Isolation of Endophytic Endospore-Forming Bacteria from Theobroma Cacao As Potential Biological Control Agents of Cacao Diseases ⇑ Rachel L

Total Page:16

File Type:pdf, Size:1020Kb

Isolation of Endophytic Endospore-Forming Bacteria from Theobroma Cacao As Potential Biological Control Agents of Cacao Diseases ⇑ Rachel L Biological Control 57 (2011) 236–245 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Isolation of endophytic endospore-forming bacteria from Theobroma cacao as potential biological control agents of cacao diseases ⇑ Rachel L. Melnick a, , Carmen Suárez b, Bryan A. Bailey c, Paul A. Backman a a The Pennsylvania State University Department of Plant Pathology, 207 Buckhout Lab, University Park, PA 16802, USA b Instituto Nacional Autónomo de Investigaciones Agropecuarias, Estacion Experimental Tropical, Km 5 vía Quevedo-El Empalme, cantón Quevedo, Casilla 24, Pichilingue, Provincia Los Rios, Ecuador c USDA-ARS Sustainable Perennial Crops Lab, 10300 Baltimore Ave., BARC-WEST BLDG 001 Room 223, Beltsville, MD 20705, USA article info abstract Article history: Sixty-nine endospore-forming bacterial endophytes consisting of 15 different species from five genera Received 15 December 2010 were isolated from leaves, pods, branches, and flower cushions of Theobroma cacao as potential biological Accepted 10 March 2011 control agents. Sixteen isolates had in vitro chitinase production. In antagonism studies against cacao Available online 14 March 2011 pathogens, 42% inhibited Moniliophthora roreri, 33% inhibited Moniliophthora perniciosa, and 49% inhib- ited Phytophthora capsici. Twenty-five percent of isolates inhibited the growth of both Moniliophthora Keywords: spp., while 22% of isolates inhibited the growth of all three pathogens. Isolates that were chitinolytic Theobroma cacao and tested negative on Bacillus cereus agar were tested with in planta studies. All 14 isolates colonized Bacillus the phyllosphere and internal leaf tissue when introduced with Silwet L-77, regardless of the tissue of Endophyte Cacao origin of the isolate. Eight isolates significantly inhibited P. capsici lesion formation (p = 0.05) in detached Moniliophthora leaf assays when compared to untreated control leaves. ARISA with bacilli specific primers amplified 21 Phytophthora OTUs in field grown cacao leaves, while eubacteria specific primers amplified 58 OTUs. ARISA analysis of ARISA treated leaves demonstrated that inundative application of a single bacterial species did not cause a long- term shift of native bacterial communities. This research illustrates the presence of endospore-forming bacterial endophytes in cacao trees, their potential as antagonists of cacao pathogens, and that cacao har- bors a range of bacterial endophytes. Published by Elsevier Inc. Introduction Additional research has demonstrated that the endophytic associ- ation of Trichoderma spp. activates the expression of cacao ex- Theobroma cacao L. is an economically significant crop, as the pressed sequence tags (ESTs) putatively related to defense genes seeds are processed into a range of cocoa products. Nearly 30% of (Bailey et al., 2006). the cacao crop is lost to disease annually (Hebbar, 2007). Although Despite the successes reported for fungal endophytes in sup- fungicide applications can improve yield, they are often too costly pressing cacao diseases, little is known about the presence or po- for small-holder farmers as well as pose risks to the health of the tential of bacterial endophytes. Work has demonstrated that applicator and the environment. For this reason, researchers have actinomycetes are common inhabitants of the cacao rhizosphere focused on altering the microbial ecology of the cacao tree to sup- (Barreto et al., 2008) and of pod surfaces (Macagnan et al., 2006). press diseases. Research has focused testing fungi as potential bio- Previous work by Melnick et al. (2008) demonstrated that an endo- logical control agents (BCAs). Rubini et al. (2005) demonstrated phytic Bacillus sp. originally isolated from tomato could endophy- that endophytic Gliocladium catenulatum reduced witches’ broom tically colonize