Fredholm - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Fredholm_determinant

Fredholm determinant From Wikipedia, the free encyclopedia

In mathematics, the Fredholm determinant is a complex-valued function which generalizes the determinant of a matrix. It is defined for bounded operators on a which differ from the identity operator by a trace-class operator. The function is named after the mathematician Erik Ivar Fredholm.

Fredholm have had many applications in , the most celebrated example being Gábor Szegő's limit formula, proved in response to a question raised by Lars Onsager and C. N. Yang on the spontaneous magnetization of the .

Contents

1 Definition 2 Properties 3 Fredholm determinants of commutators 4 Szegő limit formula 5 Informal presentation 6 Applications 7 References

Definition

Let H be a Hilbert space and G the set of bounded invertible operators on H of the form I + T, where T is a trace-class operator. G is a because

It has a natural metric given by d(X, Y) = ||X - Y||1, where || · ||1 is the trace-class norm.

If H is a Hilbert space with inner product , then so too is the kth exterior power with inner product

In particular

gives an orthonormal basis of if (ei) is an orthonormal basis of H. If A is a on H, then A functorially defines a bounded operator on by

If A is trace-class, then (A) is also trace-class with

This shows that the definition of the Fredholm determinant given by

1 of 5 26/01/2013 02:14 Fredholm determinant - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Fredholm_determinant

makes sense.

Properties

If A is a trace-class operator.

defines an entire function such that

The function det(I + A) is continuous on trace-class operators, with

One can improve this inequality slightly to the following, as noted in Chapter 5 of Simon:

If A and B are trace-class then

The function det defines a homomorphism of G into the multiplicative group C* of non-zero complex numbers.

If T is in G and X is invertible,

If A is trace-class, then

Fredholm determinants of commutators

A function F(t) from (a, b) into G is said to be differentiable if F(t) -I is differentiable as a map into the trace-class operators, i.e. if the limit

exists in trace-class norm.

If g(t) is a differentiable function with values in trace-class operators, then so too is exp g(t) and

2 of 5 26/01/2013 02:14 Fredholm determinant - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Fredholm_determinant

where

Israel Gohberg and Mark Krein proved that if F is a differentiable function into G, then f = det F is a differentiable map into C* with

This result was used by Joel Pincus, William Helton and Roger Howe to prove that if A and B are bounded operators with trace-class commutator AB -BA, then

Szegő limit formula

See also: Szegő limit theorems

Let H = L2 (S1) and let P be the orthogonal projection onto the H2 (S1).

If f is a smooth function on the circle, let m(f) denote the corresponding multiplication operator on H.

The commutator

Pm(f) - m(f)P

is trace-class.

Let T(f) be the Toeplitz operator on H2 (S1) defined by

then the additive commutator

is trace-class if f and g are smooth.

Berger and Shaw proved that

If f and g are smooth, then

is in G.

Harold Widom used the result of Pincus-Helton-Howe to prove that

3 of 5 26/01/2013 02:14 Fredholm determinant - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Fredholm_determinant

where

He used this to give a new proof of Gábor Szegő's celebrated limit formula:

N where PN is the projection onto the subspace of H spanned by 1, z, ..., z and a0 = 0.

Szegő's limit formula was proved in 1951 in response to a question raised by the work Lars Onsager and C. N. Yang on the calculation of the spontaneous magnetization for the Ising model. The formula of Widom, which leads quite quickly to Szegő's limit formula, is also equivalent to the duality between bosons and fermions in . A singular version of Szegő's limit formula for functions supported on an arc of the circle was proved by Widom; it has been applied to establish probabilistic results on the eigenvalue distribution of random unitary matrices.

Informal presentation

The section below provides an informal definition for the Fredholm determinant. A proper definition requires a presentation showing that each of the manipulations are well-defined, convergent, and so on, for the given situation for which the Fredholm determinant is contemplated. Since the kernel K may be defined on a large variety of Hilbert spaces and Banach spaces, this is a non-trivial exercise.

The Fredholm determinant may be defined as

where K is an integral operator. The trace of the operator is given by

and

and in generall : . The trace is

well-defined for these kernels, since these are trace-class or nuclear operators.

Applications

The Fredholm determinant was used by physicist John A. Wheeler (1937, Phys. Rev. 52:1107) to help provide mathematical description of the wavefunction for a composite nucleus composed of antisymmetrized

4 of 5 26/01/2013 02:14 Fredholm determinant - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Fredholm_determinant

combination of partial wavefunctions by the method of Resonating Group Structure. This method corresponds to the various possible ways of distributing the energy of neutrons and protons into fundamental boson and fermion nucleon cluster groups or building blocks such as the alpha-particle, helium-3, deuterium, triton, di-neutron, etc. When applied to the method of Resonating Group Structure for beta and alpha stable isotopes, use of the Fredholm determinant: (1) determines the energy values of the composite system, and (2) determines scattering and disintegration cross sections. The method of Resonating Group Structure of Wheeler provides the theoretical bases for all subsequent Nucleon Cluster Models and associated cluster energy dynamics for all light and heavy mass isotopes (see review of Cluster Models in physics in N.D. Cook, 2006).

References

Simon, Barry (2005), Trace Ideals and Their Applications, Mathematical Surveys and Monographs, 120, American Mathematical Society, ISBN 0-8218-3581-5 Wheeler, John A. (1937), On the Mathematical Description of Light Nuclei by the Method of Resonating Group Structure, Physical Review, 52, p. 1107 Cook, Norman D. (2006), Models of the Atomic Nucleus, Springer Bornemann, Folkmar (2010), "On the numerical evaluation of Fredholm determinants", Math. Comp. (Springer) 79: 871-915

Retrieved from "http://en.wikipedia.org/w/index.php?title=Fredholm_determinant&oldid=533056782" Categories: Determinants

Navigation menu

This page was last modified on 14 January 2013 at 17:12. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of Use for details. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

5 of 5 26/01/2013 02:14