MIR-18A and RUNX1T1 by TIAN HE Subm

Total Page:16

File Type:pdf, Size:1020Kb

MIR-18A and RUNX1T1 by TIAN HE Subm IDENTIFICATION AND CLINICAL SIGNIFICANCE OF TWO DIVERGENT REGULATORS IN THORACIC MALIGNANCY: MIR-18A AND RUNX1T1 by TIAN HE Submitted as partial fulfillment of the requirements For degree of Doctor of Philosophy Dissertation Advisor: Dr. Afshin Dowlati Department of Biochemistry CASE WESTERN RESERVE UNIVERSITY January, 2021 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Tian He candidate for the degree of Doctor of Philosophy Committee Chair Martin Snider Committee Member Afshin Dowlati Committee Member Hung-Ying Kao Committee Member Shigemi Matsuyama Date of Defense July 7th, 2020 *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents List of Tables ..................................................................................................................... iv List of Figures ..................................................................................................................... v Acknowledgement ............................................................................................................ vii List of Abbreviations ....................................................................................................... viii Abstract ............................................................................................................................... 1 Chapter 1 : Introduction ...................................................................................................... 3 1. Malignant pleural mesothelioma (MPM)................................................................. 3 1.1. Epidemiology of MPM ....................................................................................... 3 1.2. Clinical features of MPM ................................................................................... 3 1.3. Carcinogenic mechanism of asbestos ................................................................. 4 1.4. Treatment of MPM ............................................................................................. 4 1.5. Molecular features of MPM ............................................................................... 5 2. Lung cancer: Conventional types ............................................................................. 7 2.1. Non-small cell lung cancer (NSCLC) ................................................................ 8 2.1.1. NSCLC histology subtypes ........................................................................ 8 2.1.2. Markers for diagnosis ................................................................................. 8 2.1.3. Molecular features of NSCLC .................................................................... 9 2.1.4. Advancements in therapy of NSCLC ......................................................... 9 2.1.5. NSCLC in never-smokers: a distinct entity in lung cancer ...................... 11 2.2. Small cell lung cancer (SCLC) ......................................................................... 13 2.2.1. Clinical feature of SCLC .......................................................................... 13 2.2.2 Molecular landscape of SCLC ................................................................... 15 3. Lung cancer: Atypical subtypes with heterogeneous histology .............................. 17 i 3.1. ‘Combined’ SCLC: a unique histology subtype of SCLC ............................... 17 3.2. NSCLC transformation to SCLC ...................................................................... 18 Chapter 2 : Post-transcriptional regulation of PIAS3 expression by miR-18a in malignant mesothelioma ................................................................................................... 20 Abstract ........................................................................................................................ 21 Introduction .................................................................................................................. 22 Results .......................................................................................................................... 24 PIAS3 protein expression does not correlate with PIAS3 mRNA levels ................ 24 PIAS3 expression is unaffected by proteasome inhibition ...................................... 26 Screening miRNAs as potential regulators of PIAS3 expression ........................... 28 miR-18a can specifically suppress PIAS3 expression at its 3’UTR ....................... 32 Inhibition of endogenous miR-18a restores PIAS3 expression and suppresses STAT3 activity ........................................................................................................ 35 miR-18a inhibition decreases cell viability and miR-18a expression predicts poor patient survival in MM .................................................................................... 38 Conclusions .................................................................................................................. 41 Discussion .................................................................................................................... 42 Materials and methods ................................................................................................. 45 Chapter 3 : Identification of RUNX1T1 as a potential epigenetic modifier in small cell lung cancer ........................................................................................................................ 50 Abstract ........................................................................................................................ 51 Introduction .................................................................................................................. 53 Results .......................................................................................................................... 