Parkinson's Disease by Sir William Richard Gowers 1886

Total Page:16

File Type:pdf, Size:1020Kb

Parkinson's Disease by Sir William Richard Gowers 1886 Cardinal Features An Overview of • Parkinsonism Parkinson’s Disease 9 Bradykinesia 9 Rigidity 9 Tremor Punit Agrawal, DO • Classically at rest Division of Movement Disorders 9 Postural instability OSU Dept of Neurology • Typically a late symptom Illustration of Parkinson's Disease by Sir William Richard Gowers 1886. (http://commons.wikimedia.org/wiki/File:Sir_William_Richard_Gowers_Parkinson_Disease_sketch_1886.jpg) • Parkinson’s Disease accounts for about 85% of patients with features of parkinsonism - (wemove.org) Parkinson’s Disease Cardinal Features of Parkinsonism - Bradykinesia • In 1817 James Parkinson • Delayed motor initiation (1755-1824) described Parkinson’s disease. • Slowed voluntary movement • Rapid fatigue with repetitive movements • Shuffling gait • Micrographia • Decreased dexterity • Hypomimia (decreased facial expression) Parkinson J (1817) An essay on the Shaking palsy. Sherwood, Neely and Jones, London • Hypophonia (low voice volume) 1 Cardinal Features of Cardinal Features of Parkinsonism - Parkinsonism - Tremor Postural Instability • Loss of postural reflexes • Classically, a 3-7 Hz rhythmic resting • Retropulsion tremor that commonly presents with opposition of forefinger and thumb. • Increased difficulty turning with increased incidence of falls • Hands, legs, lips/chin. • Often the most disabling and least • Rest tremor typically increases with walking and distraction, but decreases with responsive to medications attention or with action. • Not typically present as an early features of Parkinson’s disease. Parkinson’s Disease can cause Cardinal Features of numerous other symptoms including Parkinsonism - Rigidity many non-motor MOTOR NON-MOTOR • Bradykinesia • Constipation • Involuntary increase in muscle tone • Rigidity • Anosmia (loss of smell) Cardinal • Tremor • Excessive drooling Features • Gastroesophageal Reflux • Postural instability • Lead pipe or cogwheel • Depression/ Anxiety • Micrographia (small writing) • Cognitive changes/dementia • In mild disease, can augment with • Decreased dexterity • Sleep disturbance activation of opposite limb (Froment’s • Hypomimia (“Masked Face”) • Seborrheic dermatitis • Postural changes • Bladder urgency/frequency maneuver) • Festination/Freezing of gait • Sweating spells • Speech changes • Hypotension • Dysphagia (trouble • Sexual dysfunction swallowing) 2 Pathological Hallmark of PD Braak Staging of Lewy Bodies Classic hallmark is degeneration of dopamine neurons from the substantia nigra pars compacta plus intracytoplasmic proteinaceous inclusions (Lewy bodies). Per decade of life, there is an estimated 9-13% loss of Braak H, et al. J Neurology. 2002;249(suppl 3):1432-1459. dopamine neurons. Stage 1 - Lewy bodies (LB) first form within the olfactory bulb and dorsal motor nucleus of the vagal nerve. Motor symptoms do not Stages 2 and 3 - LB pathology expands into additional brain stem nuclei (e.g., locus appear until there is a lost of coeruleus and substantia nigra). about 70% of dopaminergic Stages 5 and 6 - Pathology extends into the cerebral cortex. neurons from this area. More commonly recognized clinical symptoms arise during Stages 4 to 6 when the http://www.smbs.buffalo.edu/pth600/IMC-Path/y2case/y2ans18.htm pathology involves significant regions of the substantia nigra and related brain areas. PD Pathology Epidemiology • PD also associated with extensive pathology in • As many as 1.5 million people in the US have non dopamine cells: Parkinson’s disease. 