The Biosynthesis of C5–C25 Terpenoid Compounds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
De Novo Sequencing and Transcriptome Analysis Reveal Key Genes Regulating Steroid Metabolism in Leaves, Roots, Adventitious Roots and Calli of Periploca Sepium Bunge
ORIGINAL RESEARCH published: 21 April 2017 doi: 10.3389/fpls.2017.00594 De novo Sequencing and Transcriptome Analysis Reveal Key Genes Regulating Steroid Metabolism in Leaves, Roots, Adventitious Roots and Calli of Periploca sepium Bunge Jian Zhang 1, 2, 3, Xinglin Li 1, 3*, Fuping Lu 1, 3, Shanying Wang 1, 3, Yunhe An 4, Xiaoxing Su 4, Xiankuan Li 2, Lin Ma 2 and Guangjian Han 5 1 Key Lab of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China, 2 School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 3 College of Bioengineering, Tianjin University of Science and Technology, Tianjin, China, 4 Beijing Center for Physical and Chemical Analysis, Beijing, China, 5 Shachuan Biotechnology, Tianjin, China Edited by: Periploca sepium Bunge is a traditional medicinal plant, whose root bark is important Peng Zhang, Institute of Plant Physiology and for Chinese herbal medicine. Its major bioactive compounds are C21 steroids and Ecology, SIBS, CAS, China periplocin, a kind of cardiac glycoside, which are derived from the steroid synthesis Reviewed by: pathway. However, research on P. sepium genome or transcriptomes and their related Kun Yu, genes has been lacking for a long time. In this study we estimated this species Hubei University of Chinese Medicine, China nuclear genome size at 170 Mb (using flow cytometry). Then, RNA sequencing of Jun Yang, four different tissue samples of P. sepium (leaves, roots, adventitious roots, and Shanghai Chenshan Plant Science Research Center (CAS), China calli) was done using the sequencing platform Illumina/Solexa Hiseq 2,500. -
Structural and Biochemical Characterizations of Three Potential Drug Targets from Pathogens
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2020 Structural and Biochemical Characterizations of Three Potential Drug Targets from Pathogens LU LU ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-1148-7 UPPSALA urn:nbn:se:uu:diva-435815 2021 Dissertation presented at Uppsala University to be publicly examined in Room A1:111a, BMC, Husargatan 3, Uppsala, Friday, 16 April 2021 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Christian Cambillau. Abstract Lu, L. 2021. Structural and Biochemical Characterizations of Three Potential Drug Targets from Pathogens. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2020. 91 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1148-7. As antibiotic resistance of various pathogens emerged globally, the need for new effective drugs with novel modes of action became urgent. In this thesis, we focus on infectious diseases, e.g. tuberculosis, malaria, and nosocomial infections, and the corresponding causative pathogens, Mycobacterium tuberculosis, Plasmodium falciparum, and the Gram-negative ESKAPE pathogens that underlie so many healthcare-acquired diseases. Following the same- target-other-pathogen (STOP) strategy, we attempted to comprehensively explore the properties of three promising drug targets. Signal peptidase I (SPase I), existing both in Gram-negative and Gram-positive bacteria, as well as in parasites, is vital for cell viability, due to its critical role in signal peptide cleavage, thus, protein maturation, and secreted protein transport. Three factors, comprising essentiality, a unique mode of action, and easy accessibility, make it an attractive drug target. -
Sauret-Gü Eto S
