Genetic Characteristics of the Japanese Serow Capricornis

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Characteristics of the Japanese Serow Capricornis Genetic Characteristics of the Japanese Serow Capricornis crispus in the Kii Mountain Range, Central Japan Authors: Arisa Iwahori, Jyun-ichi Kitamura, and Kouichi Kawamura Source: Zoological Science, 36(4) : 306-315 Published By: Zoological Society of Japan URL: https://doi.org/10.2108/zs180187 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Zoological-Science on 07 Aug 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by Zoological Society of Japan ZOOLOGICAL306 SCIENCE 36: 306–315 (2019) A. Iwahori et al. © 2019 Zoological Society of Japan Genetic Characteristics of the Japanese Serow Capricornis crispus in the Kii Mountain Range, Central Japan Arisa Iwahori1, Jyun-ichi Kitamura2, and Kouichi Kawamura1* 1Faculty of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie 514-8507, Japan 2Mie Prefectural Museum, 3060 Isshinden-kouzubeta, Tsu, Mie 514-0061, Japan The Japanese serow, Capricornis crispus, is an indigenous bovid species exclusively inhabiting mountain regions in the main Japanese islands, excepting Hokkaido. It had decreased in abun- dance to its lowest level due to overhunting and deforestation, with its distribution severely frag- mented from the middle of the 20th century, many populations of C. crispus currently facing the risk of extinction. The Kii Mountain Range (KM) on Honshu is one such location that has seen a drastic population decline of C. crispus. In this study, we examined genetic characteristics of C. crispus in KM and neighboring regions of the Chubu district, using mtDNA and microsatellite mark- ers, in order to devise strategies for its conservation. Results for mtDNA were characterized by low nucleotide diversity with five endemic and two dominant haplotypes shared by individuals in neighboring regions. A Bayesian skyline plot indicated a gradual increase after the last glacial maximum. For microsatellites, the genetic diversity of C. crispus in KM was comparable to Shi- zuoka and higher than Shikoku. Recent genetic bottlenecks were strongly suggested in C. crispus in KM. Bayesian clustering showed a genetic cline between KM and neighboring regions, where multivariate analysis suggested three local populations. A Mantel test indicated male-biased dis- persal. These results indicate that C. crispus in KM and neighboring regions constitute multiple local populations, connected through restricted gene flow. For the conservation of C. crispus, it is important to define small-scale conservation units, among which genetic connectivity should be facilitated to prevent further loss of genetic diversity. Key words: Capricornis crispus, conservation unit, dispersal, genetic bottleneck, genetic cline decrease of C. crispus to the lowest levels (Ochiai, 2016). In INTRODUCTION 1955 the species was designated as a “Special National The Japanese serow, Capricornis crispus, is an indige- Monument of Japan” by the Japanese Government. Owing nous bovid species in Japan. Capricornis species are widely to the subsequent strict protection, some populations of C. distributed in East and Middle Asia, ranging from the tropical crispus on Honshu showed signs of recovery. However, fol- to the subarctic zone (Ochiai, 2016). The genus was formerly lowing increases problems associated with damage to agri- considered to be primitive in the subfamily Caprinae, belong- cultural and forestry sites emerged in some prefectures, ing to the tribe Rupicaprini (Simpson, 1945). However, recent such as Gifu and Aichi in central Honshu (Ochiai, 2016). molecular studies suggest that Capricornis is not a member Consequently, in 1979 the Japanese government desig- of the Rupicaprini, but genetically related to species of the nated legally protected areas for C. crispus while allowing tribe Ovibovini (Ropiquet and Hassanin, 2009). The genus culling for population control in other regions under special Capricornis comprises three species, C. sumatraensis, C. license (MEGJ, 2010). Populations in Shikoku and Kyushu swinhoei and C. crispus (Novak, 1999). Although C. swinhoei have remained small and fragmented, and continue to face in Taiwan had long been considered to be closely related to the risk of extinction (Okumura, 2003). C. crispus, recent studies using mtDNA have shown it to be The Kii Mountain Range (KM) in central Honshu is one a sister species of C. sumatraensis (Min et al., 2004). of the principal habitats of C. crispus. In this region, compre- Formerly, C. crispus was widely distributed in mountain- hensive research on C. crispus has been periodically con- ous regions of the main Japanese islands, excepting ducted since 1986 by the collaboration of Mie, Nara and Hokkaido (Ochiai, 2016). However, hunting and