9 Cholinergic neurons in the nucleus basalis of • Approximately 60,000 Americans are diagnosed Meynert and dorsal motor nucleus of vagus with Parkinson's disease each year. 9 Norepinephrine neurons in the locus ceruleus • Affects 1.5 -2.0 % of people over the age of 60 9 Serotonin neurons in the midline raphe years. 9 plus many other cells in the cortex, spinal • Onset of symptoms is typically 60-70 years of cord, and peripheral autonomic system. age, but up to 15 % of people with PD are diagnosed before the age of 50. • Pathology in the dorsal motor nucleus and 9 These estimates do not account for cases of olfactory regions may predate dopaminergic cell PD that are unreported, undiagnosed or loss in the substantia nigra pars compacta. misdiagnosed. Forno LS. Neuropathy of Parkinson’s Disease. J Neuropathol Exp Neurol 1996;55:259-272. Braak H, et al. J Neurology. 2002;249(suppl 3):1432-1459. National Parkinson’s Disease Foundation, Inc. 2007 3 NINDS Parkinson’s Etiology Disease Criteria (aka Gilman Criteria) • The cause is not known, and with most cases of • Group A: (at least 2 needed) disease being sporadic. 9 Resting tremor* • However, there is a suspected strong link to 9 Bradykinesia* 9 Rigidity genetic and environmental factors. 9 Asymmetric onset • Risk factors included family history, increasing 9 Postural instability age, rural living, well water, exposure to • Group B: Suggests alternative diagnosis: pesticides/herbicides, and repeated head injury. 9 Early postural instability 9 Early freezing of gait • Some studies have suggested smoking decreases 9 Hallucinations risk of development of Parkinson’s disease with 9 Early dementia no good explanation. 9 Gaze palsy 9 Early, severe dysautonomia 9 Previous condition/drugs known to cause parkinsonism Parkinsonism – Diagnosis of PD Differential Diagnosis • Parkinson’s disease is a clinical diagnosis based • Parkinsonism does not equal Parkinson’s disease. on history and exam findings. • The differential for parkinsonism include: • The diagnosis of parkinsonism is classified as: 9 Atypical Parkinsonian Syndromes 9 Most Likely - 2 of 4 present cardinal features, 9 Secondary Parkinsonism with 1 being resting tremor or rigidity. • Vascular • Medication induced 9 Probable – isolated rest tremor or rigidity • Infectious alone. • Metabolic/Toxic 9 Possible - either bradykinesia or postural 9 Dementia syndromes instability 9 Other Hereditary degenerative disease 9 Psychogenic 4 Features that may suggest cause of parkinsonism other than Atypical Parkinsonian Parkinson’s disease Syndromes 9 Symmetric symptoms 9 Early balance/gait trouble or falling 9 Early symptoms of cognitive dysfunction or dementia symptoms • Progressive Supranuclear Palsy that precede onset of features of parkinsonism or within 1 year of motor symptoms. • Cortico-basalganglionic Degeneration 9 Minimal to no response to levodopa 9 History of exposure to drugs reported to cause parkinsonism - Neuroleptics • Multiple System Atrophy - Lithium - Depakote 9 MSA type P: (Striatonigral Degeneration) -Other 9 MSA type A: (Shy-Drager Syndrome) 9 Stepwise progression or history of CVA 9 Apraxia or alien limb phenomena 9 MSA type C: (Olivopontocerebellar Atrophy) 9 Vertical gaze palsy 9 Upper motor neuron symptoms on exam Testing? Progressive Supranuclear Palsy • There is no diagnostic test used to diagnose PD • Neuroimaging and blood tests are useful to rule out other • Fairly symmetrical symptoms possible conditions if tremor or history/exam is atypical with features that may suggest a diagnosis other than • Early onset of gait trouble with falls Parkinson’s Disease: • Axial rigidity 9 Work up may include: • Thyroid profile • Early dysarthria and gaze impairment • Ceruloplasmin/Serum copper 9 Vertical gaze palsy • Brain imaging • Frontal lobe dementia • EMG/NCV • Minimal tremor • Confirmation of a diagnosis of Parkinson’s disease can be made at autopsy • Minimal to no response to levodopa. 