Mutations in Escherichia coli aceE and ribB Genes Allow Survival of Strains Defective in the First Step of the Isoprenoid Biosynthesis Pathway Jordi Perez-Gil1, Eva Maria Uros1, Susanna Sauret-Gu¨ eto1¤, L. Maria Lois1, James Kirby2, Minobu Nishimoto2, Edward E. K. Baidoo2, Jay D. Keasling2, Albert Boronat1,3, Manuel Rodriguez- Concepcion1* 1 Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain, 2 Joint BioEnergy Institute, Emeryville, California, United States of America, 3 Department de Bioquı´mica i Biologia Molecular, Universitat de Barcelona, Barcelona, Spain Abstract A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and DXP reductoisomerase (DXR). Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway. -
(12) United States Patent (10) Patent No.: US 9,115,366 B2 Tissier Et Al
USOO9115366B2 (12) United States Patent (10) Patent No.: US 9,115,366 B2 Tissier et al. (45) Date of Patent: *Aug. 25, 2015 (54) SYSTEM FOR PRODUCING TERPENOIDS IN WO WO99,38957 * 8, 1999 .......... C12N 15/82 PLANTS WO WO99,38957 A1 8/1999 WO WOOOf 17327 A3 3.2000 Fre WO WO 01/20008 A2 3, 2001 (75) Inventors: Alain Tissier, Pertuis (FR); Christophe WO WO 2004/111183 A2 12/2004 Sallaud, Montpellier (FR); Denis WO WO 2006/04.0479 4/2006 Rontein,ontein, GreouxG les Bains (FR(FR) OTHER PUBLICATIONS (73) Assignee: PHILIP MORRIS PRODUCTS S.A., Aharoni, Aetal. The Plant Cell (Dec. 2003), vol. 15: pp. 2866-2884.* Neuchatel (CH) Besumbes, O. et al. Biotechnology and Bioengineering; Oct. 20. 2004; vol. 88, No. 2: pp. 168-175.* (*) Notice: Subject to any disclaimer, the term of this Wang, E. et al. Nature Biotechnology, Apr. 2001; vol. 19, pp. 371 patent is extended or adjusted under 35 37.4% U.S.C. 154(b) by 900 days. Wang, E. et al. Journal of Experimental Botany, Sep. 2002, vol. 53, No. 376; pp. 1891-1897.* This patent is Subject to a terminal dis Walker K. et al. Phytochemistry (2001) vol. 58; pp. 1-7.* claimer. Gutiérrez-Alcalá et al., A versatile promoter for the expression of proteins in glandular and non-glandular trichomes from a variety of plants, 56 J of Exp Botany No. 419, 2487-2494 (2005).* (21) Appl. No.: 11/814,943 Besumbes et al. (Metabolic Engineering of Isoprenoid Biosynthesis in Arabidopsis for the Production of Taxadiene, the First Committed (22) PCT Filed: Jan. -
The Coordinated Upregulated Expression of Genes Involved In
plants Article The Coordinated Upregulated Expression of Genes Involved in MEP, Chlorophyll, Carotenoid and Tocopherol Pathways, Mirrored the Corresponding Metabolite Contents in Rice Leaves during De-Etiolation Xin Jin 1,2,3,†, Can Baysal 3,†, Margit Drapal 4, Yanmin Sheng 5, Xin Huang 3, Wenshu He 3, Lianxuan Shi 6, Teresa Capell 3, Paul D. Fraser 4, Paul Christou 3,7 and Changfu Zhu 3,5,* 1 Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; [email protected] 2 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China 3 Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; [email protected] (C.B.); [email protected] (X.H.); [email protected] (W.H.); [email protected] (T.C.); [email protected] (P.C.) 4 Biochemistry, School of Life Sciences and Environment, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK; [email protected] (M.D.); [email protected] (P.D.F.) 5 School of Life Sciences, Changchun Normal University, Changchun 130032, China; [email protected] 6 School of Life Sciences, Northeast Normal University, Changchun 130024, China; [email protected] 7 ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain Citation: Jin, X.; Baysal, C.; Drapal, * Correspondence: [email protected] M.; Sheng, Y.; Huang, X.; He, W.; Shi, † These authors contributed equally to this work. L.; Capell, T.; Fraser, P.D.; Christou, P.; et al. -
PURIFICATION of the NATIVE ENZYME and CLONING .AND CHARACTERIZATION of a Cdna for (+ )-6-CADINENE SYNTHASE from BACTERIA-INOCULATED COTTON FOLIAR TISSUE