55 RUNX1T1 is specifically amplified in the SCLC component of ‘combined’ SCLC patients ......................................................................................................... 55 ii RUNX1T1 expression is upregulated in the SCLC component of a c-SCLC tumor ....................................................................................................................... 58 RUNX1T1 is highly expressed in SCLC ................................................................. 61 Overexpression and knockout of RUNX1T1 leads to significant changes in HALLMARK pathways .......................................................................................... 64 RUNX1T1 overexpression increases E2F activity and decreases CDKN1A (p21) expression ................................................................................................................ 69 RUNX1T1 overexpression decreases histone acetylation at the CDKN1A (p21) promoter .................................................................................................................. 71 Discussion .................................................................................................................... 76 Material and methods ................................................................................................... 80 Chapter 4: Discussion and Future Directions ................................................................... 87 Summary and Discussion ............................................................................................. 87 Further Directions ........................................................................................................ 89 1. Clinical implications of miR-18a regulation of PIAS3 expression in MM ......... 89 1.1. Targeting miRNAs: a potential therapeutic strategy in MM ....................... 89 1.2. Curcumin: a natural agent providing potential therapeutic benefits in MM ..................................................................................................................... 90 2. Exploring further mechanisms and potential downstream pathways regulated by RUNX1T1 in SCLC ........................................................................... 92 2.1. Epigenetic landscape affected by RUNX1T1 in SCLC ................................ 92 2.2. Exploring RUNX1T1-mediated mechanisms and downstream effects in advanced SCLC models ...................................................................................... 94 2.3. Exploring potential translational significance of RUNX1T1 in SCLC ........ 98 References ....................................................................................................................... 100 iii List of Tables Table 2.1: 19 miR candidates from mesothelioma cell line screening. ............................ 30 Table 2.2: Validation of microarray results by RT-qPCR. ............................................... 31 Table 3.1: Genetic alterations in two c-SCLC cases ......................................................... 57 Table 3.2: qPCR Primer sets for ChIP analyses ............................................................... 84 iv List of Figures Figure 2.1: PIAS3 expression in MM cell lines. ............................................................... 25 Figure 2.2: PIAS3 expression after proteasome inhibitor treatment and CHX treatment. .......................................................................................................................... 27 Figure 2.3: Workflow of miR screen. ..............................................................................
Recommended publications
  • An Overview of the Role of Hdacs in Cancer Immunotherapy
    International Journal of Molecular Sciences Review Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy Debarati Banik, Sara Moufarrij and Alejandro Villagra * Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, 800 22nd St NW, Suite 8880, Washington, DC 20052, USA; [email protected] (D.B.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +(202)-994-9547 Received: 22 March 2019; Accepted: 28 April 2019; Published: 7 May 2019 Abstract: Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration.
    [Show full text]
  • Activation of Smad Transcriptional Activity by Protein Inhibitor of Activated STAT3 (PIAS3)
    Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3) Jianyin Long*†‡, Guannan Wang*†‡, Isao Matsuura*†‡, Dongming He*†‡, and Fang Liu*†‡§ *Center for Advanced Biotechnology and Medicine, †Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, and ‡Cancer Institute of New Jersey, 679 Hoes Lane, Piscataway, NJ 08854 Communicated by Allan H. Conney, Rutgers, The State University of New Jersey, Piscataway, NJ, November 17, 2003 (received for review August 22, 2003) Smad proteins play pivotal roles in mediating the transforming of many transcription factors through distinct mechanisms. growth factor ␤ (TGF-␤) transcriptional responses. We show in this PIAS1 and PIAS3 bind and inhibit STAT1 and STAT3 DNA- report that PIAS3, a member of the protein inhibitor of activated binding activities, respectively (19, 20). PIASx␣ and PIASx␤ STAT (PIAS) family, activates TGF-␤͞Smad transcriptional re- were identified through interactions with the androgen receptor sponses. PIAS3 interacts with Smad proteins, most strongly with and the homeodomain protein Msx2, respectively (21, 22). Smad3. PIAS3 and Smad3 interact with each other at the endog- PIASx␣ and PIASx␤ inhibit IL12-mediated and STAT4- enous protein level in mammalian cells and also in vitro, and the dependent gene activation (23). PIAS1, PIAS3, PIASx␣, and association occurs through the C-terminal domain of Smad3. We PIASx␤ also regulate transcriptional activation by various ste- further show that PIAS3 can interact with the general coactivators roid receptors (21, 24–26). PIASy has been shown to antagonize p300͞CBP, the first evidence that a PIAS protein can associate with the activities of STAT1 (27), androgen receptor (28), p53 (29), p300͞CBP.