5 Corticobasalganglionic Secondary Parkinsonism • Vascular Degeneration • Usually history of acute onset or step wise progression • Predominant gait trouble and possible cognitive deficits • Cortical apraxia and possible alien hand • Supported by brain MRI findings of previous infarcts • Medication induced syndrome 9 Typically dopamine blocking agents, but others have been more more commonly reported as well • Rigidity and bradykinesia with minimal to Metaclopramide Neuroleptics Phenothiazines no tremor Reserpine Butyrophenones SSRI Amiodarone Diltiazem Valproic acid • Dystonic limb posturing early in disease. Lithium • Infectious • Very asymmetric • Postencephalitic, syphlis • Metabolic/Toxic • Minimal to no response to levodopa. • Hypothyroidism, hepatocerebral degeneration, hypoxia, carbon monoxide, carbon disulphide, cyanide, MPTP. Multiple Systems Atrophy Other causes of • MSA –type P (Striatonigral Degeneration): Parkinsonism 9 Akinetic rigid parkinsonism with minimal response to levodopa • Other Hereditary degenerative diseases • MSA – type A (Shy-Drager Syndrome): 9 Huntington’s Disease (juvenille), Wilson’s disease, Neuroacanthocytosis 9 Akinetic rigid parkinsonism with early prominent autonomic dysfunction (papillary changes, postural • Dementia syndromes hypotension, urinary incontinence, cardiac arrhythmia, upper airway obstruction) 9 Significant cognitive issues or dementia prior to or within a year of parkinsonian motor • MSA – type C (Olivopontocerebellar Atrophy): symptoms 9 Parkinsonism with cerbellar ataxia, abn eye movements, retinal degeneration, pyramidal tract • Diffuse Lewy Body Disease dysfunction. May be familial in an autosomal dominant pattern • Alzheimer’s disease 6 Parkinsonian Medications Levodopa • Approved by FDA in 1970 • Parkinsonian medications increase dopamine • Levodopa is the cornerstone of treatment of Parkinson’s activity via precursor levodopa, dopamine Disease motor symptoms, despite all the other available agonists or blockage of enzymatic breakdown medications! (MAO-B inhibitors) • Levodopa provides anti-parkinsonian benefit over the entire course of the
Recommended publications
  • Basal Forebrain Volume Reliably Predicts the Cortical Spread of Alzheimer’S Degeneration
    bioRxiv preprint doi: https://doi.org/10.1101/676544; this version posted June 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Title: Basal forebrain volume reliably predicts the cortical spread of Alzheimer’s degeneration Short running title: Predictive spread of Alzheimer’s degeneration Authors: Sara Fernández-Cabello1,2, Martin Kronbichler1,2,3, Koene R. A. Van Dijk4, James A. Goodman4, R. Nathan Spreng5,6,7, Taylor W. Schmitz8,9 for the Alzheimer’s Disease Neuroimaging Initiative* Affiliations: 1 Department of Psychology, University of Salzburg, Salzburg, Austria 2 Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria 3 Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria. 4 Clinical and Translational Imaging, Early Clinical Development, Pfizer Inc, Cambridge, MA, United States 5 Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada 6 Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada 7 Douglas Mental Health University Institute, Verdun, QC, Canada 8 Brain and Mind Institute, Western University, London, ON, Canada 9 Department of Physiology and Pharmacology, Western University, London, ON, Canada * Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.