cacao leaves for 60+ days and reduce severity of severity in small scale in planta studies. Arnold et al. (2003) dem- foliar Phytophthora disease in detached leaf assays. This research onstrated that cacao leaves inoculated with a consortium of seven further demonstrated that bacterial endophytes could be intro- endophytic fungal species had lower leaf mortality when duced into cacao, but the presence of native bacterial endophytes challenged with a Phytophthora sp. than endophyte-free leaves. in cacao and their potential for disease suppression still remained unknown. No published works on the cacao endophytes have utilized cul- ⇑ Corresponding author. Present address: USDA-ARS Sustainable Perennial Crops ture-independent methods to characterize the cacao beneficial or Lab, 10300 Baltimore Ave., BARC-WEST, BLDG 001, Room 310, Beltsville, MD 20705, pathogenic microbial communities, nor have researchers looked USA. Fax: +1 301 504 1998. at how application of endophytes impacts the native mutualistic E-mail addresses: [email protected] (R.L. Melnick), carmen.suarez@i- niap.gob.ec, [email protected] (C. Suárez), [email protected] (B.A. microbial communities associated with cacao. The current knowl- Bailey), [email protected] (P.A. Backman). edge of cacao microbial ecology is limited to isolates capable of 1049-9644/$ - see front matter Published by Elsevier Inc. doi:10.1016/j.biocontrol.2011.03.005 R.L. Melnick et al. / Biological Control 57 (2011) 236–245 237 growing in a lab. Culture-independent technologies, such as auto- Tokyo, Japan) at the Penn State Genomics Core Facility. Sequences mated ribosomal RNA intergenic spacer analysis (ARISA), have from the forward and reverse primer were edited and aligned using been used in other woody perennials (Lambais et al., 2006) and Sequencher 4.7 (Gene Codes, Ann Arbor, MI), then the sequences could be useful in estimating the diversity of all bacteria present were compared to similar 16s rRNA sequences using Seqmatch of in cacao leaves. Additionally, this technology could be used to the Ribosomal Database Project (RDP 10.15, http://rdp.cme.msu.e- determine whether application of beneficial bacteria shifts the du/index.jsp)(Wang et al., 2007). Relatedness of isolates and re- populations of native microbes. lated bacteria (Ahmed et al., 2007; Anandaraj et al., 2009; Gilbert The objectives of this research were to obtain endospore-form- et al., 2004; Hoffmaster et al., 2004; Jeng et al., 2001; Narisawa ing bacterial endophytes from cacao trees, screen isolates as poten- et al., 2008) from the GenBank database was inferred using the tial biological control agents of cacao diseases, to determine neighbor-joining method (Saitou and Nei, 1987) of MEGA 4.0 (Ku- whether natural endophytes could persist in/on cacao leaves, and mar et al., 2008) to infer bacterial species. to determine whether endophytes were potential antagonists of cacao pathogens in planta. An additional objective was to utilize 2.3. Confirmation of heat tolerance by bacterial endophytes the culture-independent technology of ARISA to assess the bacte- rial community of cacao leaves and to determine whether applica- Confirmation of tolerance to heat (assumption of endospore for- tion of a single endophyte can shift the bacterial communities of mation) was conducted by growing bacteria in 800 ll of tryptic soy cacao leaves. broth (Difco, Franklin Lakes, NJ) in triplicate 1.7 ml vials. Tubes were incubated at 28 °C for 5 days, heated to 75 °C for 15 min, and then spread onto TSA plates. The plates were incubated at 2. Materials and methods room temperature (24 °C) for 24 h and observed for bacterial growth. The experiment was repeated to confirm results. 