deforesta- Wakayama Prefectures to elucidate the ecology, distribution tion resulted in its decline, resulting not only the fragmenta- and population dynamics of the species (PBEMNW, 2010). tion of populations but also their disappearance from Based on the results of the first tranche of research in 1986– Chugoku, Fukuoka and Izu districts. Indiscriminate hunting 1987, KM was registered as a protected area for C. crispus in the 19th and 20th centuries in particular drove the in 1989. However, the fourth phase of research on C. crispus in the KM protected area (FSRCPK, conducted in 2008– * Corresponding author. E-mail: [email protected] 2009) reported a decrease in numbers and the fragmenta- doi:10.2108/zs180187 tion of habitat, despite an increase in the distribution of C. Downloaded From: https://bioone.org/journals/Zoological-Science on 07 Aug 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by Zoological Society of Japan Conservation genetics of Japanese serow 307 crispus. Results also suggested that KM supported the low- prior to DNA extraction. DNA was extracted using DNeasy Blood est population density of C. crispus among the protected and Tissue Kit (Qiagen, USA). areas of C. crispus in Japan, along with the Southern Ou- Sex of collected individuals was primarily judged from external Mountain Range (PBEMNW, 2010). genital features. For sexually ambiguous individuals, PCR-based sex identification was employed as described below. Most collected In an analysis of the cytochrome b region of the mtDNA individuals were adult, and only three individuals (two females and of C. crispus (sequence data not published), PBEMNW one male) in KM were young (less than three years), judging from (2010) reported that the dominant haplotype of C. crispus in horn size (Kishimoto, 1988). KM was found in individuals from Gifu, Shizuoka and Yamagata Prefectures, although some haplotypes were PCR-based Sex identification endemic to KM. These findings suggested that C. crispus in For sexually ambiguous individuals (n = 30) PCR-based sex KM and that of neighboring regions were not genetically identification was used. In mammals, the amelogenin gene is separated, but were connected through a small number of widely used for sex identification, because it has a locus on both occasional migrants. Yamashiro and Yamashiro (2012) com- sex chromosomes (X and Y) and respective base sequences (Pfei- pared the genetic diversity of C. crispus in Shikoku, KM ffer and Brenig, 2005). This gene was found to be effective for the sex identification of C. crispus (Nishimura et al., 2010). We ampli- (including the Shiga population) and Shizuoka, using five fied the amelogenin gene via PCR, using the primer pairs: SE47 microsatellite markers (genotype data not published). They and SE38 and PCR protocols described by Nishimura et al. (2010). reported that the Shikoku population expressed the lowest The PCR products were electrophoresed on 2% agarose gel with genetic diversity, while the other two populations showed TAE buffer. The gel was stained by GelStar nucleic acid stain (FMC approximately the same level of genetic diversity. In the pre- Fig. 1 IwahoriBioproducts, et al. USA) and visualized under UV illumination to identify ceding studies of C. crispus (e.g., PBEMNW, 2010; Nishimura et al., 2011; Yamashiro and Yamashiro, 2012), genetic infor- mation was exclusively restricted to one kind of genetic N marker, which is insufficient for the elucidation of the genetic 36°N characteristics of the species (Gompert et al., 2006). Hokkaido HM In conservation management, it is important to clarify Japan the genetic characteristics of the targeted species, because it enables inference of their genetic structure, genetic rela- Yamagata Gifu tionships and demographic history. Such information is especially indispensable for the identification of conserva- Honshu tion units, which are a requisite for the design of a rational Shizuoka
Recommended publications
  • Reproductive Seasonality in Captive Wild Ruminants: Implications for Biogeographical Adaptation, Photoperiodic Control, and Life History
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Reproductive seasonality in captive wild ruminants: implications for biogeographical adaptation, photoperiodic control, and life history Zerbe, Philipp Abstract: Zur quantitativen Beschreibung der Reproduktionsmuster wurden Daten von 110 Wildwiederkäuer- arten aus Zoos der gemässigten Zone verwendet (dabei wurde die Anzahl Tage, an denen 80% aller Geburten stattfanden, als Geburtenpeak-Breite [BPB] definiert). Diese Muster wurden mit verschiede- nen biologischen Charakteristika verknüpft und mit denen von freilebenden Tieren verglichen. Der Bre- itengrad des natürlichen Verbreitungsgebietes korreliert stark mit dem in Menschenobhut beobachteten BPB. Nur 11% der Spezies