    [Show full text]
  • The Prion-Like Spreading of Alpha-Synuclein in Parkinson’S Disease: Update on Models and Hypotheses
    International Journal of Molecular Sciences Review The Prion-Like Spreading of Alpha-Synuclein in Parkinson’s Disease: Update on Models and Hypotheses Asad Jan 1,* ,Nádia Pereira Gonçalves 1,2 , Christian Bjerggaard Vaegter 1,2 , Poul Henning Jensen 1 and Nelson Ferreira 1,* 1 Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; [email protected] (N.P.G.); [email protected] (C.B.V.); [email protected] (P.H.J.) 2 International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, 8200 Aarhus, Denmark * Correspondence: [email protected] (A.J.); [email protected] (N.F.) Abstract: The pathological aggregation of the presynaptic protein α-synuclein (α-syn) and propa- gation through synaptically coupled neuroanatomical tracts is increasingly thought to underlie the pathophysiological progression of Parkinson’s disease (PD) and related synucleinopathies. Although the precise molecular mechanisms responsible for the spreading of pathological α-syn accumulation in the CNS are not fully understood, growing evidence suggests that de novo α-syn misfolding and/or neuronal internalization of aggregated α-syn facilitates conformational templating of en- dogenous α-syn monomers in a mechanism reminiscent of prions. A refined understanding of the biochemical and cellular factors mediating the pathological neuron-to-neuron propagation of mis- folded α-syn will potentially elucidate the etiology of PD and unravel novel targets for therapeutic Citation: Jan, A.; Gonçalves, N.P.; intervention. Here, we discuss recent developments on the hypothesis regarding trans-synaptic Vaegter, C.B.; Jensen, P.H.; Ferreira, N.
    [Show full text]
  • (Brainnet Europe Protocol) to the MRC Cognitive Function and Ageing Brain Study Stephen B
    Wharton et al. Acta Neuropathologica Communications (2016) 4:11 DOI 10.1186/s40478-016-0275-x RESEARCH Open Access Epidemiological pathology of Tau in the ageing brain: application of staging for neuropil threads (BrainNet Europe protocol) to the MRC cognitive function and ageing brain study Stephen B. Wharton1, Thais Minett2,3, David Drew1, Gillian Forster1, Fiona Matthews4, Carol Brayne3, Paul G. Ince1* and on behalf of the MRC Cognitive Function and Ageing Neuropathology Study Group Abstract Introduction: Deposition of abnormally phosphorylated tau (phospho-tau) occurs in Alzheimer’sdisease but also with brain ageing. The Braak staging scheme focused on neurofibrillary tangles, butabundant p-tau is also present in neuropil threads, and a recent scheme has been proposed by theBrainNet Europe consortium for staging tau pathology based on neuropil threads. We determined therelationship of threads to tangles, and the value of staging for threads in an unselected population-representative ageing brain cohort. We also determined the prevalence of astroglial tau pathologies, and their relationship to neuronal tau. Phospho-tau pathology was determined by immunohistochemistry (AT8 antibody) in the MRC-CFAS neuropathology cohort. Neuropil threads were staged using the BrainNet Europe protocol for tau pathology, and compared with Braak tangle stages. Astroglial tau pathology was assessed in neo-cortical, mesial temporal and subcortical areas. Results: Cases conformed well to the hierarchical neuropil threads staging of the BrainNet Europe protocol and correlated strongly with Braak staging (r=0.84, p < 0.001). Based on the areas under the receiver operator curves (AUC), incorporating either threads or tangle staging significantly improved dementia case identification to a similar degree over age alone (Braak stage X2(1)=10.1, p=0.002; BNE stage X2(1)=9.7, p=0.002).
    [Show full text]
  • Alpha-Synuclein: Mechanisms of Release and Pathology Progression in Synucleinopathies
    cells Review Alpha-Synuclein: Mechanisms of Release and Pathology Progression in Synucleinopathies Inês C. Brás 1 and Tiago F. Outeiro 1,2,3,4,* 1 Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany; [email protected] 2 Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany 3 Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK 4 Scientific Employee with a Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany * Correspondence: [email protected]; Tel.: +49-(0)-551-391-3544; Fax: +49-(0)-551-392-2693 Abstract: The accumulation of misfolded alpha-synuclein (aSyn) throughout the brain, as Lewy pathology, is a phenomenon central to Parkinson’s disease (PD) pathogenesis. The stereotypical distribution and evolution of the pathology during disease is often attributed to the cell-to-cell transmission of aSyn between interconnected brain regions. The spreading of conformationally distinct aSyn protein assemblies, commonly referred as strains, is thought to result in a variety of clin- ically and pathologically heterogenous diseases known as synucleinopathies. Although tremendous progress has been made in the field, the mechanisms involved in the transfer of these assemblies between interconnected neural networks and their role in driving PD progression are still unclear. Here, we present an update of the relevant discoveries supporting or challenging the prion-like spreading hypothesis. We also discuss the importance of aSyn strains in pathology progression and the various putative molecular mechanisms involved in cell-to-cell protein release. Understanding Citation: Brás, I.C.; Outeiro, T.F.
