Kuntze, Blechum P. Browne, Habracanthus Nees, Cylindrosolenium Lindau, Hansteinia Oerst.) son subordinados como sinónimos y, tres especies endémicas son adicionadas para el país. Palabras clave: Acanthaceae, actualización, morfología, Perú, taxonomía Abstract The family Acanthaceae in Peru has just been reviewed by Brako and Zarruchi in 1993, since then, new information about this family has been generated. The present work is a synopsis of family Acanthaceae where four subfamilies (includying Avicennioideae) and 38 genera are recognized.
    [Show full text]
  • The Framework Species Approach to Forest Restoration: Using Functional Traits As Predictors of Species Performance
    - 1 - The Framework Species Approach to forest restoration: using functional traits as predictors of species performance. Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Hannah Betts July 2013 - 2 - - 3 - Abstract Due to forest degradation and loss, the use of ecological restoration techniques has become of particular interest in recent years. One such method is the Framework Species Approach (FSA), which was developed in Queensland, Australia. The Framework Species Approach involves a single planting (approximately 30 species) of both early and late successional species. Species planted must survive in the harsh conditions of an open site as well as fulfilling the functions of; (a) fast growth of a broad dense canopy to shade out weeds and reduce the chance of forest fire, (b) early production of flowers or fleshy fruits to attract seed dispersers and kick start animal-mediated seed distribution to the degraded site. The Framework Species Approach has recently been used as part of a restoration project in Doi Suthep-Pui National Park in northern Thailand by the Forest Restoration Research Unit (FORRU) of Chiang Mai University. FORRU have undertaken a number of trials on species performance in the nursery and the field to select appropriate species. However, this has been time-consuming and labour- intensive. It has been suggested that the need for such trials may be reduced by the pre-selection of species using their functional traits as predictors of future performance. Here, seed, leaf and wood functional traits were analysed against predictions from ecological models such as the CSR Triangle and the pioneer concept to assess the extent to which such models described the ecological strategies exhibited by woody species in the seasonally-dry tropical forests of northern Thailand.
    [Show full text]
  • Tiliacora Triandra) Gum on Gelation of Waxy Rice Flour
    Current Applied Science and Technology Vol. 18 No. 1 Jan.-Apr. 2018 Effects of Yanang (Tiliacora triandra) Gum on Gelation of Waxy Rice Flour Wisutthana Samutsri* and Sujittra Thimtuad Department of Food Science and Technology, Faculty of Science and Technology, Phranakhon Rajabhat University, Bangkok, Thailand Received: 12 July 2017, Revised: 20 March 2018, Accepted: 28 March 2018 Abstract Crude hydrocolloid extract has been prepared from the leaves of Yanang (Tiliacora triandra). This research studied effects of Yanang gum on pasting and textureal properties of blending of waxy rice flour. Rapid visco analysis (RVA) results showed that the ratio of Yanang extract to water of 1:3 and 1:4 (w/w) significantly decreased the trough, breakdown, and final viscosities of the waxy rice flour whereas the peak viscosities, peak time, and pasting temperatures of the blends were increased. Textural study revealed that the addition of crude Yanang gum enhanced more hardness and springiness of the blending gels than those of waxy rice flour gel, whereas cohesiveness was less affected. These results would be useful as a guideline for developing frozen starch-based food products containing crude Yanang gum. Keywords: Yanang, hydrocolloid, waxy rice flour, pasting properties, textural properties, RVA 1. Introduction Retrogradation is a term used for changes that occur in gelatinized starch from disordered state to a more ordered crystalline state and the tendency of starch pastes to thicken and to form stiff gels [1]. Among the cereal, rice is one of the most utilized grains in many forms. Rice flour does not have good handing properties, thus the incorporation of curtain additives as hydrocolloids may be an approach to achieve the desirable properties.