PURIFICATION OF THE NATIVE ENZYME AND CLONING .AND CHARACTERIZATION OF A cDNA FOR (+ )-6-CADINENE SYNTHASE FROM BACTERIA-INOCULATED COTTON FOLIAR TISSUE By EDWARD M. DAVIS Bachelor of Science Oklahoma State University Stillwater, Oklahoma 1987 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May, 1998 PURIFICATION OF THENATIVE ENZYME AND . CLONING AND CHARACTERIZATIQNOFA cDNA FOR (+ )-B-CADINENE SYNTHASE FROM BACTERIA-INOCULATED COTTON FOLIAR TISSUE Thesis Approved: ~··. L) .. ·g pJ ~fthe Graduate College . · · ii ACKNOWLEDGMENTS I would like to express my appreciation to the faculty, staff and graduate students of the Department of Biochemistry and Molecular Biology who have given both time and energy to assist in my scientific training and development. I would like to thank Margaret and Marlee for giving me the opportunity to participate on a project that includes protein and molecular biological methods. I wish to acknowledge the members of my committee for their time, guidance, and support. I would like to acknowledge Phillips 66 Corporation for their generous donation of equipment, the McAlester Scottish Rite Foundation and the OSU Foundation for financial support, and the EPSCOR program,. the NSF, and the USDA for providing the grants which made this work possible. A special thanks to Drs. Blair, Leach, Melcher, Sensharma and Mitchell for helping to maintain a nearly steady salary when the grant money was not available and to Drs. Cushman and Melcher and Janet Rogers fortechnical support. I would like to thank Drs. Gordon Davis and Steve Hartson for their encouragement and scientific advice, Dr. -
Medically Useful Plant Terpenoids: Biosynthesis, Occurrence, and Mechanism of Action
molecules Review Medically Useful Plant Terpenoids: Biosynthesis, Occurrence, and Mechanism of Action Matthew E. Bergman 1 , Benjamin Davis 1 and Michael A. Phillips 1,2,* 1 Department of Cellular and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; [email protected] (M.E.B.); [email protected] (B.D.) 2 Department of Biology, University of Toronto–Mississauga, Mississauga, ON L5L 1C6, Canada * Correspondence: [email protected]; Tel.: +1-905-569-4848 Academic Editors: Ewa Swiezewska, Liliana Surmacz and Bernhard Loll Received: 3 October 2019; Accepted: 30 October 2019; Published: 1 November 2019 Abstract: Specialized plant terpenoids have found fortuitous uses in medicine due to their evolutionary and biochemical selection for biological activity in animals. However, these highly functionalized natural products are produced through complex biosynthetic pathways for which we have a complete understanding in only a few cases. Here we review some of the most effective and promising plant terpenoids that are currently used in medicine and medical research and provide updates on their biosynthesis, natural occurrence, and mechanism of action in the body. This includes pharmacologically useful plastidic terpenoids such as p-menthane monoterpenoids, cannabinoids, paclitaxel (taxol®), and ingenol mebutate which are derived from the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, as well as cytosolic terpenoids such as thapsigargin and artemisinin produced through the mevalonate (MVA) pathway. We further provide a review of the MEP and MVA precursor pathways which supply the carbon skeletons for the downstream transformations yielding these medically significant natural products. Keywords: isoprenoids; plant natural products; terpenoid biosynthesis; medicinal plants; terpene synthases; cytochrome P450s 1. -
Evolutionary Diversification and Characterization of the Eubacterial
Carretero-Paulet et al. BMC Evolutionary Biology 2013, 13:180 http://www.biomedcentral.com/1471-2148/13/180 RESEARCH ARTICLE Open Access Evolutionary diversification and characterization of the eubacterial gene family encoding DXR type II, an alternative isoprenoid biosynthetic enzyme Lorenzo Carretero-Paulet1,2*, Agnieszka Lipska1, Jordi Pérez-Gil3, Félix J Sangari4, Victor A Albert1 and Manuel Rodríguez-Concepción3* Abstract Background: Isoprenoids constitute a vast family of natural compounds performing diverse and essential functions in all domains of life. In most eubacteria, isoprenoids are synthesized through the methylerythritol 4-phosphate (MEP) pathway. The production of MEP is usually catalyzed by deoxyxylulose 