2.1. Isolation of endospore-forming bacterial endophytes from cacao tissue 2.4. Bacillus cereus assay Endophytic endospore-forming bacteria were isolated from sev- B. cereus HiVeg Agar (HiMedia Laboratories, Mumbai, India) was eral T. cacao ‘‘Nacional’’ clones that were previously identified as prepared following manufacturer’s directions to select B. cereus escaping cacao diseases on the Instituto Nacional Autonomo de group cells. Each isolate was spotted onto three replicate plates Investigaciones Agropecuarias Estacion Experimental Tropical (IN- which were incubated at 28 °C for 24–48 h and plates were ob- IAP-EET) in Pichilingue, Ecuador. Cacao tissue was collected and served for a colorimetric change (Mossel et al., 1967). B. cereus iso- sampled within 4 h. Four leaf disks (3.0 cm) were removed from lates BP24 and BT8 were used as positive controls. The experiment leaves, disinfected for 5 min in 20% bleach (Clorox), rinsed three was repeated to confirm results. times in sterile distilled water, triturated with a mortar and pestle in 3 ml 0.1 M potassium phosphate buffer (pH 7.0), were then 2.5. Chitinase assay transferred to a test tube, and incubated at 75 °C for 15 min. Fifty microliter of the suspension was plated onto tryptic soy agar Chitinase production was assessed by visualizing clearing (TSA, Difco, Franklin Lakes, NJ) and incubated for 48 h at 24 °C. around colonies on chitin nutrient agar (CNA) (Kokalis-Burelle Individual colonies were streaked on TSA. et al., 1992). Plates were incubated in the dark at 28 °C for 7– Pods were surface disinfected with 20% Clorox. The exocarp was 10 days. B. cereus isolates BP24 and BT8, known chitinase produc- aseptically removed and sections (0.42 cm3) of mesoderm were re- ers, were used for positive controls. The experiment was repeated moved. The periderm was aseptically removed from flower cush- to confirm results. ions and branches and internal sections (0.5 cm3) were sampled. Tissue was placed
Recommended publications
  • BACTERIAL and PHAGE INTERACTIONS INFLUENCING Vibrio Parahaemolyticus ECOLOGY
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2016 BACTERIAL AND PHAGE INTERACTIONS INFLUENCING Vibrio parahaemolyticus ECOLOGY Ashley L. Marcinkiewicz University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Marcinkiewicz, Ashley L., "BACTERIAL AND PHAGE INTERACTIONS INFLUENCING Vibrio parahaemolyticus ECOLOGY" (2016). Master's Theses and Capstones. 852. https://scholars.unh.edu/thesis/852 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. BACTERIAL AND PHAGE INTERACTIONS INFLUENCING Vibrio parahaemolyticus ECOLOGY BY ASHLEY MARCINKIEWICZ Bachelor of Arts, Wells College, 2011 THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Master of Science in Microbiology May, 2016 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Masters of Science in Microbiology by: Thesis Director, Cheryl A. Whistler Associate Professor of Molecular, Cellular, and Biomedical Sciences Stephen H. Jones Research Associate Professor of Natural Resources and the Environment Jeffrey T. Foster Assistant Professor of Molecular, Cellular, and Biomedical Sciences On April 15th, 2016 Original approved signatures are on file with the University of New Hampshire Graduate School. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS………………………………………………………... vi LIST OF TABLES………………………………………………………………… vii LIST OF FIGURES…….………………………………………………………….. viii ABSTRACT……………………………………………………………………….
    [Show full text]
  • Sporulation Evolution and Specialization in Bacillus
    bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Research article From root to tips: sporulation evolution and specialization in Bacillus subtilis and the intestinal pathogen Clostridioides difficile Paula Ramos-Silva1*, Mónica Serrano2, Adriano O. Henriques2 1Instituto Gulbenkian de Ciência, Oeiras, Portugal 2Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal *Corresponding author: Present address: Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands Phone: 0031 717519283 Email: [email protected] (Paula Ramos-Silva) Running title: Sporulation from root to tips Keywords: sporulation, bacterial genome evolution, horizontal gene transfer, taxon- specific genes, Bacillus subtilis, Clostridioides difficile 1 bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of a highly resistant, dormant spore. Spores allow environmental persistence, dissemination and for pathogens, are infection vehicles. In both the model Bacillus subtilis, an aerobic species, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes.