    [Show full text]
  • Tiliacora Triandra (Colebr.) Diels Leaf Aqueous Extract Inhibits Hepatic Glucose Production in Hepg2 Cells and Type 2 Diabetic Rats
    molecules Article Tiliacora triandra (Colebr.) Diels Leaf Aqueous Extract Inhibits Hepatic Glucose Production in HepG2 Cells and Type 2 Diabetic Rats Tipthida Pasachan 1, Acharaporn Duangjai 2, Atcharaporn Ontawong 2, Doungporn Amornlerdpison 3 , Metee Jinakote 4, Manussabhorn Phatsara 5 , Sunhapas Soodvilai 6,7 and Chutima Srimaroeng 1,* 1 Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] 2 Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; [email protected] (A.D.); [email protected] (A.O.) 3 Centre of Excellence in Agricultural Innovation for Graduate Entrepreneur and Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand; doungpornfi[email protected] 4 School of Human Kinetics and Health, Faculty of Health Science Technology, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand; [email protected] 5 Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] 6 Research Centre of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; [email protected] 7 Excellent Centre for Drug Discovery, Mahidol University, Bangkok 10400, Thailand * Correspondence: [email protected]; Tel.: +66-53-935362; Fax: +66-53-935365 Citation: Pasachan, T.; Duangjai, A.; Ontawong, A.; Amornlerdpison, D.; Abstract: This study investigated the effects of Tiliacora triandra (Colebr.) Diels aqueous extract (TTE) Jinakote, M.; Phatsara, M.; Soodvilai, on hepatic glucose production in hepatocellular carcinoma (HepG2) cells and type 2 diabetic (T2DM) S.; Srimaroeng, C.
    [Show full text]
  • Natural Surfactant Saponin from Tissue of Litsea Glutinosa and Its Alternative Sustainable Production
    plants Article Natural Surfactant Saponin from Tissue of Litsea glutinosa and Its Alternative Sustainable Production Jiratchaya Wisetkomolmat 1,2, Ratchuporn Suksathan 3, Ratchadawan Puangpradab 3, Keawalin Kunasakdakul 4, Kittisak Jantanasakulwong 5,6, Pornchai Rachtanapun 5,6 and Sarana Rose Sommano 2,5,7,* 1 Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] 2 Plant Bioactive Compound Laboratory, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 3 Research and Product Development, Department of Research and Conservation, Queen Sirikit Botanic Garden, The Botanical Garden Organisation, Chiang Mai 50180, Thailand; [email protected] (R.S.); [email protected] (R.P.) 4 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] 5 Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; [email protected] (K.J.); [email protected] (P.R.) 6 Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand 7 Innovative Agriculture Research Centre, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand * Correspondence: [email protected]; Tel.: +66-53944040 Received: 8 October 2020; Accepted: 6 November 2020; Published: 9 November 2020 Abstract: In this research, we assessed the detergency properties along with chemical characteristic of the surfactant extracts from the most frequently cited detergent plants in Northern Thailand, namely, Sapindus rarak, Acacia concinna, and Litsea glutinosa. Moreover, as to provide the sustainable option for production of such valuable ingredients, plant tissue culture (PTC) as alternative method for industrial metabolite cultivation was also proposed herein.
    [Show full text]
  • A Survey of Medicinal Plants in Tropical Rain Forest from Hua Khao
    Copyright © 2014, American-Eurasian Network for Scientific Information publisher American-Eurasian Journal of Sustainable Agriculture ISSN: 1995-0748 JOURNAL home page: http://www.aensiweb.com/AEJSA 2014 April; 8(5): pages 1-11. Published Online 2014 28 June. Research Article Medicinal Plants in Tropical Rain Forest from Hua Khao Subdistrict, Singha Nakhon District, Songkhla Province, Thailand Oratai Neamsuvan, Narumon Sengnon, Umad Haddee, Wittawat Mard-E and Warunyu Sae-Tang Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat yai, 90110, Thailand Received: 25 April 2014; Revised:: 20 May 2014; Accepted: 25 May 2014; Available online: 28 June 2014 © 2014 AENSI PUBLISHER All rights reserved ABSTRACT Phytogeographically, southern Thailand is covered by tropical rain forest which high plant diversity is existing. Nevertheless, scanty study of medicinal plant diversity has been performed. This study aimed to survey medicinal plants from tropical rain forest of Hua Khao Subdistrict, Singha Nakhon District, Songkhla Province. It was carried out during July 2012–December 2012. Semi-structure interviews were performed to 5 key informants. The main criteria for consulting were plant vernacular name, plant part used, preparation, route of administration and properties. Plant identification and voucher specimens were done. The data were analyzed by descriptive statistics and interpretation. Totally, eighty-two species belonging to 69 genera and 48 families were recorded. Rubiaceae was the family with most species used (6 species). The most frequently utilized plant part was underground part (32.73%). Medicinal plants found could be categorized into 31 groups according to their properties, among them antipyretic drugs were mostly found with species utilized (20.80%).