    [Show full text]
  • Variations in Microrna-25 Expression Influence the Severity of Diabetic
    BASIC RESEARCH www.jasn.org Variations in MicroRNA-25 Expression Influence the Severity of Diabetic Kidney Disease † † † Yunshuang Liu,* Hongzhi Li,* Jieting Liu,* Pengfei Han, Xuefeng Li, He Bai,* Chunlei Zhang,* Xuelian Sun,* Yanjie Teng,* Yufei Zhang,* Xiaohuan Yuan,* Yanhui Chu,* and Binghai Zhao* *Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People’s Republic of China; and †Clinical Laboratory of Hong Qi Hospital, Mudanjiang Medical University, Heilongjiang, People’s Republic of China ABSTRACT Diabetic nephropathy is characterized by persistent albuminuria, progressive decline in GFR, and second- ary hypertension. MicroRNAs are dysregulated in diabetic nephropathy, but identification of the specific microRNAs involved remains incomplete. Here, we show that the peripheral blood from patients with diabetes and the kidneys of animals with type 1 or 2 diabetes have low levels of microRNA-25 (miR-25) compared with those of their nondiabetic counterparts. Furthermore, treatment with high glucose decreased the expression of miR-25 in cultured kidney cells. In db/db mice, systemic administration of an miR-25 agomir repressed glomerular fibrosis and reduced high BP. Notably, knockdown of miR-25 in normal mice by systemic administration of an miR-25 antagomir resulted in increased proteinuria, extracellular matrix accumulation, podocyte foot process effacement, and hypertension with renin-angiotensin system activation. However, excessive miR-25 did not cause kidney dysfunction in wild-type mice. RNA sequencing showed the alteration of miR-25 target genes in antagomir-treated mice, including the Ras-related gene CDC42. In vitro,cotrans- fection with the miR-25 antagomir repressed luciferase activity from a reporter construct containing the CDC42 39 untranslated region.
    [Show full text]
  • Cyclacel Announces Grants of New U.S. & European Patents
    February 12, 2013 Cyclacel Announces Grants of New U.S. & European Patents Covering Sapacitabine Used in Combination With HDAC Inhibitors Granted Patents Provide Exclusivity for Potential Uses of Sapacitabine in Hematological Malignancies and Solid Tumors BERKELEY HEIGHTS, N.J., Feb. 12, 2013 (GLOBE NEWSWIRE) -- Cyclacel Pharmaceuticals, Inc. (Nasdaq:CYCC) (Nasdaq:CYCCP) (Cyclacel or the Company), a biopharmaceutical company developing oral therapies that target the various phases of cell cycle control for the treatment of cancer and other serious disorders, today announced the issuance of U.S. Patent No. US 8,349,792 ('792) and European Patent No 2,101,790 ('790). Both patents include claims to combination treatment of sapacitabine, the Company's lead product candidate, with HDAC (histone deacetylase) inhibitors. The patents provide exclusivity until June 2029 and December 2027 respectively. "The grants of the '792 and '790 patents are important enhancements of sapacitabine's intellectual property estate. They supplement sapacitabine's existing composition of matter, dosing regimen and combination treatment patent protection and support US and EU market exclusivity toward the end of the next decade," said Spiro Rombotis, President and Chief Executive Officer of Cyclacel. "We are pursuing a broad intellectual property strategy providing us with a strong foundation to achieve our clinical and commercial objectives for sapacitabine and our other assets. As we continue to enroll SEAMLESS, our pivotal Phase 3 trial of sapacitabine as front-line treatment in elderly patients with acute myeloid leukemia (AML), we look forward to providing additional updates for sapacitabine this year, including Phase 2 data in myelodysplastic syndromes (MDS), AML preceded by MDS, and solid tumors." The two patents include claims to combinations of sapacitabine and HDAC inhibitors, pharmaceutical compositions comprising sapacitabine and HDAC inhibitors, and methods of treatment using such compositions of proliferative disorders including leukemias, lymphomas, and lung cancer.