wechselten ihr reproduktives Muster zwischen Wildnis und Gefangenschaft, wobei für saisonale Spezies die errechnete Tageslichtlänge zum Zeitpunkt der Konzeption für freilebende und in Menschenobhut gehaltene Populationen gleich war. Reproduktive Saisonalität erklärt zusätzliche Varianzen im Verhältnis von Körpergewicht und Tragzeit, wobei saisonalere Spezies für ihr Körpergewicht eine kürzere Tragzeit aufweisen. Rückschliessend ist festzuhalten, dass Photoperiodik, speziell die abso- lute Tageslichtlänge, genetisch fixierter Auslöser für die Fortpflanzung ist, und dass die Plastizität der Tragzeit unterstützend auf die erfolgreiche Verbreitung der Wiederkäuer in höheren Breitengraden wirkte. A dataset on 110 wild ruminant species kept in captivity in temperate-zone zoos was used to describe their reproductive patterns quantitatively (determining the birth peak breadth BPB as the number of days in which 80% of all births occur); then this pattern was linked to various biological characteristics, and compared with free-ranging animals. Globally, latitude of natural origin highly correlates with BPB observed in captivity, with species being more seasonal originating from higher latitudes.
    [Show full text]
  • Himalayan Serow (Capricornis Thar)
    GreyNATIONAL STUDBOOK Himalayan Serow (Capricornis thar) Published as a part of the Central Zoo Authority sponsored project titled “Development and Maintenance of Studbooks for Selected Endangered Species in Indian Zoos” awarded to the Wildlife Institute of India vide sanction order: Central Zoo Authority letter no. 9-2/2012- CZA(NA)/418 dated 7th March 2012] Data Till: March 2016 Published: June 2016 National Studbook of Himalayan Serow (Capricornis thar) Published as a part of the Central Zoo Authority sponsored project titled “Development and maintenance of studbooks for selected endangered species in Indian zoos” Awarded to the Wildlife Institute of India [Sanction Order: Central Zoo Authority letter no. 9-2/2012-CZA(NA)/418 dated 7th March 2012] PROJECT PERSONNEL Junior Research Fellow Ms. Nilofer Begum Project Consultant Anupam Srivastav, Ph.D. Project Investigators Dr. Parag Nigam Shri. P.C. Tyagi, IFS Cover Photo: © Shashank Arya Copyright © WII, Dehradun, and CZA, New Delhi, 2016 This report may be quoted freely but the source must be acknowledged and cited as: Wildlife Institute of India (2016). National Studbook of Himalayan Serow (Capricornis thar), Wildlife Institute of India, Dehradun and Central Zoo Authority, New Delhi. TR. No.2016/008. Pages 27 For correspondence: Principal Investigator, Studbook Project, Wildlife Institute of India, PO Box 18, Dehradun, 248001 Uttarakhand, India Foreword Habitat loss, fragmentation and degradation coupled with poaching are limiting the sustained survival of wild populations of several species; increasingly rendering them vulnerable to extinction. For species threatened with extinction in their natural habitats ex-situ conservation offers an opportunity for ensuring their long-term survival.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • Morphology of Placentome in Korean Water Deer Hydropotes Inermis Argropus
    NOTE Wildlife Science Morphology of placentome in Korean water deer Hydropotes inermis argropus Joon Hyuk SOHN1), Shota YAMANE2), Yukiko SAITOH2), Ken Takashi KUSAKABE2)*, Junpei KIMURA1)* and Yasuo KISO2) 1)Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, 1 Gwangno, Gwanak-gu, Seoul 151-742, Korea 2)Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan ABSTRACT. The placenta of the Korean water deer was anatomically examined to accumulate basic information regarding its reproductive system. The convex placentomes with five to nine J. Vet. Med. Sci. well-developed pedicles were observed in the whole uterine horns, and therefore, the placenta 83(7): 1081–1085, 2021 was classified as oligocotyledonary. The evidence indicating the migration of binucleate cells (BNCs) from trophectoderm to the uterine epithelium led to the histological classification of the doi: 10.1292/jvms.21-0158 placenta as synepitheliochorial. The number of fetuses was markedly higher than that in other ruminant species. However, the number of placentomes was found to be similar to the other Cervidae species. Therefore, these results suggest that the Korean water deer may possess special Received: 16 March 2021 mechanisms or structures at the fetus attachment site to maintain this unusally high number of Accepted: 20 April 2021 fetuses. Advanced Epub: fetus, Korean water deer, placentome 10 May 2021 KEY WORDS: The placenta, which dominates the space between the maternal and fetal organs in eutherian mammals, functions as an immunomodulatory organ that protects the fetus from the maternal immune system and facilitates the exchange of gases and nutrients during the fetal development [5, 8].