5-phosphate reductoisomerase (DXR-I) but a few organisms use an alternative DXR-like enzyme (DXR-II). Results: Searches through 1498 bacterial complete proteomes detected 130 sequences with similarity to DXR-II. Phylogenetic analysis identified three well-resolved clades: the DXR-II family (clustering 53 sequences including eleven experimentally verified as functional enzymes able to produce MEP), and two previously uncharacterized NAD(P)-dependent oxidoreductase families (designated DLO1 and DLO2 for DXR-II-like oxidoreductases 1 and 2). Our analyses identified amino acid changes critical for the acquisition of DXR-II biochemical function through type-I functional divergence, two of them mapping onto key residues for DXR-II activity. DXR-II showed a markedly discontinuous distribution, which was verified at several levels: taxonomic (being predominantly found in Alphaproteobacteria and Firmicutes), metabolic (being mostly found in bacteria with complete functional MEP pathways with or without DXR-I), and phenotypic (as no biological/phenotypic property was found to be preferentially distributed among DXR-II-containing strains, apart from pathogenicity in animals). -
Subject Index Proc
13088 Subject Index Proc. Natl. Acad. Sci. USA 91 (1994) Apoptosis in substantia nigra following developmental striatal excitotoxic Brine shrimp injury, 8117 See Artemia Visualizing hippocampal synaptic function by optical detection of Ca2l Broccol entry through the N-methyl-D-aspartate channel, 8170 See Brassica Amygdala modulation of hippocampal-dependent and caudate Bromophenacyl bromide nucleus-dependent memory processes, 8477 Bromophenacyl bromide binding to the actin-bundling protein I-plastin Distribution of corticotropin-releasing factor receptor mRNA expression inhibits inositol trisphosphate-independent increase in Ca2l in human in the rat brain and pituitary, 8777 neutrophils, 3534 Brownian dynamics Preproenkephalin promoter yields region-specific and long-term Adhesion of hard spheres under the influence of double-layer, van der expression in adult brain after direct in vivo gene transfer via a Waals, and gravitational potentials at a solid/liquid interface, 3004 defective herpes simplex viral vector, 8979 Browsers Intravenous administration of a transferrin receptor antibody-nerve Thorn-like prickles and heterophylly in Cyanea: Adaptations to extinct growth factor conjugate prevents the degeneration of cholinergic avian browsers on Hawaii?, 2810 striatal neurons in a model of Huntington disease, 9077 Bruton agammaglobulinemia Axotomy induces the expression of vasopressin receptors in cranial and Genomic organization and structure of Bruton agammaglobulinemia spinal motor nuclei in the adult rat, 9636 tyrosine kinase: Localization -
(12) United States Patent (10) Patent No.: US 6,610,527 B1 Croteau Et Al
USOO6610527B1 (12) United States Patent (10) Patent No.: US 6,610,527 B1 Croteau et al. (45) Date of Patent: Aug. 26, 2003 (54) COMPOSITIONS AND METHODS FOR Facchini et al., “Gene family for an Elicitor-Induced Ses TAXOL BIOSYNTHESIS quiterpene Cyclase in Tobacco,” Proc. Natl. Acad. Sci. USA 89:11088–11092 (1992). (75) Inventors: Rodney B. Croteau, Pullman, WA FloSS et al., in Taxol: Science and Applications, Suffness (US); Mark R. Wildung, Colfax, WA (ed.), pp. 191-208, CRC Press, Boca Raton, FL (1995). (US) Hezari et al., “Purification and Characterization of Taxa-4(5), 11(12)-diene Synthase from Pacific Yew (Taxus (73) Assignee: Washington State University Research brevifolia) that Catalyzes the First Committed Step of Taxol Foundation, Pullman, WA (US) Bosynthesis,” Arch. Biochem. BiophyS. 322:437-444 (1995). * Y NotOtice: Subjubject to anyy disclaimer,disclai theh term off thisthi Hezari et al., “Taxol Biosynthesis: An Update,” Planta Med. patent is extended or adjusted under 35 63:291-295 (1997). U.S.C. 154(b) by 162 days. Hezari et al., “Taxol Production and Taxadiene Synthase Activity in Taxus canadensis Cell Suspension Cultures,” (21) Appl. No.: 09/593,253 Arch. Biochem. Biophy. 337:185-190 (1997). Koepp et al., “Cyclization of Geranylgeranyl Diphosphate to (22) Filed: Jun. 13, 2000 Taxa-4(5), 11(12)-diene Is the Committed Step of Taxol Related U.S. Application Data Biosynthesis in Pacific Yew,” J. Biol. Chem. 270:8686-8690 (1995). (60) Continuation of application No. 09/315.861, filed on May LaFever et al., “Diterpenoid Resin Acid Biosynthesis in 20, 1999, now Pat. -