    [Show full text]
  • An Immunoevasive Strategy Through Clinically-Relevant Pan-Cancer Genomic and Transcriptomic Alterations of JAK-STAT Signaling Components
    bioRxiv preprint doi: https://doi.org/10.1101/576645; this version posted March 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An immunoevasive strategy through clinically-relevant pan-cancer genomic and transcriptomic alterations of JAK-STAT signaling components Wai Hoong Chang1 and Alvina G. Lai1, 1Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, United Kingdom Since its discovery almost three decades ago, the Janus ki- Although cytokines are responsible for inflammation in nase (JAK)-signal transducer and activator of transcription cancer, spontaneous eradication of tumors by endoge- (STAT) pathway has paved the road for understanding inflam- nous immune processes rarely occurs. Moreover, the matory and immunity processes related to a wide range of hu- dynamic interaction between tumor cells and host immu- man pathologies including cancer. Several studies have demon- nity shields tumors from immunological ablation, which strated the importance of JAK-STAT pathway components in overall limits the efficacy of immunotherapy in the clinic. regulating tumor initiation and metastatic progression, yet, the extent of how genetic alterations influence patient outcome is far from being understood. Focusing on 133 genes involved in Cytokines can be pro- or anti-inflammatory and are inter- JAK-STAT signaling, we found that copy number alterations dependent on each other’s function to maintain immune underpin transcriptional dysregulation that differs within and homeostasis(3).
    [Show full text]
  • 1541-7786.MCR-09-0417.Full.Pdf
    Published Online First on April 6, 2010 Cell Cycle, Cell Death, and Senescence Molecular Cancer Research The Intracellular Delivery of a Recombinant Peptide Derived from the Acidic Domain of PIAS3 Inhibits STAT3 Transactivation and Induces Tumor Cell Death Corina Borghouts, Hanna Tittmann, Natalia Delis, Marisa Kirchenbauer, Boris Brill, and Bernd Groner Abstract Signaling components, which confer an “addiction” phenotype on cancer cells, represent promising drug tar- gets. The transcription factor signal transducers and activators of transcription 3 (STAT3) is constitutively ac- tivated in many different types of tumor cells and its activity is indispensible in a large fraction. We found that the expression of the endogenous inhibitor of STAT3, protein inhibitor of activated STAT3 (PIAS3), positively correlates with STAT3 activation in normal cells. This suggests that PIAS3 controls the extent and the duration of STAT3 activity in normal cells and thus prevents its oncogenic function. In cancer cells, however, the ex- pression of PIAS3 is posttranscriptionally suppressed, possibly enhancing the oncogenic effects of activated STAT3. We delimited the interacting domains of STAT3 and PIAS3 and identified a short fragment of the COOH-terminal acidic region of PIAS3, which binds strongly to the coiled-coil domain of STAT3. This PIAS3 fragment was used to derive the recombinant STAT3-specific inhibitor rPP-C8. The addition of a protein trans- duction domain allowed the efficient internalization of rPP-C8 into cancer cells. This resulted in the suppression of STAT3 target gene expression, in the inhibition of migration and proliferation, and in the induction of μ apoptosis at low concentrations [half maximal effective concentration (EC50), <3 mol/L].
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Modulation of STAT Signaling by STAT-Interacting Proteins
    Oncogene (2000) 19, 2638 ± 2644 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Modulation of STAT signaling by STAT-interacting proteins K Shuai*,1 1Departments of Medicine and Biological Chemistry, University of California, Los Angeles, California, CA 90095, USA STATs (signal transducer and activator of transcription) play important roles in numerous cellular processes Interaction with non-STAT transcription factors including immune responses, cell growth and dierentia- tion, cell survival and apoptosis, and oncogenesis. In Studies on the promoters of a number of IFN-a- contrast to many other cellular signaling cascades, the induced genes identi®ed a conserved DNA sequence STAT pathway is direct: STATs bind to receptors at the named ISRE (interferon-a stimulated response element) cell surface and translocate into the nucleus where they that mediates IFN-a response (Darnell, 1997; Darnell function as transcription factors to trigger gene activa- et al., 1994). Stat1 and Stat2, the ®rst known members tion. However, STATs do not act alone. A number of of the STAT family, were identi®ed in the transcription proteins are found to be associated with STATs. These complex ISGF-3 (interferon-stimulated gene factor 3) STAT-interacting proteins function to modulate STAT that binds to ISRE (Fu et al., 1990, 1992; Schindler et signaling at various steps and mediate the crosstalk of al., 1992). ISGF-3 consists of a Stat1:Stat2 heterodimer STATs with other cellular signaling pathways. This and a non-STAT protein named p48, a member of the article reviews the roles of STAT-interacting proteins in IRF (interferon regulated factor) family (Levy, 1997).