    [Show full text]
  • Fast and Reliable Detection of Toxic Crotalaria Spectabilis Roth. in Thunbergia Laurifolia Lindl
    Singtonat and Osathanunkul BMC Complementary and Alternative Medicine (2015) 15:162 DOI 10.1186/s12906-015-0692-6 RESEARCH ARTICLE Open Access Fast and reliable detection of toxic Crotalaria spectabilis Roth. in Thunbergia laurifolia Lindl. herbal products using DNA barcoding coupled with HRM analysis Sahachat Singtonat and Maslin Osathanunkul* Abstract Background: Nowadays, medicinal plants are used as a popular alternative to synthetic drugs. Many medicinal plant products have now been commercialized throughout various markets. These products are commonly sold in processed or modified forms such as powders, dried material and capsules, making it almost impossible to accurately identify the constituent species. The herbal plant known as ‘Rang Chuet’ in Thai has been widely used as remedies for various ailments. However, two medicinal plants species, Thunbergia laurifolia and Crotalaria spectabilis share this name. Duotothesimilarityinnomenclature, the commercial products labeled as ‘Rang Chuet’ could be any of them. Recently, the evidence of hepatotoxic effects linked to use of C. spectabilis were reported and is now seriously concern. There is a need to find an approach that could help with species identification of these herbal products to ensure the safety and efficacy of the herbal drug. Methods: Here DNA barcoding was used in combination with High Resolution Melting analysis (Bar-HRM) to authenticate T. laurifolia species. Four DNA barcodes including matK, rbcL, rpoC and trnL were selected for use in primers design for HRM analysis to produce standard melting profiles of the selected species. Commercial products labeled as ‘Rang Chuet’ were purchased from Thai markets and authentication by HRM analyses. Results: Melting data from the HRM assay using the designed primers showed that the two ‘Rang Chuet’ species could easily be distinguished from each other.
    [Show full text]
  • Thunbergia Species Thunbergia Spp
    Fact sheet DECLARED CLASS 1 AND 2 PEST PLANT Thunbergia species Thunbergia spp. The four species of thunbergia declared under the Land T. grandiflora is the most widespread pest species, having Protection (Pest and Stock Route Management) Act 2002 been used as a garden ornamental for its attractive large in Queensland are: leaves and hanging groups of large, pale lavender flowers. • Thunbergia laurifolia—laurel clockvine (Class 1) While other species of thunbergia (black-eyed susan, • Thunbergia annua (Class 1) scarlet clock vine, golden glory vine, lady’s slipper) are not declared, they are not recommended for planting because • Thunbergia fragrans (Class 1) of their potential to spread into surrounding bush. • Thunbergia grandiflora—blue trumpet vine or blue sky vine (Class 2). PP23 September 2011 T. arnhemica is the only native species and occurs in northern parts of Queensland, the Northern Territory and Western Australia (can be confused with T. fragrans). Thunbergia species are a major threat to remnant vegetation in the wet tropics. In the past T. grandiflora and T. laurifolia were promoted and sold in Queensland as attractive garden plants, and both became widespread in Queensland gardens. These vigorous plants soon escaped into native bushland and began causing considerable environmental damage. The plant climbs and blankets native vegetation, with the weight of the vine often pulling down mature trees. Smothered vegetation also has dramatically reduced light levels to lower layers of vegetation, drastically limiting Thunbergia laurifolia infestation natural growth and killing many native plants. Large tubers degrade creek and river banks and make destruction of Other species of thunbergia the pest difficult.
    [Show full text]
  • Chemical Components and Antioxidant Activities of Thai Local Vegetables Chemical Components and Antioxidant Activities of Thai Local Vegetables
    18 P. Sriket: Chemical Components and Antioxidant Activities of Thai Local Vegetables Chemical Components and Antioxidant Activities of Thai Local Vegetables Pornpimol Sriket* Program in Food Business and Nutrition, Faculty of Agriculture, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, 34000, Thailand ABSTRACT of cardiovascular disease and cancers correlated with increased consumption of food containing phenolic Proximate compositions, phenolic compounds and compounds has been reported [11]. Vegetables found antioxidant activities of five Thai local vegetables in Thailand such as Yanang leaves (Tiliacora triandra were investigated. All studied samples showed the Diels.), Pak Thew (Cratoxylum formosum (Jack.) similar proximate profiles, in which moisture and Dyer.) and Pak Paew (Polygonum odoratum) etc. carbohydrate were the major components. However, always contribute in Thai dishes including hot and Tiliacora triandra Diels. also contained high content sour fish soup, meat salad (in Thai called Laab), rice of fiber and protein. Careya sphaerica Roxb. had the curry salad and other dishes from Northeast Thailand highest total phenolic content (TPC) among all featuring bamboo shoots (in Thai called Naw Mai). samples tested (p < 0.05). The main phenolic acids The use of those local vegetables mostly found in found in the vegetables were hydrocinnamic acids, dietary cultures where local vegetables are used including ferulic acid (1 to 16 mg/g), p-coumaric acid regularly [12]. (4 to 7 mg/g), sinapic acid (0.9 to 5 mg/g) and Although, these local vegetables were used in syringic acid (1 to 6 mg/g). Careya sphaerica Roxb. various dishes such as Thai curry and spicy soups extract exhibited the highest ferric reducing with local style cooking in Northeastern Thailand.