    [Show full text]
  • Elaphurus Davidianus) Became Extinct in China in the Early 20Th Century but Was Reintroduced to the Country
    www.nature.com/scientificreports OPEN Stepping-stones and dispersal flow: establishment of a meta- population of Milu (Elaphurus Received: 27 July 2015 Accepted: 13 May 2016 davidianus) through natural Published: 07 June 2016 re-wilding Daode Yang1, Yucheng Song1,2, Jianzhang Ma3, Pengfei Li4, Hong Zhang2, Mark R Stanley Price5, Chunlin Li6 & Zhigang Jiang7 The Milu (Père David’s deer, Elaphurus davidianus) became extinct in China in the early 20th century but was reintroduced to the country. The reintroduced Milu escaped from a nature reserve and dispersed to the south of the Yangtze River. We monitored these accidentally escaped Milu from 1995 to 2012. The escaped Milu searched for vacant habitat patches as “stepping stones” and established refuge populations. We recorded 122 dispersal events of the escaped Milu. Most dispersal events occurred in 1998, 2003, 2006 and 2010. Milu normally disperse in March, July and November. Average dispersal distance was 14.08 ± 9.03 km, with 91.41% shorter than 25 km. After 5 generations, by the end of 2012, 300 wild Milu were scattered in refuge populations in the eastern and southern edges of the Dongting Lake. We suggest that population density is the ultimate cause for Milu dispersal, whereas floods and human disturbance are proximate causes. The case of the Milu shows that accidentally escaped animals can establish viable populations; however, the dispersed animals were subject to chance in finding “stepping stones”. The re-wilded Milu persist as a meta-population with sub-populations linked by dispersals through marginal habitats in an anthropogenic landscape. Why and how animals disperse are hot topics in behavioral ecology1.
    [Show full text]
  • Tigerpaper 36-4-Final.Pmd
    REGIONAL OFFICE FOR ASIA AND THE PACIFIC (RAP), BANGKOK October-December 2009 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Regional Quarterly Bulletin on Wildlife and National Parks Management Vol. XXXVI : No. 4 Featuring Vol. XXIII: No. 4 Contents Mongolian argali population, Spring 2009.........................… 1 Kaziranga - making way for the tiger reserve........................ 5 Habitat ecology of Himalayan serow in Annapurna Conservation Area of Nepal............................................. 12 New site reports of four-horned antelope............................. 20 Diversity of lower vertebrates in Kuno Wildlife Sanctuary, proposed second home for Asiatic lions............................. 23 Wetland management strategies in Bangladesh...................... 26 Occurrence of albino macaque in desert town of Bikaner....... 28 Mudumalai Wildlife Sanctuary and National Park.................. 31 REGIONAL OFFICE FOR ASIA AND THE PACIFIC TIGERPAPER is a quarterly news bulletin dedicated to the exchange of information Forest development: a vital balance - relating to wildlife and national parks Report from the XIII World Forestry Congress................ 1 management for the Bhutan to welcome 23rd Session of the Asia-Pacific Asia-Pacific Region. ISSN 1014 - 2789 Forestry Commission..................................................... 4 Codes of practice for forest harvesting -- monitoring and evaluation..................................................................… 6 Address. Charting paths for regional collaboration............................