    [Show full text]
  • Genetic Testing for Acute Myeloid Leukemia AHS-M2062
    Corporate Medical Policy Genetic Testing for Acute Myeloid Leukemia AHS-M2062 File Name: genetic_testing_for_acute_myeloid_leukemia Origination: 1/1/2019 Last CAP Review: 8/2021 Next CAP Review: 8/2022 Last Review: 8/2021 Description of Procedure or Service Acute myeloid leukemia (AML) is characterized by large numbers of abnormal, immature myeloid cells in the bone marrow and peripheral blood resulting from genetic changes in hematopoietic precursor cells which disrupt normal hematopoietic growth and differentiation (Stock, 2020). Related Policies: Genetic Cancer Susceptibility Using Next Generation Sequencing AHS-M2066 Molecular Panel Testing of Cancers to Identify Targeted Therapy AHS-M2109 Serum Tumor Markers for Malignancies AHS-G2124 Minimal Residual Disease (MRD) AHS- M2175 ***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician. Policy BCBSNC will provide coverage for genetic testing for acute myeloid leukemia when it is determined to be medically necessary because the medical criteria and guidelines shown below are met. Benefits Application This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy. When Genetic Testing for Acute Myeloid Leukemia is covered The use of genetic testing for acute myeloid leukemia is considered medically necessary for the following: A. Genetic testing for FLT3 internal tandem duplication and tyrosine kinase domain mutations (ITD and TKD), IDH1, IDH2, TET2, WT1, DNMT3A, ASXL1 and/or TP53 in adult and pediatric patients with suspected or confirmed AML of any type for prognostic and/or therapeutic purposes.
    [Show full text]
  • Loss of Protein Inhibitors of Activated STAT-3 Expression in Glioblastoma Multiformetumors: Implications for STAT-3 Activation and Gene Expression Emily C
    Human Cancer Biology Loss of Protein Inhibitors of Activated STAT-3 Expression in Glioblastoma MultiformeTumors: Implications for STAT-3 Activation and Gene Expression Emily C. Brantley,1L. Burton Nabors,2 G. Yancey Gillespie,3 Youn-Hee Choi,5 Cheryl Ann Palmer,2,4 Keith Harrison,4 Kevin Roarty,1and Etty N. Benveniste1 Abstract Purpose: STATs activate transcription in response to numerous cytokines, controlling prolifera- tion, gene expression, and apoptosis. Aberrant activation of STAT proteins, particularly STAT-3, is implicated in the pathogenesis of many cancers, including GBM, by promoting cell cycle progres- sion, stimulating angiogenesis, and impairing tumor immune surveillance. Little is known about the endogenous STAT inhibitors, the PIAS proteins, in human malignancies.The objective of this study was to examine the expression of STAT-3 and its negative regulator, PIAS3, in human tissue samples from control and GBM brains. Experimental Design: Control and GBM human tissues were analyzed by immunoblotting and immunohistochemistry to determine the activation status of STAT-3 and expression of the PIAS3 protein.The functional consequence of PIAS3 inhibition by small interfering RNA or PIAS3 over- expression in GBM cells was determined by examining cell proliferation, STAT-3 transcriptional activity, and STAT-3 target gene expression.This was accomplished using [3H]TdR incorporation, STAT-3 dominant-negative constructs, reverse transcription-PCR, and immunoblotting. Results and Conclusions: STAT-3 activation, as assessed by tyrosine and serine phosphoryla- tion, was elevated in GBM tissue compared with control tissue. Interestingly, we observed expression of PIAS3 in control tissue, whereas PIAS3 protein expression in GBM tissue was greatly reduced.
