RIMS-1681 Random Point Fields Revisited : Fock Space Associated with Poisson Measures, Fermion(Determinantal)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 4 Introduction to Many-Body Quantum Mechanics
Chapter 4 Introduction to many-body quantum mechanics 4.1 The complexity of the quantum many-body prob- lem After learning how to solve the 1-body Schr¨odinger equation, let us next generalize to more particles. If a single body quantum problem is described by a Hilbert space of dimension dim = d then N distinguishable quantum particles are described by theH H tensor product of N Hilbert spaces N (N) N ⊗ (4.1) H ≡ H ≡ H i=1 O with dimension dN . As a first example, a single spin-1/2 has a Hilbert space = C2 of dimension 2, but N spin-1/2 have a Hilbert space (N) = C2N of dimensionH 2N . Similarly, a single H particle in three dimensional space is described by a complex-valued wave function ψ(~x) of the position ~x of the particle, while N distinguishable particles are described by a complex-valued wave function ψ(~x1,...,~xN ) of the positions ~x1,...,~xN of the particles. Approximating the Hilbert space of the single particle by a finite basis set with d basis functions, the N-particle basisH approximated by the same finite basis set for single particles needs dN basis functions. This exponential scaling of the Hilbert space dimension with the number of particles is a big challenge. Even in the simplest case – a spin-1/2 with d = 2, the basis for N = 30 spins is already of of size 230 109. A single complex vector needs 16 GByte of memory and will not fit into the memory≈ of your personal computer anymore. -
Second Quantization
Chapter 1 Second Quantization 1.1 Creation and Annihilation Operators in Quan- tum Mechanics We will begin with a quick review of creation and annihilation operators in the non-relativistic linear harmonic oscillator. Let a and a† be two operators acting on an abstract Hilbert space of states, and satisfying the commutation relation a,a† = 1 (1.1) where by “1” we mean the identity operator of this Hilbert space. The operators a and a† are not self-adjoint but are the adjoint of each other. Let α be a state which we will take to be an eigenvector of the Hermitian operators| ia†a with eigenvalue α which is a real number, a†a α = α α (1.2) | i | i Hence, α = α a†a α = a α 2 0 (1.3) h | | i k | ik ≥ where we used the fundamental axiom of Quantum Mechanics that the norm of all states in the physical Hilbert space is positive. As a result, the eigenvalues α of the eigenstates of a†a must be non-negative real numbers. Furthermore, since for all operators A, B and C [AB, C]= A [B, C] + [A, C] B (1.4) we get a†a,a = a (1.5) − † † † a a,a = a (1.6) 1 2 CHAPTER 1. SECOND QUANTIZATION i.e., a and a† are “eigen-operators” of a†a. Hence, a†a a = a a†a 1 (1.7) − † † † † a a a = a a a +1 (1.8) Consequently we find a†a a α = a a†a 1 α = (α 1) a α (1.9) | i − | i − | i Hence the state aα is an eigenstate of a†a with eigenvalue α 1, provided a α = 0. -
Orthogonalization of Fermion K-Body Operators and Representability
Orthogonalization of fermion k-Body operators and representability Bach, Volker Rauch, Robert April 10, 2019 Abstract The reduced k-particle density matrix of a density matrix on finite- dimensional, fermion Fock space can be defined as the image under the orthogonal projection in the Hilbert-Schmidt geometry onto the space of k- body observables. A proper understanding of this projection is therefore intimately related to the representability problem, a long-standing open problem in computational quantum chemistry. Given an orthonormal basis in the finite-dimensional one-particle Hilbert space, we explicitly construct an orthonormal basis of the space of Fock space operators which restricts to an orthonormal basis of the space of k-body operators for all k. 1 Introduction 1.1 Motivation: Representability problems In quantum chemistry, molecules are usually modeled as non-relativistic many- fermion systems (Born-Oppenheimer approximation). More specifically, the Hilbert space of these systems is given by the fermion Fock space = f (h), where h is the (complex) Hilbert space of a single electron (e.g. h = LF2(R3)F C2), and the Hamiltonian H is usually a two-body operator or, more generally,⊗ a k-body operator on . A key physical quantity whose computation is an im- F arXiv:1807.05299v2 [math-ph] 9 Apr 2019 portant task is the ground state energy . E0(H) = inf ϕ(H) (1) ϕ∈S of the system, where ( )′ is a suitable set of states on ( ), where ( ) is the Banach space ofS⊆B boundedF operators on and ( )′ BitsF dual. A directB F evaluation of (1) is, however, practically impossibleF dueB F to the vast size of the state space . -
Chapter 4 MANY PARTICLE SYSTEMS