    [Show full text]
  • The Consequences of Pretangle Tau in the Locus Coeruleus Termpanit Chalermpalanupap, Emory University David Weinshenker, Emory University Jacki M
    Down but Not Out: The Consequences of Pretangle Tau in the Locus Coeruleus Termpanit Chalermpalanupap, Emory University David Weinshenker, Emory University Jacki M. Rorabaugh, Emory University Journal Title: Neural Plasticity Volume: Volume 2017 Publisher: Hindawi Publishing Corporation | 2017-09-05, Pages 7829507-7829507 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1155/2017/7829507 Permanent URL: https://pid.emory.edu/ark:/25593/s64c4 Final published version: http://dx.doi.org/10.1155/2017/7829507 Copyright information: © 2017 Termpanit Chalermpalanupap et al. This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). Accessed September 29, 2021 12:12 PM EDT Hindawi Neural Plasticity Volume 2017, Article ID 7829507, 9 pages https://doi.org/10.1155/2017/7829507 Review Article Down but Not Out: The Consequences of Pretangle Tau in the Locus Coeruleus Termpanit Chalermpalanupap, David Weinshenker, and Jacki M. Rorabaugh Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA Correspondence should be addressed to Jacki M. Rorabaugh; [email protected] Received 10 March 2017; Revised 20 June 2017; Accepted 20 July 2017; Published 5 September 2017 Academic Editor: Niels Hansen Copyright © 2017 Termpanit Chalermpalanupap et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Degeneration of locus coeruleus (LC) is an underappreciated hallmark of Alzheimer’s disease (AD). The LC is the main source of norepinephrine (NE) in the forebrain, and its degeneration is highly correlated with cognitive impairment and amyloid-beta (Aβ) and tangle pathology.
    [Show full text]
  • The Unfolded Protein Response Is Activated in the Olfactory System in Alzheimer’S Disease Helen C
    Murray et al. Acta Neuropathologica Communications (2020) 8:109 https://doi.org/10.1186/s40478-020-00986-7 RESEARCH Open Access The unfolded protein response is activated in the olfactory system in Alzheimer’s disease Helen C. Murray1,2* , Birger Victor Dieriks1, Molly E. V. Swanson1, Praju Vikas Anekal1, Clinton Turner3, Richard L. M. Faull1, Leonardo Belluscio4, Alan Koretsky2 and Maurice A. Curtis1* Abstract Olfactory dysfunction is an early and prevalent symptom of Alzheimer’s disease (AD) and the olfactory bulb is a nexus of beta-amyloid plaque and tau neurofibrillary tangle (NFT) pathology during early AD progression. To mitigate the accumulation of misfolded proteins, an endoplasmic reticulum stress response called the unfolded protein response (UPR) occurs in the AD hippocampus. However, chronic UPR activation can lead to apoptosis and the upregulation of beta-amyloid and tau production. Therefore, UPR activation in the olfactory system could be one of the first changes in AD. In this study, we investigated whether two proteins that signal UPR activation are expressed in the olfactory system of AD cases with low or high amounts of aggregate pathology. We used immunohistochemistry to label two markers of UPR activation (p-PERK and p-eIF2α) concomitantly with neuronal markers (NeuN and PGP9.5) and pathology markers (beta-amyloid and tau) in the olfactory bulb, piriform cortex, entorhinal cortex and the CA1 region of the hippocampus in AD and normal cases. We show that UPR activation, as indicated by p-PERK and p-eIF2α expression, is significantly increased throughout the olfactory system in AD cases with low (Braak stage III-IV) and high-level (Braak stage V-VI) pathology.