    [Show full text]
  • Application of Microrna Database Mining in Biomarker Discovery and Identification of Therapeutic Targets for Complex Disease
    Article Application of microRNA Database Mining in Biomarker Discovery and Identification of Therapeutic Targets for Complex Disease Jennifer L. Major, Rushita A. Bagchi * and Julie Pires da Silva * Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; [email protected] * Correspondence: [email protected] (R.A.B.); [email protected] (J.P.d.S.) Supplementary Tables Methods Protoc. 2021, 4, 5. https://doi.org/10.3390/mps4010005 www.mdpi.com/journal/mps Methods Protoc. 2021, 4, 5. https://doi.org/10.3390/mps4010005 2 of 25 Table 1. List of all hsa-miRs identified by Human microRNA Disease Database (HMDD; v3.2) analysis. hsa-miRs were identified using the term “genetics” and “circulating” as input in HMDD. Targets CAD hsa-miR-1 Targets IR injury hsa-miR-423 Targets Obesity hsa-miR-499 hsa-miR-146a Circulating Obesity Genetics CAD hsa-miR-423 hsa-miR-146a Circulating CAD hsa-miR-149 hsa-miR-499 Circulating IR Injury hsa-miR-146a Circulating Obesity hsa-miR-122 Genetics Stroke Circulating CAD hsa-miR-122 Circulating Stroke hsa-miR-122 Genetics Obesity Circulating Stroke hsa-miR-26b hsa-miR-17 hsa-miR-223 Targets CAD hsa-miR-340 hsa-miR-34a hsa-miR-92a hsa-miR-126 Circulating Obesity Targets IR injury hsa-miR-21 hsa-miR-423 hsa-miR-126 hsa-miR-143 Targets Obesity hsa-miR-21 hsa-miR-223 hsa-miR-34a hsa-miR-17 Targets CAD hsa-miR-223 hsa-miR-92a hsa-miR-126 Targets IR injury hsa-miR-155 hsa-miR-21 Circulating CAD hsa-miR-126 hsa-miR-145 hsa-miR-21 Targets Obesity hsa-mir-223 hsa-mir-499 hsa-mir-574 Targets IR injury hsa-mir-21 Circulating IR injury Targets Obesity hsa-mir-21 Targets CAD hsa-mir-22 hsa-mir-133a Targets IR injury hsa-mir-155 hsa-mir-21 Circulating Stroke hsa-mir-145 hsa-mir-146b Targets Obesity hsa-mir-21 hsa-mir-29b Methods Protoc.
    [Show full text]
  • Supplementary Materials and Tables a and B
    SUPPLEMENTARY MATERIAL 1 Table A. Main characteristics of the subset of 23 AML patients studied by high-density arrays (subset A) WBC BM blasts MYST3- MLL Age/Gender WHO / FAB subtype Karyotype FLT3-ITD NPM status (x109/L) (%) CREBBP status 1 51 / F M4 NA 21 78 + - G A 2 28 / M M4 t(8;16)(p11;p13) 8 92 + - G G 3 53 / F M4 t(8;16)(p11;p13) 27 96 + NA G NA 4 24 / M PML-RARα / M3 t(15;17) 5 90 - - G G 5 52 / M PML-RARα / M3 t(15;17) 1.5 75 - - G G 6 31 / F PML-RARα / M3 t(15;17) 3.2 89 - - G G 7 23 / M RUNX1-RUNX1T1 / M2 t(8;21) 38 34 - + ND G 8 52 / M RUNX1-RUNX1T1 / M2 t(8;21) 8 68 - - ND G 9 40 / M RUNX1-RUNX1T1 / M2 t(8;21) 5.1 54 - - ND G 10 63 / M CBFβ-MYH11 / M4 inv(16) 297 80 - - ND G 11 63 / M CBFβ-MYH11 / M4 inv(16) 7 74 - - ND G 12 59 / M CBFβ-MYH11 / M0 t(16;16) 108 94 - - ND G 13 41 / F MLLT3-MLL / M5 t(9;11) 51 90 - + G R 14 38 / F M5 46, XX 36 79 - + G G 15 76 / M M4 46 XY, der(10) 21 90 - - G NA 16 59 / M M4 NA 29 59 - - M G 17 26 / M M5 46, XY 295 92 - + G G 18 62 / F M5 NA 67 88 - + M A 19 47 / F M5 del(11q23) 17 78 - + M G 20 50 / F M5 46, XX 61 59 - + M G 21 28 / F M5 46, XX 132 90 - + G G 22 30 / F AML-MD / M5 46, XX 6 79 - + M G 23 64 / M AML-MD / M1 46, XY 17 83 - + M G WBC: white blood cell.
    [Show full text]