Supporting Information for Proteomics DOI 10.1002/Pmic.200600568
Supporting Information for Proteomics DOI 10.1002/pmic.200600568 Xiao-Li Wang, Alex Fu, Sreekumar Raghavakaimal and Hon-Chi Lee Proteomic analysis of vascular endothelial cells in response to laminar shear stress ª 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com Table A. Proteins altereations after 10 minutes of shear stress Accesion # Protein Name H:L* Matched Sequence Charge Score Confidence % Error Peptide Number gi|39931056 1-deoxy-D-xylulose 5-phosphate reductoisomerase 1 (DXP reductoisomerase 1) 3.78 QNGCR 2 21 75 1.6 2 gi|14548081 28 kDa and 33 kDa Inner dynein arm light chain, axonemal (p28, p33) 2.86 CEAIEK 2 32 90 3.7 3 gi|1723793 3 beta-hydroxysteroid dehydrogenase 0.21 VKIVCAYR 2 28 90 5.9 2 gi|32171609 30S ribosomal protein S11 2.17 GCAHIK 2 33 90 6.2 4 gi|34222742 30S ribosomal protein S2 0.41 REYNAVAECHK 3 20 75 1.3 4 gi|26399495 30S ribosomal protein S5P 0.19 GCGSWEZGZGRPHTVALK 3 25 75 1 4 gi|3929352 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) 0.07 GCSVITR 2 23 75 3.2 4 gi|23396668 3-isopropylmalate dehydratase small subunit (Isopropylmalate isomerase) 0.46 AAGVSCVIAK 2 25 75 1.3 3 gi|3123178 50S ribosomal protein L32 (Ribosomal protein I) (BL37) 2.17 ACGTYK 2 32 90 6.2 2 gi|135758 Acetyl-CoA acetyltransferase (Acetoacetyl-CoA thiolase) 0.31 VCASAMK 2 20 75 1.2 3 gi|14194435 ADAM 11 precursor (A disintegrin and metalloproteinase domain 11) 0.23 GSCGRK 2 24 75 4 2 gi|6174971 Adenosylhomocysteinase (S-adenosyl-L-homocysteine hydrolase) (AdoHcyase) 2.86 GCAQALK 2 32 90 3.7 -
Vitamin B6 Biosynthesis in Higher Plants
Vitamin B6 biosynthesis in higher plants Marina Tambasco-Studart*, Olca Titiz*, Thomas Raschle, Gabriela Forster, Nikolaus Amrhein, and Teresa B. Fitzpatrick† Institute of Plant Sciences, Swiss Federal Institute of Technology (ETH), Universita¨tstrasse 2, CH-8092 Zu¨rich, Switzerland Communicated by Meinhart H. Zenk, Universita¨t Halle, Halle͞Saale, Germany, July 21, 2005 (received for review May 31, 2005) Vitamin B6 is an essential metabolite in all organisms. It can act as a that does not involve DXP exists for vitamin B6 biosynthesis. Only coenzyme for numerous metabolic enzymes and has recently been two genes (PDX1 and PDX2), which show no homology to any of shown to be a potent antioxidant. Plants and microorganisms have the E. coli genes, appear to be involved in this alternative pathway a de novo biosynthetic pathway for vitamin B6, but animals must (2, 15). Furthermore, based on extensive genomic analyses, it has obtain it from dietary sources. In Escherichia coli, it is known that been shown that the pathways of vitamin B6 biosynthesis are the vitamin is derived from deoxyxylulose 5-phosphate (an inter- autoexclusive in that organisms have the genes for one or the other mediate in the nonmevalonate pathway of isoprenoid biosynthe- pathway but not both (2, 15). PDX1 and PDX2 have been predicted sis) and 4-phosphohydroxy-L-threonine. It has been assumed that to function as a glutamine amidotransferase with PDX2 as the vitamin B6 is synthesized in the same way in plants, but this glutaminase domain and PDX1 as the acceptor͞synthase domain. hypothesis has never been experimentally proven. Here, we show Indeed, glutaminase activity has been demonstrated for PDX2 that, in plants, synthesis of the vitamin takes an entirely different from a number of organisms (16–18).