    [Show full text]
  • Staging of Alzheimer Disease-Associated Neurowbrillary Pathology Using Parayn Sections and Immunocytochemistry
    Acta Neuropathol (2006) 112:389–404 DOI 10.1007/s00401-006-0127-z METHODS REPORT Staging of Alzheimer disease-associated neuroWbrillary pathology using paraYn sections and immunocytochemistry Heiko Braak · Irina AlafuzoV · Thomas Arzberger · Hans Kretzschmar · Kelly Del Tredici Received: 8 June 2006 / Revised: 21 July 2006 / Accepted: 21 July 2006 / Published online: 12 August 2006 © Springer-Verlag 2006 Abstract Assessment of Alzheimer’s disease (AD)- revised here by adapting tissue selection and process- related neuroWbrillary pathology requires a procedure ing to the needs of paraYn-embedded sections (5–15 m) that permits a suYcient diVerentiation between initial, and by introducing a robust immunoreaction (AT8) for intermediate, and late stages. The gradual deposition hyperphosphorylated tau protein that can be processed of a hyperphosphorylated tau protein within select on an automated basis. It is anticipated that this neuronal types in speciWc nuclei or areas is central to revised methodological protocol will enable a more the disease process. The staging of AD-related neuroW- uniform application of the staging procedure. brillary pathology originally described in 1991 was per- formed on unconventionally thick sections (100 m) Keywords Alzheimer’s disease · NeuroWbrillary using a modern silver technique and reXected the pro- changes · Immunocytochemistry · gress of the disease process based chieXy on the topo- Hyperphosphorylated tau protein · Neuropathologic graphic expansion of the lesions. To better meet the staging · Pretangles demands of routine laboratories this procedure is Introduction This study was made possible by funding from the German Research Council (Deutsche Forschungsgemeinschaft) and BrainNet Europe II (European Commission LSHM-CT-2004- The development of intraneuronal lesions at selec- 503039).
    [Show full text]
  • Drug-Induced Movement Disorders
    Etiology & Pathogenesis of Parkinson Disease Samer D. Tabbal, M.D. May 2016 Associate Professor of Neurology Director of The Parkinson Disease & Other Movement Disorders Program Mobile: +961 70 65 89 85 email: [email protected] Conflict of Interest Statement No drug company pays me any money Outline of Etiology & Pathogenesis of Parkinson Disease History Definition Pathology Epidemiology Pathogenesis & Etiology Why do we care? Why Study Etiology & Pathophysiology? Parkinson Disease Does Not Spare Anyone History of Parkinson Disease (PD) 1817: James Parkinson describes “Shaking Palsy” 1904 & 1905 : Importance of the diagnosis of paralysis of vertical movements of the eyes (Posey & Spiller ) 1912: German pathologist Frederick Lewy describes neuronal cytoplasmic inclusions = Lewy bodies 1951: Apomorphine injection improved symptoms in a PD patient (Schwab) 1952: Intra-operative DBS for surgical destruction of GPi and thalamus (Spiegel) 1960: Parkinson disease is a state of dopamine deficiency (Ehringer & Hornykiewicz) 1961: First trial of IV levodopa in a PD patient (Birkmayer) 1964: Progressive supranuclear palsy: clinical and pathologic description (Steele, Richardson, Olszewski) 1968: Corticodentatonigral degeneration with neuronal achromasia (Rubeiz, Kolodny, Richardson) 1991: DBS of ventral intermediate thalamic (Vim) nucleus (Benabid) 1995: DBS for subthalamic nucleus (STN) in PD (Limousin) Idiopathic Parkinson Disease (PD) Definition of PD: . Parkinsonism . Degeneration of dopaminergic neurons in the substantia nigra pars compacta . Lewy bodies in degenerating neurons Parkinsonism: 2/3 Cardinal Symptoms . Tremor at rest . Bradykinesia . Rigidity Rule out Parkinson Plus Syndromes (atypical parkinsonism): . 10% of parkinsonian patients . Rapidly disabling . Poorly treatable Differential Diagnosis of Parkinsonism IPD vs Parkinson Plus Syndromes Synuclei { Multiple system atrophy: nopathy (oligodendroglial intracytoplasmic inclusions) . Shy-Drager Sd (P + autonomic Sx) .