    [Show full text]
  • Hypoglycemic Activity of Leaf Extracts from Tiliacora Triandra in Normal and Streptozotocin-Induced Diabetic Rats
    Pharmacogn J. 2017; 9(5): 621-625 A Multifaceted Journal in the field of Natural Products and Pharmacognosy Original Article www.phcogj.com | www.journalonweb.com/pj | www.phcog.net Hypoglycemic Activity of Leaf Extracts from Tiliacora triandra in Normal and Streptozotocin-Induced Diabetic Rats Teeraporn Katisart1*, Surapong Rattana2 ABSTRACT Background: Tiliacora triandra is a common plant found in southeast Asian countries. It is traditionally used as anti-pyrogenic agent. Objective: The present study was aimed to investi- gate the hypoglycemic activities leaf extracts from Tiliacora triandra (TTE) in normal and strep- tozotocin-induced diabetic rats. Methods: TTE was prepared and daily and orally administered at dose of 300 mg/kg b.w. to the rats for 8 weeks. The body weight and blood glucose level were measured weekly. At the end of the experiments, blood samples were collected from cardiac puncture and analyzed for serum insulin levels. The pancreatic tissues were stained by hematoxylin-eosin for histo-pathological investigations. Results: Normal and diabetic rats treated with TTE and glibenclamide tended to have an increased body weight. TTE significantly decreased the blood glucose level by 25.01 ± 19.77% in week 3 in diabetic rats and similar to that of glibenclamide group (27.01 ± 11.89%). However, the extracts slightly decreased the blood glucose level in normal rats by 9.48 ± 2.14% in week 2. TTE significantly increased serum insulin level by 21.63 ± 1.39 IU/mL in diabetic rats compared to the controls (10.63 ± 0.37 IU/mL) but not in normal rats. In additions, TTE activated the regeneration of pancreatic Islets of Langerhans in diabetic rats which in turn stimulated insulin secretion.
    [Show full text]
  • Dictionary of Cultivated Plants and Their Regions of Diversity Second Edition Revised Of: A.C
    Dictionary of cultivated plants and their regions of diversity Second edition revised of: A.C. Zeven and P.M. Zhukovsky, 1975, Dictionary of cultivated plants and their centres of diversity 'N -'\:K 1~ Li Dictionary of cultivated plants and their regions of diversity Excluding most ornamentals, forest trees and lower plants A.C. Zeven andJ.M.J, de Wet K pudoc Centre for Agricultural Publishing and Documentation Wageningen - 1982 ~T—^/-/- /+<>?- •/ CIP-GEGEVENS Zeven, A.C. Dictionary ofcultivate d plants andthei rregion so f diversity: excluding mostornamentals ,fores t treesan d lowerplant s/ A.C .Zeve n andJ.M.J ,d eWet .- Wageninge n : Pudoc. -11 1 Herz,uitg . van:Dictionar y of cultivatedplant s andthei r centreso fdiversit y /A.C .Zeve n andP.M . Zhukovsky, 1975.- Me t index,lit .opg . ISBN 90-220-0785-5 SISO63 2UD C63 3 Trefw.:plantenteelt . ISBN 90-220-0785-5 ©Centre forAgricultura l Publishing and Documentation, Wageningen,1982 . Nopar t of thisboo k mayb e reproduced andpublishe d in any form,b y print, photoprint,microfil m or any othermean swithou t written permission from thepublisher . Contents Preface 7 History of thewor k 8 Origins of agriculture anddomesticatio n ofplant s Cradles of agriculture and regions of diversity 21 1 Chinese-Japanese Region 32 2 Indochinese-IndonesianRegio n 48 3 Australian Region 65 4 Hindustani Region 70 5 Central AsianRegio n 81 6 NearEaster n Region 87 7 Mediterranean Region 103 8 African Region 121 9 European-Siberian Region 148 10 South American Region 164 11 CentralAmerica n andMexica n Region 185 12 NorthAmerica n Region 199 Specieswithou t an identified region 207 References 209 Indexo fbotanica l names 228 Preface The aimo f thiswor k ist ogiv e thereade r quick reference toth e regionso f diversity ofcultivate d plants.Fo r important crops,region so fdiversit y of related wild species areals opresented .Wil d species areofte nusefu l sources of genes to improve thevalu eo fcrops .
    [Show full text]