    [Show full text]
  • Petaurus Australis)
    Socioecology and Phylogeography of the Yellow-bellied Glider (Petaurus australis) Meredeth Brown (B.Soc.Sci., Hons) Environmental Biology School of Earth and Environmental Sciences The University of Adelaide South Australia A thesis submitted for the degree of Doctor of Philosophy at The University of Adelaide October 2006 Table of contents List of Tables v List of Figures vi Abstract viii Declaration ix Acknowledgements xii Dedication xv CHAPTER 1. GENERAL INTRODUCTION 1 1.1 Introduction and definitions 1 1.2 Social and mating systems 1 1.2.1 Monogamous social and mating systems 1 1.2.2 Inter- and intraspecific variation in social and mating systems 3 1.2.3 Use of DNA technologies in studies on behaviour 4 1.3 Reproductive ecology 4 1.3.1 Life history strategies in a seasonal environment 4 1.3.2 Seasonal conditions and forest phenology 6 1.4 Phylogeography and conservation units 7 1.4.1 Conservation units 7 1.5 The study species: the yellow-bellied glider (Petaurus australis) 9 1.5.1 Description of the study species 9 1.5.2 Distribution and conservation status 9 1.5.3 Social behaviour 10 1.5.4 Diet and reproductive behaviour 11 1.5.5 Variation between populations of yellow-bellied gliders 12 1.5.6 Management considerations of isolated populations 12 1.6 Aims of the thesis 13 CHAPTER 2. CHARACTERISATION AND OPTIMISATION OF MICROSATELLITE LOCI IN PETAURUS AUSTRALIS, P. BREVICEPS AND P. NORFOLCENSIS 14 2.1 Preamble 14 2.2 Introduction 14 2.3 Methods 15 2.4 Results and Conclusion 16 i CHAPTER 3.
    [Show full text]
  • Inbreeding and Juvenile Mortality in Small Populations of Ungulates
    References and Notes Inbreeding and Juvenile Mortality in 1. M. Saginor and R. Horton, Endocrinology 82, 627 (1968); R. M. Rose, T. P. Gordon, I. S. Bernstein, Science 178, 643 (1972); K. Purvis Small Populations of Ungulates and N. B. Haynes, J. Endocrinol. 60,429 (1974); F. Macrides, A. Bartke, F. Fernandez, W. Abstract. Juvenile mortality of inbred young was higher than that of noninbred D'Angelo, Neuroendocrinology 15, 355 (1974). 2. C. B. Katongole, F. Naftolin, R. V. Short, J. young in 15 of 16 species of captive ungulates. In 19 of 25 individual females, belong- Endocrinol. 50, 457 (1971). ing to ten species, a larger percentage of young died when the female was mated to a 3. F. Macrides, A. Bartke, S. Dalterio, Science 189, 1104 (1975); J. A. Maruniak, A. Coquelin, related male than when she was mated to an unrelated male. F. H. Branson, Biol. Reprod. 18, 251 (1978). 4. J. A. Maruniak and F. H. Bronson, Endocrinol- ogy 99, 963 (1976). An ever increasing number of the adults (1-3). Inbred animals are usually 5. I. Martin, Psychol. Bull. 61, 35 (1964); R. F. Thompson and W. A. Spencer, Psychol. Rev. world's ungulate species exist only in "less able to cope with their environ- 73, 16 (1966); R. A. Hinde, in Short-term relatively small populations in which ment than are noninbred animals" (2, p. Changes in Neural Activity and Behavior, G. Horn and R. A. Hinde, Eds. (Cambridge Univ. some degree of inbreeding will inevitably 215) and are often more susceptible to Press, Cambridge, 1970), p.
    [Show full text]
  • List of Taxa for Which MIL Has Images
    LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12.
    [Show full text]
  • Fcompetitive Interactionsintheashiomountains
    Association ofofWUdlifeand Wildlife and Human Society - Biosphere Conservation 2 (1) :35 44. 1999 Changes in the dynamics ofJapanese serow and sika deer as a result opopulationf competitive interactions in the Ashio Mountains, central Japan Masaaki Koganezawa Utsunomtya Uhiversity 1lorests hacutty ofAgricutture, Utsunomlya U}tiversiC}; Z556 funyu, Shiqya-machi, Shiqya-gun, lbchigi 329-2441, Jbpan Abstract Changes in the population dynamics ef the Japanese serew Capricornis crispus and the sika deer Cervus nippon were studied in the Ashio Mountains ofNikko National ParK [[bchigi Prcfe¢ ture, Japan, from March 1982 to December 1995. Although the geographical distributions of the two species overlap in many areas ofJapan, wherever the snow is not deep, Japanese serow and sika deer are usually found living allepatrically. In Ashio, however, they occurred sympatrically, but their populalions have changed drastically and they have segregatecl during the 1980s and 1990s, l propese two factors that may contribute to their shift from sympatry towards an allopatric existence. The primary contributing factor may be the overlap in the food habits of the twe species. Japanese serow were found to feed on the leaves ofdeciduous trees and herbaceous shrubs during the summer, while in winter they feed mainly on the needles ofconiferous trees. In contrast, sika deer were found to feed mainly on graminoid species year reund. On]y in severe winters did the deer extend their diet to include the needles ofconif- erous trees, and the twigs and bark of deciduous trees. During such winters their diet then overlaps that of the serow, and this oyerlap may result in a rapid depletion oflimited food supplies.