    [Show full text]
  • Spatial and Temporal Relationships Between Plaques and Tangles in Alzheimer-Pathology Bärbel Schönheit, Rosemarie Zarski, Thomas G
    Neurobiology of Aging 25 (2004) 697–711 Open peer commentary Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology Bärbel Schönheit, Rosemarie Zarski, Thomas G. Ohm∗,1 Department of Clinical Cell and Neurobiology, Institute of Anatomy, Charité, 10098 Berlin, Germany Received 10 September 2002; received in revised form 29 July 2003; accepted 17 September 2003 Abstract One histological hallmark in Alzheimer’s disease is the tangle. The other is the plaque. A widely discussed hypothesis is the “amyloid cascade” assuming that tangle formation is a direct consequence of amyloid plaque formation. The aim of this study was to examine plaques and tangles in a highly defined neuronal circuitry in order to determine their detailed spatial and temporal relationships. We investigated serial sections of the whole hippocampal formation of brains with early Braak-stages (0–III) for tangles only, i.e. one case at stage 0, six at stage I, six at stage II, and nine at stage III. Most cases displayed both plaques and tangles. Four cases of stages 0 and I, three cases with stage II, and even one with stage III, however, did not display plaques. In turn, no plaque was found in the absence of tangles. The spatial relationship indicates that plaques lay in the terminal fields of tangle-bearing neurons. Our analysis suggests that tangles either antecede plaques or—less likely—are independently formed. © 2004 Elsevier Inc. All rights reserved. Keywords: Alzheimer’s disease; Amyloid plaques; ␤A4-peptide; Neurofibrillary tangles; Amyloid cascade hypothesis; Hippocampal formation; Hippocampus; Entorhinal cortex; Time course; Braak staging; Anterograde neurodegeneration; Spatial pattern 1.
    [Show full text]
  • Staging of Alzheimer Disease-Associated Neurowbrillary Pathology Using Parayn Sections and Immunocytochemistry
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector Acta Neuropathol (2006) 112:389–404 DOI 10.1007/s00401-006-0127-z METHODS REPORT Staging of Alzheimer disease-associated neuroWbrillary pathology using paraYn sections and immunocytochemistry Heiko Braak · Irina AlafuzoV · Thomas Arzberger · Hans Kretzschmar · Kelly Del Tredici Received: 8 June 2006 / Revised: 21 July 2006 / Accepted: 21 July 2006 / Published online: 12 August 2006 © Springer-Verlag 2006 Abstract Assessment of Alzheimer’s disease (AD)- revised here by adapting tissue selection and process- related neuroWbrillary pathology requires a procedure ing to the needs of paraYn-embedded sections (5–15 m) that permits a suYcient diVerentiation between initial, and by introducing a robust immunoreaction (AT8) for intermediate, and late stages. The gradual deposition hyperphosphorylated tau protein that can be processed of a hyperphosphorylated tau protein within select on an automated basis. It is anticipated that this neuronal types in speciWc nuclei or areas is central to revised methodological protocol will enable a more the disease process. The staging of AD-related neuroW- uniform application of the staging procedure. brillary pathology originally described in 1991 was per- formed on unconventionally thick sections (100 m) Keywords Alzheimer’s disease · NeuroWbrillary using a modern silver technique and reXected the pro- changes · Immunocytochemistry · gress of the disease process based chieXy on the topo- Hyperphosphorylated tau protein · Neuropathologic graphic expansion of the lesions. To better meet the staging · Pretangles demands of routine laboratories this procedure is Introduction This study was made possible by funding from the German Research Council (Deutsche Forschungsgemeinschaft) and BrainNet Europe II (European Commission LSHM-CT-2004- The development of intraneuronal lesions at selec- 503039).