Chapter 4 MANY PARTICLE SYSTEMS The postulates of quantum mechanics outlined in previous chapters include no restrictions as to the kind of systems to which they are intended to apply. Thus, although we have considered numerous examples drawn from the quantum mechanics of a single particle, the postulates themselves are intended to apply to all quantum systems, including those containing more than one and possibly very many particles. Thus, the only real obstacle to our immediate application of the postulates to a system of many (possibly interacting) particles is that we have till now avoided the question of what the linear vector space, the state vector, and the operators of a many-particle quantum mechanical system look like. The construction of such a space turns out to be fairly straightforward, but it involves the forming a certain kind of methematical product of di¤erent linear vector spaces, referred to as a direct or tensor product. Indeed, the basic principle underlying the construction of the state spaces of many-particle quantum mechanical systems can be succinctly stated as follows: The state vector à of a system of N particles is an element of the direct product space j i S(N) = S(1) S(2) S(N) ¢¢¢ formed from the N single-particle spaces associated with each particle. To understand this principle we need to explore the structure of such direct prod- uct spaces. This exploration forms the focus of the next section, after which we will return to the subject of many particle quantum mechanical systems. 4.1 The Direct Product of Linear Vector Spaces Let S1 and S2 be two independent quantum mechanical state spaces, of dimension N1 and N2, respectively (either or both of which may be in…nite). -
Fock Space Dynamics
TCM315 Fall 2020: Introduction to Open Quantum Systems Lecture 10: Fock space dynamics Course handouts are designed as a study aid and are not meant to replace the recommended textbooks. Handouts may contain typos and/or errors. The students are encouraged to verify the information contained within and to report any issue to the lecturer. CONTENTS Introduction 1 Composite systems of indistinguishable particles1 Permutation group S2 of 2-objects 2 Admissible states of three indistiguishable systems2 Parastatistics 4 The spin-statistics theorem 5 Fock space 5 Creation and annihilation of particles 6 Canonical commutation relations 6 Canonical anti-commutation relations 7 Explicit example for a Fock space with 2 distinguishable Fermion states7 Central oscillator of a linear boson system8 Decoupling of the one particle sector 9 References 9 INTRODUCTION The chapter 5 of [6] oers a conceptually very transparent introduction to indistinguishable particle kinematics in quantum mechanics. Particularly valuable is the brief but clear discussion of para-statistics. The last sections of the chapter are devoted to expounding, physics style, the second quantization formalism. Chapter I of [2] is a very clear and detailed presentation of second quantization formalism in the form that is needed in mathematical physics applications. Finally, the dynamics of a central oscillator in an external eld draws from chapter 11 of [4]. COMPOSITE SYSTEMS OF INDISTINGUISHABLE PARTICLES The composite system postulate tells us that the Hilbert space of a multi-partite system is the tensor product of the Hilbert spaces of the constituents. In other words, the composite system Hilbert space, is spanned by an orthonormal basis constructed by taking the tensor product of the elements of the orthonormal bases of the Hilbert spaces of the constituent systems. -
Clustering and the Three-Point Function
Clustering and the Three-Point Function Yunfeng Jianga, Shota Komatsub, Ivan Kostovc1, Didina Serbanc a Institut f¨urTheoretische Physik, ETH Z¨urich, Wolfgang Pauli Strasse 27, CH-8093 Z¨urich,Switzerland b Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada c Institut de Physique Th´eorique,DSM, CEA, URA2306 CNRS Saclay, F-91191 Gif-sur-Yvette, France [email protected], [email protected], ivan.kostov & [email protected] Abstract We develop analytical methods for computing the structure constant for three heavy operators, starting from the recently proposed hexagon approach. Such a structure constant is a semiclassical object, with the scale set by the inverse length of the operators playing the role of the Planck constant. We reformulate the hexagon expansion in terms of multiple contour integrals and recast it as a sum over clusters generated by the residues of the measure of integration. We test the method on two examples. First, we compute the asymptotic three-point function of heavy fields at any coupling and show the result in the semiclassical limit matches both the string theory computation at strong coupling and the arXiv:1604.03575v2 [hep-th] 22 May 2016 tree-level results obtained before. Second, in the case of one non-BPS and two BPS operators at strong coupling we sum up all wrapping corrections associated with the opposite bridge to the non-trivial operator, or the \bottom" mirror channel. We also give an alternative interpretation of the results in terms of a gas of fermions and show that they can be expressed compactly as an operator- valued super-determinant. -
Operators and Special Functions in Random Matrix Theory