    [Show full text]
  • Distinct Distribution of Dicrocoelium Dendriticum and D. Chinensis in Iwate Prefecture, Japan, and a New Final Host Record for D
    NOTE Parasitology Distinct Distribution of Dicrocoelium dendriticum and D. chinensis in Iwate Prefecture, Japan, and a New Final Host Record for D. chinensis Maiko OHTORI1), Mikiko AOKI1) and Tadashi ITAGAKI1)* 1)Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, Ueda 3–18–8, Morioka 020-8550, Japan (Received 3 April 2014/Accepted 17 June 2014/Published online in J-STAGE 7 July 2014) ABSTRACT. This study dealt with the morphological and molecular identification of Dicrocoelium flukes obtained from Japanese serow (Cap- ricornis crispus) and sika deer (Cervus nippon centralis) in the twelve districts of Iwate Prefecture, Japan. Dicrocoelium dendriticum and D. chinensis were exclusively detected in the western, and coastal and eastern areas of Iwate Prefecture, respectively. This geographically distinct occurrence of the two Dicrocoelium species would be associated with the distribution of the final hosts, sika deer for D. chinensis and Japanese serow for D. dendriticum. This study also reports that Capricornis crispus is a new final host of D. chinensis. KEY WORDS: Capricornis crispus, Cervus nippon, Dicrocoelium chinensis, Dicrocoelium dendriticum, new host record doi: 10.1292/jvms.14-0175; J. Vet. Med. Sci. 76(10): 1415–1417, 2014 Lancet flukes of the genus Dicrocoelium parasitize in the The flukes were morphologically identified based on the bile duct and gall bladder of domestic and wild ruminants. descriptions of Yamaguti [14], Tang and Tang [10], Otranto Dicrocoeliasis caused by the lancet flukes produces gener- et al. [7] and Taira et al. [9], and discrimination between D. ally mild symptoms and occasional severe economic losses dendriticum and D. chinensis relied on the testes orientation in the domestic industry [6].
    [Show full text]
  • Mt. Hakusan, Central Japan 白山におけるニホ
    石川県立自然史資料館研究報告 第1号 Bulletin of the Ishikawa Museum of Natural History, 1: 15-30 (2011) The Japanese serow’s colonisation of areas formerly inhabited by humans: Mt. Hakusan, central Japan Akinori MIZUNO 白山におけるニホンカモシカの人間領域への侵入 水 野 昭 憲 Abstract This study examines the relationship between the distribution of the Japanese serow (Capricornis crispus, Bovidae, Artiodactyla) and human activities in the Mt. Hakusan area, central Japan. Information on former patterns of distribution of the serow was collected by interviewing regional residents and hunters. Around 3,000 observation records from each 1-km grid were analysed. The expansion of the serow habitat in Ishikawa prefecture can be observed at intervals of ten years, beginning in 1955. Over 50 years, the extent of the habitat expanded from 300 km2 in 1955 to 1,500 km2 in 2005. Despite its legal prohibition, serow hunting for meat and fur continued on a small scale until the 1960s. The practices of shifting cultivation and charcoal making on the mountains had rapidly declined by this time. As a result, large areas have since become available to wild animals. The habitat of the serow has expanded from the highlands to the lowlands and from steep areas to flatter areas. In the foothills, because people have stopped cultivating small rice fields and have taken jobs in urban areas, the landscape, which was once dominated by timber production, now predominantly has natural vegetation. The general attitude towards wildlife has also shifted because of changes in lifestyle and greater awareness of the need for con- servation of natural resources. Therefore, the serows have largely lost their fear of humans.
    [Show full text]