    [Show full text]
  • Detection of Alzheimer's Disease
    Gibbons et al. Acta Neuropathologica Communications (2019) 7:34 https://doi.org/10.1186/s40478-019-0687-5 RESEARCH Open Access Detection of Alzheimer’s disease (AD) specific tau pathology with conformation- selective anti-tau monoclonal antibody in co-morbid frontotemporal lobar degeneration-tau (FTLD-tau) Garrett S. Gibbons1, Soo-Jung Kim1, John L. Robinson1, Lakshmi Changolkar1, David J. Irwin1,2, Leslie M. Shaw1, Virginia M.-Y. Lee1 and John Q. Trojanowski1* Abstract Pathological tau aggregates in Alzheimer’s disease (AD) and frontotemporal lobar degeneration-tau (FTLD-tau) adopt distinct conformations differentiated by the AD-tau specific monoclonal antibody (mAb) GT-38 that are not readily visualized using phosphorylation-specific anti-tau mAbs. To determine the extent of co-morbid AD-tau pathology in FTLD-tau, we performed immunohistochemical (IHC) staining with GT-38 and assigned Braak stages of AD-tau in a cohort 180 FTLD-tau cases consisting of corticobasal degeneration (CBD; n = 49), progressive supranuclear palsy (PSP; n = 109), and Pick’s disease (PiD; n = 22). Nearly two-thirds of patients (n = 115 of 180, 63. 8%) with FTLD-tau had some degree of comorbid AD-tau pathology and 20.5% of the FTLD-tau cohort had Braak stage ≥B2, consistent with medium-to-high-level AD neuropathological change (ADNPC). The PSP group had the highest frequency of medium-high AD-tau pathology compared to other tauopathies (PSP = 31/109, 28.4%; Picks = 2/22, 9.1%, CBD = 4/49, 8.2%) but neuropathological diagnosis was not found to be a significant independent predictor of medium-high AD Braak stage in a multivariate model after accounting for age at death (OR = 1.09; 95% CI = 1.03–1.15; p = 0.002) and CERAD plaque scores (OR = 3.75, 95% CI = 1.58–8.89; p =0.003), suggesting there is no predilection for a specific FTLD tauopathy to develop AD-tau co-pathology after accounting for age.
    [Show full text]
  • Animal Model for Prodromal Parkinson's Disease
    International Journal of Molecular Sciences Review Animal Model for Prodromal Parkinson’s Disease Tomoyuki Taguchi y, Masashi Ikuno y, Hodaka Yamakado * and Ryosuke Takahashi * Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; [email protected] (T.T.); [email protected] (M.I.) * Correspondence: [email protected] (H.Y.); [email protected] (R.T.); Tel.: +81-75-751-3767 (H.Y.); Tel.: +81-75-751-4397 (R.T.); Fax: +81-75-761-9780 (H.Y.); Fax: +81-75-761-9780 (R.T.) These authors contributed equally to this work. y Received: 4 February 2020; Accepted: 11 March 2020; Published: 13 March 2020 Abstract: Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and subsequent motor symptoms, but various non-motor symptoms (NMS) often precede motor symptoms. Recently, NMS have attracted much attention as a clue for identifying patients in a prodromal stage of PD, which is an excellent point at which to administer disease-modifying therapies (DMTs). These prodromal symptoms include olfactory loss, constipation, and sleep disorders, especially rapid eye movement sleep behavior disorder (RBD), all of which are also important for elucidating the mechanisms of the initiation and progression of the disease. For the development of DMTs, an animal model that reproduces the prodromal stage of PD is also needed. There have been various mammalian models reported, including toxin-based, genetic, and alpha synuclein propagation models. In this article, we review the animal models that exhibit NMS as prodromal symptoms and also discuss an appropriate prodromal model and its importance for the development of DMT of PD.
    [Show full text]