Operators and Special Functions in Random Matrix Theory Andrew McCafferty, MSci Submitted for the degree of Doctor of Philosophy at Lancaster University March 2008 Operators and Special Functions in Random Matrix Theory Andrew McCafferty, MSci Submitted for the degree of Doctor of Philosophy at Lancaster University, March 2008 Abstract The Fredholm determinants of integral operators with kernel of the form A(x)B(y) A(y)B(x) − x y − arise in probabilistic calculations in Random Matrix Theory. These were ex- tensively studied by Tracy and Widom, so we refer to them as Tracy–Widom operators. We prove that the integral operator with Jacobi kernel converges in trace norm to the integral operator with Bessel kernel under a hard edge scaling, using limits derived from convergence of differential equation coef- ficients. The eigenvectors of an operator with kernel of Tracy–Widom type can sometimes be deduced via a commuting differential operator. We show that no such operator exists for TW integral operators acting on L2(R). There are analogous operators for discrete random matrix ensembles, and we give sufficient conditions for these to be expressed as the square of a Han- kel operator: writing an operator in this way aids calculation of Fredholm determinants. We also give a new example of discrete TW operator which can be expressed as the sum of a Hankel square and a Toeplitz operator. Previously unsolvable equations are dealt with by threats of reprisals . Woody Allen 2 Acknowledgements I would like to thank many people for helping me through what has sometimes been a difficult three years. -
Arxiv:Math/0312267V1
(MODIFIED) FREDHOLM DETERMINANTS FOR OPERATORS WITH MATRIX-VALUED SEMI-SEPARABLE INTEGRAL KERNELS REVISITED FRITZ GESZTESY AND KONSTANTIN A. MAKAROV Dedicated with great pleasure to Eduard R. Tsekanovskii on the occasion of his 65th birthday. Abstract. We revisit the computation of (2-modified) Fredholm determi- nants for operators with matrix-valued semi-separable integral kernels. The latter occur, for instance, in the form of Green’s functions associated with closed ordinary differential operators on arbitrary intervals on the real line. Our approach determines the (2-modified) Fredholm determinants in terms of solutions of closely associated Volterra integral equations, and as a result offers a natural way to compute such determinants. We illustrate our approach by identifying classical objects such as the Jost function for half-line Schr¨odinger operators and the inverse transmission coeffi- cient for Schr¨odinger operators on the real line as Fredholm determinants, and rederiving the well-known expressions for them in due course. We also apply our formalism to Floquet theory of Schr¨odinger operators, and upon identify- ing the connection between the Floquet discriminant and underlying Fredholm determinants, we derive new representations of the Floquet discriminant. Finally, we rederive the explicit formula for the 2-modified Fredholm de- terminant corresponding to a convolution integral operator, whose kernel is associated with a symbol given by a rational function, in a straghtforward manner. This determinant formula represents a Wiener–Hopf -
Quantum Physics in Non-Separable Hilbert Spaces
Quantum Physics in Non-Separable Hilbert Spaces John Earman Dept. HPS University of Pittsburgh In Mathematical Foundations of Quantum Mechanics (1932) von Neumann made separability of Hilbert space an axiom. Subsequent work in mathemat- ics (some of it by von Neumann himself) investigated non-separable Hilbert spaces, and mathematical physicists have sometimes made use of them. This note discusses some of the problems that arise in trying to treat quantum systems with non-separable spaces. Some of the problems are “merely tech- nical”but others point to interesting foundations issues for quantum theory, both in its abstract mathematical form and its applications to physical sys- tems. Nothing new or original is attempted here. Rather this note aims to bring into focus some issues that have for too long remained on the edge of consciousness for philosophers of physics. 1 Introduction A Hilbert space is separable if there is a countable dense set of vec- tors; equivalently,H admits a countable orthonormal basis. In Mathematical Foundations of QuantumH Mechanics (1932, 1955) von Neumann made sep- arability one of the axioms of his codification of the formalism of quantum mechanics. Working with a separable Hilbert space certainly simplifies mat- ters and provides for understandable realizations of the Hilbert space axioms: all infinite dimensional separable Hilbert spaces are the “same”: they are iso- 2 morphically isometric to LC(R), the space of square integrable complex val- 2 ued functions of R with inner product , := (x)(x)dx, , LC(R). h i 2 2 This Hilbert space in turn is isomorphically isometric to `C(N), the vector space of square summable sequences of complexR numbers with inner prod- S uct , := n1=1 xn yn, = (x1, x2, ...), = (y1, y2, ...) . -
Isometries, Fock Spaces, and Spectral Analysis of Schr¨Odinger Operators on Trees