    [Show full text]
  • From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
    From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases.
    [Show full text]
  • Distribution of Antibiotic-Resistant Bacteria in Aerobic Composting of Swine Manure with Different Antibiotics
    Distribution of Antibiotic-resistant Bacteria in Aerobic Composting of Swine Manure With Different Antibiotics Tingting Song Chinese Academy of Agricultural Sciences Institute of Environment and Sustainable Development in Agriculture Hongna Li Chinese Academy of Agricultural Sciences Institute of Environment and Sustainable Development in Agriculture Binxu Li Chinese Academy of Agricultural Sciences Institute of Environment and Sustainable Development in Agriculture Jiaxun Yang Chinese Academy of Agricultural Sciences Institute of Environment and Sustainable Development in Agriculture Muhammad Fahad Sardar Chinese Academy of Agricultural Sciences Institute of Environment and Sustainable Development in Agriculture Mengmeng Yan Chinese Academy of Agricultural Sciences Institute of Environment and Sustainable Development in Agriculture Luyao Li Chinese Academy of Agricultural Sciences Institute of Environment and Sustainable Development in Agriculture Yunlong Tian Chinese Academy of Agricultural Sciences Institute of Environment and Sustainable Development in Agriculture Sha Xue Northwest A&F University: Northwest Agriculture and Forestry University Changxiong Zhu ( [email protected] ) Chinese Academy of Agricultural Sciences Institute of Environment and Sustainable Development in Agriculture https://orcid.org/0000-0002-1297-3307 Research Page 1/24 Keywords: Antibiotic-resistant bacteria, lincomycin, aerobic composting, ecological risk Posted Date: April 21st, 2021 DOI: https://doi.org/10.21203/rs.3.rs-433065/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Environmental Sciences Europe on August 11th, 2021. See the published version at https://doi.org/10.1186/s12302-021-00535-6. Page 2/24 Abstract Background: Livestock manure is an important reservoir of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs).
    [Show full text]
  • Disruption of Firmicutes and Actinobacteria Abundance in Tomato Rhizosphere Causes the Incidence of Bacterial Wilt Disease
    The ISME Journal (2021) 15:330–347 https://doi.org/10.1038/s41396-020-00785-x ARTICLE Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease 1,2 1,3 1 1,2 Sang-Moo Lee ● Hyun Gi Kong ● Geun Cheol Song ● Choong-Min Ryu Received: 31 March 2020 / Revised: 27 August 2020 / Accepted: 17 September 2020 / Published online: 7 October 2020 © The Author(s) 2020. This article is published with open access Abstract Enrichment of protective microbiota in the rhizosphere facilitates disease suppression. However, how the disruption of protective rhizobacteria affects disease suppression is largely unknown. Here, we analyzed the rhizosphere microbial community of a healthy and diseased tomato plant grown <30-cm apart in a greenhouse at three different locations in South Korea. The abundance of Gram-positive Actinobacteria and Firmicutes phyla was lower in diseased rhizosphere soil (DRS) than in healthy rhizosphere soil (HRS) without changes in the causative Ralstonia solanacearum population. Artificial disruption of Gram-positive bacteria in HRS using 500-μg/mL vancomycin increased bacterial wilt occurrence in tomato. To identify HRS-specific and plant-protective Gram-positive bacteria species, Brevibacterium frigoritolerans HRS1, Bacillus 1234567890();,: 1234567890();,: niacini HRS2, Solibacillus silvestris HRS3, and Bacillus luciferensis HRS4 were selected from among 326 heat-stable culturable bacteria isolates. These four strains did not directly antagonize R. solanacearum but activated plant immunity. A synthetic community comprising these four strains displayed greater immune activation against R. solanacearum and extended plant protection by 4 more days in comparison with each individual strain. Overall, our results demonstrate for the first time that dysbiosis of the protective Gram-positive bacterial community in DRS promotes the incidence of disease.
    [Show full text]
  • Dynamics and Stabilization of the Rumen Microbiome in Yearling
    www.nature.com/scientificreports OPEN Dynamics and stabilization of the rumen microbiome in yearling Tibetan sheep Lei Wang1,2,4, Ke Zhang3,4, Chenguang Zhang3, Yuzhe Feng1, Xiaowei Zhang1, Xiaolong Wang 3 & Guofang Wu1,2* The productivity of ruminants depends largely on rumen microbiota. However, there are few studies on the age-related succession of rumen microbial communities in grazing lambs. Here, we conducted 16 s rRNA gene sequencing for bacterial identifcation on rumen fuid samples from 27 Tibetan lambs at nine developmental stages (days (D) 0, 2, 7, 14, 28, 42, 56, 70, and 360, n = 3). We observed that Bacteroidetes and Proteobacteria populations were signifcantly changed during the growing lambs’ frst year of life. Bacteroidetes abundance increased from 18.9% on D0 to 53.9% on D360. On the other hand, Proteobacteria abundance decreased signifcantly from 40.8% on D0 to 5.9% on D360. Prevotella_1 established an absolute advantage in the rumen after 7 days of age. The co-occurrence network showed that the diferent microbial of the rumen presented a complex synergistic and cumbersome relationship. A phylogenetic tree was constructed, indicating that during the colonization process, may occur a phenomenon in which bacteria with close kinship are preferentially colonized. Overall, this study provides new insights into the colonization of bacterial communities in lambs that will beneft the development of management strategies to promote colonization of target communities to improve functional development. Rumen microbes are essential for ruminant health. Ruminants rely upon the action of microbial fermentation in the rumen to digest plant fbers and convert some nutrients that cannot be directly utilized into animal proteins for host utilization1.
    [Show full text]
  • Remarkable Shift in Structural and Functional Properties of an Animal Charcoal Polluted Soil Accentuated by Inorganic Nutrients Amendment
    Remarkable Shift In Structural And Functional Properties of An Animal Charcoal Polluted Soil Accentuated By Inorganic Nutrients Amendment Lateef Salam ( [email protected] ) Summit University https://orcid.org/0000-0001-8353-534X Oluwafemi S. Obayori Department of Microbiology, Lagos State University, Ojo, Lagos, Nigeria Research Keywords: Animal charcoal polluted soil, Carbon-free mineral medium, Soil microcosm, hydrocarbon degradation, Illumina shotgun sequencing, Microbial Community Structure Posted Date: July 1st, 2020 DOI: https://doi.org/10.21203/rs.3.rs-38325/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/43 Abstract The effects of carbon-free mineral medium (CFMM) amendment on hydrocarbon degradation and microbial community structure and function in an animal charcoal polluted soil was monitored for six weeks in eld moist microcosms consisting of CFMM treated soil (FN4) and an untreated control (FN1). Gas chromatographic analysis of hydrocarbon fractions revealed the removal 84.02% and 82.38% and 70.09% and 70.14% aliphatic and aromatic fractions in FN4 and FN1 microcosms in 42 days. Shotgun metagenomic analysis of the two metagenomes revealed a remarkable shift in the microbial community structure of FN4 metagenome with 92.97% of the population belonging to the phylum Firmicutes and its dominant representative genera Anoxybacillus (64.58%), Bacillus (21.47%) and Solibacillus (2.39%). In untreated FN1 metagenome, the phyla Proteobacteria (56.12%),
    [Show full text]
  • The Porcine Nasal Microbiota with Particular Attention to Livestock-Associated Methicillin-Resistant Staphylococcus Aureus in Germany—A Culturomic Approach