Isometries, Fock Spaces, and Spectral Analysis of Schrodinger¨ Operators on Trees V. Georgescu and S. Golenia´ CNRS Departement´ de Mathematiques´ Universite´ de Cergy-Pontoise 2 avenue Adolphe Chauvin 95302 Cergy-Pontoise Cedex France [email protected] [email protected] June 15, 2004 Abstract We construct conjugate operators for the real part of a completely non unitary isometry and we give applications to the spectral and scattering the- ory of a class of operators on (complete) Fock spaces, natural generalizations of the Schrodinger¨ operators on trees. We consider C ∗-algebras generated by such Hamiltonians with certain types of anisotropy at infinity, we compute their quotient with respect to the ideal of compact operators, and give formu- las for the essential spectrum of these Hamiltonians. 1 Introduction The Laplace operator on a graph Γ acts on functions f : Γ C according to the relation ! (∆f)(x) = (f(y) f(x)); (1.1) − yX$x where y x means that x and y are connected by an edge. The spectral analysis $ and the scattering theory of the operators on `2(Γ) associated to expressions of the form L = ∆ + V , where V is a real function on Γ, is an interesting question which does not seem to have been much studied (we have in mind here only situations involving non trivial essential spectrum). 1 Our interest on these questions has been aroused by the work of C. Allard and R. Froese [All, AlF] devoted to the case when Γ is a binary tree: their main results are the construction of a conjugate operator for L under suitable conditions on the potential V and the proof of the Mourre estimate. -
How to Construct a Consistent and Physically Relevant the Fock Space of Neutrino Flavor States?
125 EPJ Web of Conferences , 03016 (2016) DOI: 10.1051/epjconf/201612503016 QUARKS -2016 How to construct a consistent and physically relevant the Fock space of neutrino flavor states? A. E.Lobanov1, 1Department of Theoretical Physics, Faculty of Physics, Moscow State University, 119991 Moscow, Russia Abstract. We propose a modification of the electroweak theory, where the fermions with the same electroweak quantum numbers are combined in multiplets and are treated as different quantum states of a single particle. Thereby, in describing the electroweak in- teractions it is possible to use four fundamental fermions only. In this model, the mixing and oscillations of the particles arise as a direct consequence of the general principles of quantum field theory. The developed approach enables one to calculate the probabilities of the processes taking place in the detector at long distances from the particle source. Calculations of higher-order processes including the computation of the contributions due to radiative corrections can be performed in the framework of perturbation theory using the regular diagram technique. 1 Introduction The Standard Model of electroweak interactions based on the non-Abelian gauge symmetry of the interactions [1], the generation of particle masses due to the spontaneous symmetry breaking mech- anism [2], and the philosophy of mixing of particle generations [3] is universally recognized. Its predictions obtained in the framework of perturbation theory are in a very good agreement with the experimental data, and there is no serious reason, at least at the energies available at present, for its main propositions to be revised. However, in describing such an important and firmly experimentally established phenomenon as neutrino oscillations [4], an essentially phenomenological theory based on the pioneer works by B. -
Determinants of Elliptic Pseudo-Differential Operators 3
DETERMINANTS OF ELLIPTIC PSEUDO-DIFFERENTIAL OPERATORS MAXIM KONTSEVICH AND SIMEON VISHIK March 1994 Abstract. Determinants of invertible pseudo-differential operators (PDOs) close to positive self-adjoint ones are defined through the zeta-function regularization. We define a multiplicative anomaly as the ratio det(AB)/(det(A) det(B)) con- sidered as a function on pairs of elliptic PDOs. We obtained an explicit formula for the multiplicative anomaly in terms of symbols of operators. For a certain natural class of PDOs on odd-dimensional manifolds generalizing the class of elliptic dif- ferential operators, the multiplicative anomaly is identically 1. For elliptic PDOs from this class a holomorphic determinant and a determinant for zero orders PDOs are introduced. Using various algebraic, analytic, and topological tools we study local and global properties of the multiplicative anomaly and of the determinant Lie group closely related with it. The Lie algebra for the determinant Lie group has a description in terms of symbols only. Our main discovery is that there is a quadratic non-linearity hidden in the defi- nition of determinants of PDOs through zeta-functions. The natural explanation of this non-linearity follows from complex-analytic prop- erties of a new trace functional TR on PDOs of non-integer orders. Using TR we easily reproduce known facts about noncommutative residues of PDOs and obtain arXiv:hep-th/9404046v1 7 Apr 1994 several new results. In particular, we describe a structure of derivatives of zeta- functions at zero as of functions on logarithms of elliptic PDOs. We propose several definitions extending zeta-regularized determinants to gen- eral elliptic PDOs.