    microorganisms Article The Porcine Nasal Microbiota with Particular Attention to Livestock-Associated Methicillin-Resistant Staphylococcus aureus in Germany—A Culturomic Approach Andreas Schlattmann 1, Knut von Lützau 1, Ursula Kaspar 1,2 and Karsten Becker 1,3,* 1 Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; [email protected] (A.S.); [email protected] (K.v.L.); [email protected] (U.K.) 2 Landeszentrum Gesundheit Nordrhein-Westfalen, Fachgruppe Infektiologie und Hygiene, 44801 Bochum, Germany 3 Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany * Correspondence: [email protected]; Tel.: +49-3834-86-5560 Received: 17 March 2020; Accepted: 2 April 2020; Published: 4 April 2020 Abstract: Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) remains a serious public health threat. Porcine nasal cavities are predominant habitats of LA-MRSA. Hence, components of their microbiota might be of interest as putative antagonistically acting competitors. Here, an extensive culturomics approach has been applied including 27 healthy pigs from seven different farms; five were treated with antibiotics prior to sampling. Overall, 314 different species with standing in nomenclature and 51 isolates representing novel bacterial taxa were detected. Staphylococcus aureus was isolated from pigs on all seven farms sampled, comprising ten different spa types with t899 (n = 15, 29.4%) and t337 (n = 10, 19.6%) being most frequently isolated. Twenty-six MRSA (mostly t899) were detected on five out of the seven farms. Positive correlations between MRSA colonization and age and colonization with Streptococcus hyovaginalis, and a negative correlation between colonization with MRSA and Citrobacter spp.
    [Show full text]
  • Comparison of the Bacterial Microbiota in a Bale of Collected Cardboard Determined by 454 Pyrosequencing and Clone Library
    Advances in Microbiology, 2014, 4, 754-760 Published Online September 2014 in SciRes. http://www.scirp.org/journal/aim http://dx.doi.org/10.4236/aim.2014.412082 Comparison of the Bacterial Microbiota in a Bale of Collected Cardboard Determined by 454 Pyrosequencing and Clone Library Valérie Lalande1,2*, Simon Barnabé3, Jean-Charles Côté2 1Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada 2Agriculture and Agri-Food Canada, Research and Development Centre, Saint-Jean-sur-Richelieu, Canada 3Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Canada Email: *[email protected] Received 21 June 2014; revised 24 July 2014; accepted 22 August 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Biofouling, the accumulation of microorganisms, is a major problem in paper mills processing pa- per and cardboard. This leads to the production of lower quality recycled products. Several stud- ies have focused on the microbial content in the paper mill and the final products. Our aim was to determine the microbial biota in a bale of collected cardboard prior to entering the paper mill. Total genomic DNA was isolated and analyzed using two different methods for comparison pur- poses: 454 pyrosequencing and clone library. A total of 3268 V6-V8 454 pyrosequencing reads and 322 cloned V6-V8 16S rRNA nucleotide sequences were obtained. Both methods showed the pres- ence of three major bacterial genera: Bacillus, Solibacillus and Paenibacillus, all members of the spore-forming phylum Firmicutes.
    [Show full text]
  • Sporulation Evolution and Specialization in Bacillus
    bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Research article 2 3 From root to tips: sporulation evolution and specialization in Bacillus 4 subtilis and the intestinal pathogen Clostridioides difficile 5 6 Paula Ramos-Silva1*, Mónica Serrano2, Adriano O. Henriques2 7 1Instituto Gulbenkian de Ciência, Oeiras, Portugal 8 2Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal 9 10 *Corresponding author: 11 Present address: Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands 12 Phone: +31 717519283 13 Email: [email protected] 14 15 16 17 18 19 20 21 Running title: Sporulation from root to tips 22 23 Keywords: sporulation, bacterial genome evolution, horizontal gene transfer, taxon- 24 specific genes, Bacillus subtilis, Clostridioides difficile 25 1 bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 26 Abstract 27 Bacteria of the Firmicutes phylum are able to enter a developmental pathway that 28 culminates with the formation of a highly resistant, dormant spore. Spores allow 29 environmental persistence, dissemination and for pathogens, are infection vehicles.
    [Show full text]
  • Resistant Staphylococcus Aureus (MRSA) in Seagrass from Rote Ndao, East Nusa Tenggara, Indonesia
    BIODIVERSITAS ISSN: 1412-033X Volume 18, Number 2, April 2017 E-ISSN: 2085-4722 Pages: 733-740 DOI: 10.13057/biodiv/d180242 Endophytic bacteria producing antibacterial against methicillin- resistant Staphylococcus aureus (MRSA) in seagrass from Rote Ndao, East Nusa Tenggara, Indonesia DIAN SAGITA FITRI, ARTINI PANGASTUTI, ARI SUSILOWATI♥, SUTARNO Department of Bioscience, Graduate Program, Universitas Sebelas Maret. Jl. Ir. Sutami No. 36A Kentingan, Surakarta, 57126, Central Java, Indonesia. Tel./Fax.: +62-271-632450, ♥email: [email protected], [email protected] Manuscript received: 24 June 2016. Revision accepted: 13 April 2017. Abstract. Fitri DS, Pangastuti A, Susilowati A, Sutarno. 2017. Endophytic bacteria producing antibacterial against methicillin-resistant Staphylococcus aureus (MRSA) in seagrass from Rote Ndao, East Nusa Tenggara, Indonesia. Biodiversitas 18: 733-740. Methicillin- resistant Staphylococcus aureus (MRSA) are bacteria that resistant to the various type of antibiotics and yet cannot be handled comprehensively. The discovery of new antibiotic from endophytic bacteria in seagrass of Rote Island is an option to overcome the resistance. The aims of this research were to screen endophytic bacteria inhibit MRSA from seagrass, to determine the species of the endophytic bacteria and the genetic relationship. Isolation of endophytic bacteria has carried out by inoculating surface sterilization seagrass leaves on Marine Agar (MA) medium. Selection of potential endophytic bacteria-producing anti-MRSA has done using overlay method against MRSA, gram-positive Bacillus subtilis, and gram-negative Escherichia coli. Identification of the endophytic bacteria based on the sequence of 16S rRNA encoding gene. The results showed that there were eight isolates of endophytic bacteria which have antibacterial activity against MRSA of seagrass Enhalus acoroides, Thalassia hemprichii, and Cymodocea rotundata in the Litianak and Oeseli Beaches, Rote Ndao.
    [Show full text]
  • Bacillus Massiliogorillae Sp. Nov
    Standards in Genomic Sciences (2013) 9:93-105 DOI:10.4056/sigs.4388124 Non-contiguous finished genome sequence and description of Bacillus massiliogorillae sp. nov. Mamadou Bhoye Keita1, Seydina M. Diene1, Catherine Robert1, Didier Raoult1,2, Pierre- Edouard Fournier1, and Fadi Bittar1* 1URMITE, Aix-Marseille Université, Faculté de Médecine, Marseille, France 2King Fahad Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia *Correspondence: Fadi Bittar ([email protected]) Keywords: Bacillus massiliogorillae, genome, culturomics, taxonogenomics Strain G2T sp. nov. is the type strain of B. massiliogorillae, a proposed new species within the genus Bacillus. This strain, whose genome is described here, was isolated in France from the fecal sample of a wild western lowland gorilla from Cameroon. B. massiliogorillae is a facul- tative anaerobic, Gram-variable, rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,431,633 bp long genome (1 chromosome but no plasmid) contains 5,179 protein-coding and 98 RNA genes, including 91 tRNA genes. Introduction Strain G2T (= CSUR P206 = DSM 26159) is the type Here we present a summary classification and a strain of B. massiliogorillae sp. nov. This bacterium set of features for B. massiliogorillae sp. nov. strain is a Gram-variable, facultatively anaerobic, indole- G2T together with the description of the complete negative bacillus having rounded-ends. It was iso- genome sequence and annotation. These charac- lated from the stool sample of Gorilla gorilla goril- teristics support the circumscription of the spe- la as part of a “culturomics” study aiming at culti- cies B.
    [Show full text]